Commit
·
64fa2ae
1
Parent(s):
2444fad
Upload model
Browse files- modeling_gcn.py +41 -35
modeling_gcn.py
CHANGED
|
@@ -1,47 +1,24 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
-
from torch_scatter import scatter
|
| 5 |
-
from transformers import PreTrainedModel
|
| 6 |
-
from gcn_model.configuration_gcn import GCNConfig
|
| 7 |
-
import torch
|
| 8 |
-
from rdkit import Chem
|
| 9 |
-
from rdkit.Chem import AllChem
|
| 10 |
-
import torch
|
| 11 |
-
from torch_geometric.data import Data
|
| 12 |
-
import os
|
| 13 |
-
from transformers import PretrainedConfig
|
| 14 |
-
from typing import List
|
| 15 |
-
from torch_geometric.loader import DataLoader
|
| 16 |
from tqdm import tqdm
|
| 17 |
import pandas as pd
|
| 18 |
-
from
|
| 19 |
-
class GCNConfig(PretrainedConfig):
|
| 20 |
-
model_type = "gcn"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
input_feature: int=64,
|
| 25 |
-
emb_input: int=20,
|
| 26 |
-
hidden_size: int=64,
|
| 27 |
-
n_layers: int=6,
|
| 28 |
-
num_classes: int=1,
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
):
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
self.num_classes = num_classes # the number of output classes
|
| 40 |
|
| 41 |
-
self.smiles = smiles # process smiles
|
| 42 |
-
self.processor_class = processor_class
|
| 43 |
|
| 44 |
-
super().__init__(**kwargs)
|
| 45 |
class SmilesDataset(torch.utils.data.Dataset):
|
| 46 |
def __init__(self, smiles):
|
| 47 |
self.smiles_list = smiles
|
|
@@ -176,6 +153,35 @@ class GCNNet(torch.nn.Module):
|
|
| 176 |
|
| 177 |
return x.squeeze(-1)
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
class GCNModel(PreTrainedModel):
|
| 180 |
config_class = GCNConfig
|
| 181 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from tqdm import tqdm
|
| 6 |
import pandas as pd
|
| 7 |
+
from typing import List
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
from rdkit import Chem
|
| 10 |
+
from rdkit.Chem import AllChem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from transformers import PretrainedConfig
|
| 13 |
+
from transformers import PreTrainedModel
|
| 14 |
+
from transformers import AutoModel
|
|
|
|
| 15 |
|
| 16 |
+
from torch_geometric.nn import GCNConv
|
| 17 |
+
from torch_geometric.data import Data
|
| 18 |
+
from torch_geometric.loader import DataLoader
|
| 19 |
+
from torch_scatter import scatter
|
|
|
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
|
|
|
| 22 |
class SmilesDataset(torch.utils.data.Dataset):
|
| 23 |
def __init__(self, smiles):
|
| 24 |
self.smiles_list = smiles
|
|
|
|
| 153 |
|
| 154 |
return x.squeeze(-1)
|
| 155 |
|
| 156 |
+
|
| 157 |
+
class GCNConfig(PretrainedConfig):
|
| 158 |
+
model_type = "gcn"
|
| 159 |
+
|
| 160 |
+
def __init__(
|
| 161 |
+
self,
|
| 162 |
+
input_feature: int=64,
|
| 163 |
+
emb_input: int=20,
|
| 164 |
+
hidden_size: int=64,
|
| 165 |
+
n_layers: int=6,
|
| 166 |
+
num_classes: int=1,
|
| 167 |
+
|
| 168 |
+
smiles: List[str] = None,
|
| 169 |
+
processor_class: str = "SmilesProcessor",
|
| 170 |
+
**kwargs,
|
| 171 |
+
):
|
| 172 |
+
|
| 173 |
+
self.input_feature = input_feature # the dimension of input feature
|
| 174 |
+
self.emb_input = emb_input # the embedding dimension of input feature
|
| 175 |
+
self.hidden_size = hidden_size # the hidden size of GCN
|
| 176 |
+
self.n_layers = n_layers # the number of GCN layers
|
| 177 |
+
self.num_classes = num_classes # the number of output classes
|
| 178 |
+
|
| 179 |
+
self.smiles = smiles # process smiles
|
| 180 |
+
self.processor_class = processor_class
|
| 181 |
+
|
| 182 |
+
super().__init__(**kwargs)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
class GCNModel(PreTrainedModel):
|
| 186 |
config_class = GCNConfig
|
| 187 |
|