File size: 2,116 Bytes
f3dc3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: stack-edu-classifier-cpp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# stack-edu-classifier-cpp

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4333
- Precision: 0.4421
- Recall: 0.2865
- F1 Macro: 0.3036
- Accuracy: 0.5539
- F1 Binary Minimum3: 0.6643

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 256
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|
| No log        | 0      | 0    | 8.4963          | 0.0009    | 0.1667 | 0.0018   | 0.0053   | 0                  |
| 0.4562        | 2.8986 | 1000 | 0.4489          | 0.4070    | 0.2717 | 0.2796   | 0.5560   | 0.6074             |
| 0.4439        | 5.7971 | 2000 | 0.4318          | 0.4336    | 0.2774 | 0.2904   | 0.5589   | 0.6484             |
| 0.4404        | 8.6957 | 3000 | 0.4333          | 0.4421    | 0.2865 | 0.3036   | 0.5539   | 0.6643             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1