Upload text_generation.py
Browse files- text_generation.py +124 -0
text_generation.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, Pipeline
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TextGenerationPipeline(Pipeline):
|
| 7 |
+
def __init__(self, model, **kwargs): # type: ignore
|
| 8 |
+
super().__init__(model=model, **kwargs)
|
| 9 |
+
# Load tokenizers
|
| 10 |
+
# TODO: Maybe do this in a better way (for now the easiest way was done)
|
| 11 |
+
model_name = "InstaDeepAI/ChatNT"
|
| 12 |
+
self.english_tokenizer = AutoTokenizer.from_pretrained(
|
| 13 |
+
model_name, subfolder="english_tokenizer"
|
| 14 |
+
)
|
| 15 |
+
self.bio_tokenizer = AutoTokenizer.from_pretrained(
|
| 16 |
+
model_name, subfolder="bio_tokenizer"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
def _sanitize_parameters(self, **kwargs: dict) -> tuple[dict, dict, dict]:
|
| 20 |
+
preprocess_kwargs = {}
|
| 21 |
+
forward_kwargs = {}
|
| 22 |
+
postprocess_kwargs = {} # type: ignore
|
| 23 |
+
|
| 24 |
+
if "max_num_tokens_to_decode" in kwargs:
|
| 25 |
+
forward_kwargs["max_num_tokens_to_decode"] = kwargs[
|
| 26 |
+
"max_num_tokens_to_decode"
|
| 27 |
+
]
|
| 28 |
+
if "english_tokens_max_length" in kwargs:
|
| 29 |
+
preprocess_kwargs["english_tokens_max_length"] = kwargs[
|
| 30 |
+
"english_tokens_max_length"
|
| 31 |
+
]
|
| 32 |
+
if "bio_tokens_max_length" in kwargs:
|
| 33 |
+
preprocess_kwargs["bio_tokens_max_length"] = kwargs["bio_tokens_max_length"]
|
| 34 |
+
|
| 35 |
+
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
| 36 |
+
|
| 37 |
+
def preprocess(
|
| 38 |
+
self,
|
| 39 |
+
inputs: dict,
|
| 40 |
+
english_tokens_max_length: int = 512,
|
| 41 |
+
bio_tokens_max_length: int = 512,
|
| 42 |
+
) -> dict:
|
| 43 |
+
english_sequence = inputs["english_sequence"]
|
| 44 |
+
dna_sequences = inputs["dna_sequences"]
|
| 45 |
+
|
| 46 |
+
context = "A chat between a curious user and an artificial intelligence assistant that can handle bio sequences. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: " # noqa
|
| 47 |
+
space = " "
|
| 48 |
+
if english_sequence[-1] == " ":
|
| 49 |
+
space = ""
|
| 50 |
+
english_sequence = context + english_sequence + space + "ASSISTANT:"
|
| 51 |
+
|
| 52 |
+
english_tokens = self.english_tokenizer(
|
| 53 |
+
english_sequence,
|
| 54 |
+
return_tensors="pt",
|
| 55 |
+
padding="max_length",
|
| 56 |
+
truncation=True,
|
| 57 |
+
max_length=english_tokens_max_length,
|
| 58 |
+
).input_ids
|
| 59 |
+
bio_tokens = self.bio_tokenizer(
|
| 60 |
+
dna_sequences,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
padding="max_length",
|
| 63 |
+
max_length=bio_tokens_max_length,
|
| 64 |
+
truncation=True,
|
| 65 |
+
).input_ids.unsqueeze(0)
|
| 66 |
+
|
| 67 |
+
return {"english_tokens": english_tokens, "bio_tokens": bio_tokens}
|
| 68 |
+
|
| 69 |
+
def _forward(self, model_inputs: dict, max_num_tokens_to_decode: int = 50) -> dict:
|
| 70 |
+
english_tokens = model_inputs["english_tokens"].clone()
|
| 71 |
+
bio_tokens = model_inputs["bio_tokens"].clone()
|
| 72 |
+
projected_bio_embeddings = None
|
| 73 |
+
|
| 74 |
+
actual_num_steps = 0
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
for _ in range(max_num_tokens_to_decode):
|
| 77 |
+
# Check if no more pad token id
|
| 78 |
+
if (
|
| 79 |
+
self.english_tokenizer.pad_token_id
|
| 80 |
+
not in english_tokens[0].cpu().numpy()
|
| 81 |
+
):
|
| 82 |
+
break
|
| 83 |
+
|
| 84 |
+
# Predictions
|
| 85 |
+
outs = self.model(
|
| 86 |
+
multi_omics_tokens_ids=(english_tokens, bio_tokens),
|
| 87 |
+
projection_english_tokens_ids=english_tokens,
|
| 88 |
+
projected_bio_embeddings=projected_bio_embeddings,
|
| 89 |
+
)
|
| 90 |
+
projected_bio_embeddings = outs["projected_bio_embeddings"]
|
| 91 |
+
logits = outs["logits"].detach().cpu().numpy()
|
| 92 |
+
|
| 93 |
+
# Get predicted token
|
| 94 |
+
first_idx_pad_token = np.where(
|
| 95 |
+
english_tokens[0].cpu() == self.english_tokenizer.pad_token_id
|
| 96 |
+
)[0][0]
|
| 97 |
+
predicted_token = np.argmax(logits[0, first_idx_pad_token - 1])
|
| 98 |
+
|
| 99 |
+
# If it's <eos> then stop, else add the predicted token
|
| 100 |
+
if predicted_token == self.english_tokenizer.eos_token_id:
|
| 101 |
+
break
|
| 102 |
+
else:
|
| 103 |
+
english_tokens[0, first_idx_pad_token] = predicted_token
|
| 104 |
+
actual_num_steps += 1
|
| 105 |
+
|
| 106 |
+
# Get the position where generation started
|
| 107 |
+
idx_begin_generation = np.where(
|
| 108 |
+
model_inputs["english_tokens"][0].cpu()
|
| 109 |
+
== self.english_tokenizer.pad_token_id
|
| 110 |
+
)[0][0]
|
| 111 |
+
|
| 112 |
+
# Get generated tokens
|
| 113 |
+
generated_tokens = english_tokens[
|
| 114 |
+
0, idx_begin_generation : idx_begin_generation + actual_num_steps
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
return {
|
| 118 |
+
"generated_tokens": generated_tokens,
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
def postprocess(self, model_outputs: dict) -> str:
|
| 122 |
+
generated_tokens = model_outputs["generated_tokens"]
|
| 123 |
+
generated_sequence: str = self.english_tokenizer.decode(generated_tokens)
|
| 124 |
+
return generated_sequence
|