Upload SegmentNT
Browse files- config.json +1 -1
- modeling_segment_nt.py +29 -27
- pytorch_model.bin +2 -2
config.json
CHANGED
|
@@ -40,7 +40,7 @@
|
|
| 40 |
"num_layers_head": 2,
|
| 41 |
"pad_token_id": 1,
|
| 42 |
"position_embedding_type": "rotary",
|
| 43 |
-
"rescaling_factor":
|
| 44 |
"tie_word_embeddings": false,
|
| 45 |
"token_dropout": false,
|
| 46 |
"torch_dtype": "float32",
|
|
|
|
| 40 |
"num_layers_head": 2,
|
| 41 |
"pad_token_id": 1,
|
| 42 |
"position_embedding_type": "rotary",
|
| 43 |
+
"rescaling_factor": 2.44140625,
|
| 44 |
"tie_word_embeddings": false,
|
| 45 |
"token_dropout": false,
|
| 46 |
"torch_dtype": "float32",
|
modeling_segment_nt.py
CHANGED
|
@@ -115,56 +115,58 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 115 |
super().__init__()
|
| 116 |
|
| 117 |
# Extract argument from the config
|
| 118 |
-
rescaling_factor = rotary_embedding_config.rescaling_factor
|
| 119 |
-
upper_freq = 10000
|
| 120 |
-
|
| 121 |
-
if rescaling_factor is None:
|
| 122 |
-
inv_freq = 1.0 / (upper_freq ** (torch.arange(0, dim, 2).float() / dim))
|
| 123 |
-
else:
|
| 124 |
-
updated_base = upper_freq * (
|
| 125 |
-
rescaling_factor ** (dim / (dim - 2))
|
| 126 |
-
)
|
| 127 |
-
inv_freq = 1.0 / (
|
| 128 |
-
updated_base ** (torch.arange(0, dim, 2).float() / dim)
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
self.register_buffer("inv_freq", inv_freq)
|
| 132 |
|
| 133 |
self._seq_len_cached = None
|
| 134 |
self._cos_cached = None
|
| 135 |
self._sin_cached = None
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
seq_len = x.shape[seq_dimension]
|
| 139 |
|
| 140 |
# Reset the tables if the sequence length has changed,
|
| 141 |
# or if we're on a new device (possibly due to tracing for instance)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
return self._cos_cached, self._sin_cached
|
| 154 |
|
| 155 |
def forward(
|
| 156 |
self, q: torch.Tensor, k: torch.Tensor
|
| 157 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
return (
|
| 163 |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
| 164 |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
| 165 |
)
|
| 166 |
|
| 167 |
|
|
|
|
| 168 |
class EsmContactPredictionHead(nn.Module):
|
| 169 |
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
| 170 |
|
|
|
|
| 115 |
super().__init__()
|
| 116 |
|
| 117 |
# Extract argument from the config
|
| 118 |
+
self.rescaling_factor = rotary_embedding_config.rescaling_factor
|
| 119 |
+
self.upper_freq = 10000
|
| 120 |
+
self.dim = dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
self._seq_len_cached = None
|
| 123 |
self._cos_cached = None
|
| 124 |
self._sin_cached = None
|
| 125 |
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def _compute_cos_sin_tables(self, x, inv_freq, seq_dimension=2):
|
| 129 |
seq_len = x.shape[seq_dimension]
|
| 130 |
|
| 131 |
# Reset the tables if the sequence length has changed,
|
| 132 |
# or if we're on a new device (possibly due to tracing for instance)
|
| 133 |
+
self._seq_len_cached = seq_len
|
| 134 |
+
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
| 135 |
+
inv_freq
|
| 136 |
+
)
|
| 137 |
+
freqs = torch.outer(t, inv_freq)
|
| 138 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
|
|
|
| 139 |
|
| 140 |
+
self._cos_cached = emb.cos()[None, None, :, :]
|
| 141 |
+
self._sin_cached = emb.sin()[None, None, :, :]
|
| 142 |
|
| 143 |
return self._cos_cached, self._sin_cached
|
| 144 |
|
| 145 |
def forward(
|
| 146 |
self, q: torch.Tensor, k: torch.Tensor
|
| 147 |
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 148 |
+
|
| 149 |
+
if self.rescaling_factor is None:
|
| 150 |
+
inv_freq = 1.0 / (self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim))
|
| 151 |
+
else:
|
| 152 |
+
updated_base = self.upper_freq * (
|
| 153 |
+
self.rescaling_factor ** (self.dim / (self.dim - 2))
|
| 154 |
+
)
|
| 155 |
+
inv_freq = 1.0 / (
|
| 156 |
+
updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
| 157 |
+
)
|
| 158 |
|
| 159 |
+
self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
|
| 160 |
+
k, inv_freq, seq_dimension=-2,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
return (
|
| 164 |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
| 165 |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
| 166 |
)
|
| 167 |
|
| 168 |
|
| 169 |
+
|
| 170 |
class EsmContactPredictionHead(nn.Module):
|
| 171 |
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
| 172 |
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d28fe8a570c68cd94353e565e25b23ba8c521f73d9e6d530f39b950ea458c67e
|
| 3 |
+
size 2237465429
|