Commit
·
465db3b
1
Parent(s):
806682f
update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- precision
|
| 7 |
+
- recall
|
| 8 |
+
- f1
|
| 9 |
+
- accuracy
|
| 10 |
+
model-index:
|
| 11 |
+
- name: convnext-base-224_finetuned_on_ImageIn_annotations
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
+
|
| 18 |
+
# convnext-base-224_finetuned_on_ImageIn_annotations
|
| 19 |
+
|
| 20 |
+
This model is a fine-tuned version of [facebook/convnext-base-224](https://huggingface.co/facebook/convnext-base-224) on the None dataset.
|
| 21 |
+
It achieves the following results on the evaluation set:
|
| 22 |
+
- Loss: 0.0749
|
| 23 |
+
- Precision: 0.9722
|
| 24 |
+
- Recall: 0.9811
|
| 25 |
+
- F1: 0.9765
|
| 26 |
+
- Accuracy: 0.9824
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 2e-05
|
| 46 |
+
- train_batch_size: 16
|
| 47 |
+
- eval_batch_size: 16
|
| 48 |
+
- seed: 42
|
| 49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- num_epochs: 50
|
| 52 |
+
- mixed_precision_training: Native AMP
|
| 53 |
+
|
| 54 |
+
### Training results
|
| 55 |
+
|
| 56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 58 |
+
| No log | 1.0 | 83 | 0.1368 | 0.9748 | 0.9632 | 0.9688 | 0.9772 |
|
| 59 |
+
| No log | 2.0 | 166 | 0.0734 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 60 |
+
| No log | 3.0 | 249 | 0.0693 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 61 |
+
| No log | 4.0 | 332 | 0.0698 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 62 |
+
| No log | 5.0 | 415 | 0.0688 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 63 |
+
| No log | 6.0 | 498 | 0.0690 | 0.9729 | 0.9751 | 0.9740 | 0.9807 |
|
| 64 |
+
| 0.0947 | 7.0 | 581 | 0.0666 | 0.9689 | 0.9800 | 0.9743 | 0.9807 |
|
| 65 |
+
| 0.0947 | 8.0 | 664 | 0.0642 | 0.9689 | 0.9800 | 0.9743 | 0.9807 |
|
| 66 |
+
| 0.0947 | 9.0 | 747 | 0.0790 | 0.9763 | 0.9763 | 0.9763 | 0.9824 |
|
| 67 |
+
| 0.0947 | 10.0 | 830 | 0.0813 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 68 |
+
| 0.0947 | 11.0 | 913 | 0.0797 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 69 |
+
| 0.0947 | 12.0 | 996 | 0.0791 | 0.9763 | 0.9763 | 0.9763 | 0.9824 |
|
| 70 |
+
| 0.0205 | 13.0 | 1079 | 0.0871 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 71 |
+
| 0.0205 | 14.0 | 1162 | 0.0716 | 0.9722 | 0.9811 | 0.9765 | 0.9824 |
|
| 72 |
+
| 0.0205 | 15.0 | 1245 | 0.0746 | 0.9776 | 0.9799 | 0.9787 | 0.9842 |
|
| 73 |
+
| 0.0205 | 16.0 | 1328 | 0.0917 | 0.9738 | 0.9692 | 0.9714 | 0.9789 |
|
| 74 |
+
| 0.0205 | 17.0 | 1411 | 0.0694 | 0.9776 | 0.9799 | 0.9787 | 0.9842 |
|
| 75 |
+
| 0.0205 | 18.0 | 1494 | 0.0697 | 0.9768 | 0.9859 | 0.9812 | 0.9859 |
|
| 76 |
+
| 0.0166 | 19.0 | 1577 | 0.0689 | 0.9702 | 0.9835 | 0.9766 | 0.9824 |
|
| 77 |
+
| 0.0166 | 20.0 | 1660 | 0.0995 | 0.9738 | 0.9692 | 0.9714 | 0.9789 |
|
| 78 |
+
| 0.0166 | 21.0 | 1743 | 0.0847 | 0.9776 | 0.9799 | 0.9787 | 0.9842 |
|
| 79 |
+
| 0.0166 | 22.0 | 1826 | 0.0843 | 0.9776 | 0.9799 | 0.9787 | 0.9842 |
|
| 80 |
+
| 0.0166 | 23.0 | 1909 | 0.0869 | 0.9750 | 0.9727 | 0.9739 | 0.9807 |
|
| 81 |
+
| 0.0166 | 24.0 | 1992 | 0.0762 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 82 |
+
| 0.0125 | 25.0 | 2075 | 0.0778 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 83 |
+
| 0.0125 | 26.0 | 2158 | 0.0834 | 0.9763 | 0.9763 | 0.9763 | 0.9824 |
|
| 84 |
+
| 0.0125 | 27.0 | 2241 | 0.0818 | 0.9776 | 0.9799 | 0.9787 | 0.9842 |
|
| 85 |
+
| 0.0125 | 28.0 | 2324 | 0.0756 | 0.9684 | 0.9859 | 0.9768 | 0.9824 |
|
| 86 |
+
| 0.0125 | 29.0 | 2407 | 0.1150 | 0.9591 | 0.9824 | 0.9700 | 0.9772 |
|
| 87 |
+
| 0.0125 | 30.0 | 2490 | 0.0781 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 88 |
+
| 0.0111 | 31.0 | 2573 | 0.0793 | 0.9716 | 0.9871 | 0.9790 | 0.9842 |
|
| 89 |
+
| 0.0111 | 32.0 | 2656 | 0.0713 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 90 |
+
| 0.0111 | 33.0 | 2739 | 0.0802 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 91 |
+
| 0.0111 | 34.0 | 2822 | 0.0636 | 0.9802 | 0.9870 | 0.9835 | 0.9877 |
|
| 92 |
+
| 0.0111 | 35.0 | 2905 | 0.0702 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 93 |
+
| 0.0111 | 36.0 | 2988 | 0.0773 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 94 |
+
| 0.0145 | 37.0 | 3071 | 0.0663 | 0.9781 | 0.9894 | 0.9836 | 0.9877 |
|
| 95 |
+
| 0.0145 | 38.0 | 3154 | 0.0721 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 96 |
+
| 0.0145 | 39.0 | 3237 | 0.0708 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 97 |
+
| 0.0145 | 40.0 | 3320 | 0.0729 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 98 |
+
| 0.0145 | 41.0 | 3403 | 0.0760 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 99 |
+
| 0.0145 | 42.0 | 3486 | 0.0771 | 0.9716 | 0.9871 | 0.9790 | 0.9842 |
|
| 100 |
+
| 0.0106 | 43.0 | 3569 | 0.0713 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 101 |
+
| 0.0106 | 44.0 | 3652 | 0.0721 | 0.9748 | 0.9883 | 0.9813 | 0.9859 |
|
| 102 |
+
| 0.0106 | 45.0 | 3735 | 0.0732 | 0.9768 | 0.9859 | 0.9812 | 0.9859 |
|
| 103 |
+
| 0.0106 | 46.0 | 3818 | 0.0783 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 104 |
+
| 0.0106 | 47.0 | 3901 | 0.0770 | 0.9789 | 0.9835 | 0.9811 | 0.9859 |
|
| 105 |
+
| 0.0106 | 48.0 | 3984 | 0.0744 | 0.9735 | 0.9847 | 0.9789 | 0.9842 |
|
| 106 |
+
| 0.0082 | 49.0 | 4067 | 0.0752 | 0.9722 | 0.9811 | 0.9765 | 0.9824 |
|
| 107 |
+
| 0.0082 | 50.0 | 4150 | 0.0749 | 0.9722 | 0.9811 | 0.9765 | 0.9824 |
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
### Framework versions
|
| 111 |
+
|
| 112 |
+
- Transformers 4.22.1
|
| 113 |
+
- Pytorch 1.12.1+cu113
|
| 114 |
+
- Datasets 2.5.1
|
| 115 |
+
- Tokenizers 0.12.1
|