File size: 2,116 Bytes
f3dc3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: stack-edu-classifier-cpp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stack-edu-classifier-cpp
This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4333
- Precision: 0.4421
- Recall: 0.2865
- F1 Macro: 0.3036
- Accuracy: 0.5539
- F1 Binary Minimum3: 0.6643
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 256
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|
| No log | 0 | 0 | 8.4963 | 0.0009 | 0.1667 | 0.0018 | 0.0053 | 0 |
| 0.4562 | 2.8986 | 1000 | 0.4489 | 0.4070 | 0.2717 | 0.2796 | 0.5560 | 0.6074 |
| 0.4439 | 5.7971 | 2000 | 0.4318 | 0.4336 | 0.2774 | 0.2904 | 0.5589 | 0.6484 |
| 0.4404 | 8.6957 | 3000 | 0.4333 | 0.4421 | 0.2865 | 0.3036 | 0.5539 | 0.6643 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|