Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,97 @@ Please follow the license of the original model.
|
|
12 |
|
13 |
## How To Use
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
### Generate the model
|
18 |
|
|
|
12 |
|
13 |
## How To Use
|
14 |
|
15 |
+
```python
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
+
import transformers
|
18 |
+
import torch
|
19 |
+
quantized_model_dir = "Intel/DeepSeek-V3.1-int4-mixed-AutoRound"
|
20 |
+
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
quantized_model_dir,
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
device_map="auto",
|
25 |
+
)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, trust_remote_code=True)
|
27 |
+
prompts = [
|
28 |
+
"9.11和9.8哪个数字大",
|
29 |
+
"strawberry中有几个r?",
|
30 |
+
"There is a girl who likes adventure,",
|
31 |
+
"Please give a brief introduction of DeepSeek company.",
|
32 |
+
]
|
33 |
+
|
34 |
+
texts=[]
|
35 |
+
for prompt in prompts:
|
36 |
+
messages = [
|
37 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
38 |
+
{"role": "user", "content": prompt}
|
39 |
+
]
|
40 |
+
text = tokenizer.apply_chat_template(
|
41 |
+
messages,
|
42 |
+
tokenize=False,
|
43 |
+
add_generation_prompt=True
|
44 |
+
)
|
45 |
+
texts.append(text)
|
46 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
47 |
+
|
48 |
+
outputs = model.generate(
|
49 |
+
input_ids=inputs["input_ids"].to(model.device),
|
50 |
+
attention_mask=inputs["attention_mask"].to(model.device),
|
51 |
+
max_length=200, ##change this to align with the official usage
|
52 |
+
num_return_sequences=1,
|
53 |
+
do_sample=False ##change this to align with the official usage
|
54 |
+
)
|
55 |
+
generated_ids = [
|
56 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs["input_ids"], outputs)
|
57 |
+
]
|
58 |
+
decoded_outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
59 |
+
|
60 |
+
for i, prompt in enumerate(prompts):
|
61 |
+
input_id = inputs
|
62 |
+
print(f"Prompt: {prompt}")
|
63 |
+
print(f"Generated: {decoded_outputs[i]}")
|
64 |
+
|
65 |
+
"""
|
66 |
+
Prompt: 9.11和9.8哪个数字大
|
67 |
+
Generated: 9.11 和 9.8 比较时,9.11 更大。
|
68 |
+
- 因为 9.11 相当于 9 + 0.11,而 9.8 相当于 9 + 0.8,但注意这里 0.11 实际上小于 0.8(0.11 < 0.8),所以 9.8 更大。
|
69 |
+
- 重新确认:9.11 是 9.11,9.8 是 9.80,因此 9.80 > 9.11。
|
70 |
+
|
71 |
+
**答案:9.8 更大。**
|
72 |
+
--------------------------------------------------
|
73 |
+
Prompt: strawberry中有几个r?
|
74 |
+
Generated: 在英文单词 "strawberry" 中,字母 "r" 出现了 **3 次**。
|
75 |
+
- 位置:第 3 个字母(s**t**r**a**w**b**e**r**r**y,注意:第 1 个 "r" 是第 3 字符,第 2 个 "r" 是第 6 字符,第 3 个 "r" 是第 7 字符)。
|
76 |
+
|
77 |
+
如果需要进一步解释或其他问题,请随时告知! 😊
|
78 |
+
--------------------------------------------------
|
79 |
+
Prompt: There is a girl who likes adventure,
|
80 |
+
Generated: Of course! A girl who likes adventure is a fantastic starting point for a story, a character, or a real-life inspiration. Here are a few ways to explore that idea:
|
81 |
+
|
82 |
+
### As a Character Profile:
|
83 |
+
|
84 |
+
**Name:** Let's call her **Elara**.
|
85 |
+
|
86 |
+
**Traits:**
|
87 |
+
* **Curious:** She asks "why" and "what if" more than anyone else. She sees a hidden path in the woods and has to know where it leads.
|
88 |
+
* **Resourceful:** She's the one with a multi-tool in her pocket, who knows how to read a map (and the stars), and can build a fire.
|
89 |
+
* **Brave, not fearless:** She feels the fear of climbing the tall cliff or exploring the dark cave, but her curiosity and determination are stronger.
|
90 |
+
* **Resilient:** She doesn't see a wrong turn
|
91 |
+
--------------------------------------------------
|
92 |
+
Prompt: Please give a brief introduction of DeepSeek company.
|
93 |
+
Generated: Of course. Here is a brief introduction to DeepSeek:
|
94 |
+
|
95 |
+
**DeepSeek** is a leading Chinese AI research company focused on developing powerful artificial general intelligence (AGI). The company is best known for creating state-of-the-art large language models (LLMs).
|
96 |
+
|
97 |
+
**Key Highlights:**
|
98 |
+
|
99 |
+
* **Core Product:** Their flagship product is the **DeepSeek-V2** language model, a powerful and efficient AI known for its strong performance in coding, mathematics, and general reasoning.
|
100 |
+
* **Open-Source Commitment:** DeepSeek has gained significant recognition for open-sourcing its earlier models (like DeepSeek-Coder and DeepSeek-LLM 67B), making them freely available for research and commercial use. This has helped foster innovation and build a strong developer community.
|
101 |
+
* **Specialization in Coding:** They are particularly renowned for their models' exceptional capabilities
|
102 |
+
--------------------------------------------------
|
103 |
+
|
104 |
+
"""
|
105 |
+
```
|
106 |
|
107 |
### Generate the model
|
108 |
|