Commit
·
c8028be
1
Parent(s):
3d51561
clean vision
Browse files
vision.py
CHANGED
|
@@ -24,27 +24,16 @@ import torch.utils.checkpoint
|
|
| 24 |
from torch import nn
|
| 25 |
from transformers.activations import ACT2FN
|
| 26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 27 |
-
from transformers.modeling_utils import PreTrainedModel
|
| 28 |
from transformers.utils import (
|
| 29 |
ModelOutput,
|
| 30 |
-
add_start_docstrings,
|
| 31 |
-
add_start_docstrings_to_model_forward,
|
| 32 |
is_flash_attn_2_available,
|
| 33 |
-
logging,
|
| 34 |
-
replace_return_docstrings,
|
| 35 |
-
)
|
| 36 |
|
| 37 |
from .configuration_img2html import Img2HTMLVisionConfig
|
| 38 |
|
| 39 |
|
| 40 |
logger = logging.get_logger(__name__)
|
| 41 |
|
| 42 |
-
# _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
| 43 |
-
|
| 44 |
-
# SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 45 |
-
# "google/siglip-base-patch16-224",
|
| 46 |
-
# # See all SigLIP models at https://huggingface.co/models?filter=siglip
|
| 47 |
-
# ]
|
| 48 |
|
| 49 |
if is_flash_attn_2_available():
|
| 50 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
@@ -64,34 +53,6 @@ def _get_unpad_data(attention_mask):
|
|
| 64 |
)
|
| 65 |
|
| 66 |
|
| 67 |
-
# # Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 68 |
-
# def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 69 |
-
# """
|
| 70 |
-
# Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 71 |
-
# """
|
| 72 |
-
# bsz, src_len = mask.size()
|
| 73 |
-
# tgt_len = tgt_len if tgt_len is not None else src_len
|
| 74 |
-
|
| 75 |
-
# expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 76 |
-
|
| 77 |
-
# inverted_mask = 1.0 - expanded_mask
|
| 78 |
-
|
| 79 |
-
# return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
# # contrastive loss function, adapted from
|
| 83 |
-
# # https://sachinruk.github.io/blog/2021-03-07-siglip.html
|
| 84 |
-
# def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
| 85 |
-
# return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->siglip
|
| 89 |
-
# def siglip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
| 90 |
-
# caption_loss = contrastive_loss(similarity)
|
| 91 |
-
# image_loss = contrastive_loss(similarity.t())
|
| 92 |
-
# return (caption_loss + image_loss) / 2.0
|
| 93 |
-
|
| 94 |
-
|
| 95 |
@dataclass
|
| 96 |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
| 97 |
class SiglipVisionModelOutput(ModelOutput):
|
|
@@ -122,75 +83,6 @@ class SiglipVisionModelOutput(ModelOutput):
|
|
| 122 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 123 |
|
| 124 |
|
| 125 |
-
# @dataclass
|
| 126 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
| 127 |
-
# class SiglipTextModelOutput(ModelOutput):
|
| 128 |
-
# """
|
| 129 |
-
# Base class for text model's outputs that also contains a pooling of the last hidden states.
|
| 130 |
-
|
| 131 |
-
# Args:
|
| 132 |
-
# text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 133 |
-
# The text embeddings obtained by applying the projection layer to the pooler_output.
|
| 134 |
-
# last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 135 |
-
# Sequence of hidden-states at the output of the last layer of the model.
|
| 136 |
-
# hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 137 |
-
# Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 138 |
-
# one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 139 |
-
|
| 140 |
-
# Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 141 |
-
# attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 142 |
-
# Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 143 |
-
# sequence_length)`.
|
| 144 |
-
|
| 145 |
-
# Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 146 |
-
# heads.
|
| 147 |
-
# """
|
| 148 |
-
|
| 149 |
-
# text_embeds: Optional[torch.FloatTensor] = None
|
| 150 |
-
# last_hidden_state: torch.FloatTensor = None
|
| 151 |
-
# hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 152 |
-
# attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# @dataclass
|
| 156 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
| 157 |
-
# class SiglipOutput(ModelOutput):
|
| 158 |
-
# """
|
| 159 |
-
# Args:
|
| 160 |
-
# loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 161 |
-
# Contrastive loss for image-text similarity.
|
| 162 |
-
# logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 163 |
-
# The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 164 |
-
# similarity scores.
|
| 165 |
-
# logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 166 |
-
# The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 167 |
-
# similarity scores.
|
| 168 |
-
# text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 169 |
-
# The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 170 |
-
# image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 171 |
-
# The image embeddings obtained by applying the projection layer to the pooled output of
|
| 172 |
-
# [`SiglipVisionModel`].
|
| 173 |
-
# text_model_output(`BaseModelOutputWithPooling`):
|
| 174 |
-
# The output of the [`SiglipTextModel`].
|
| 175 |
-
# vision_model_output(`BaseModelOutputWithPooling`):
|
| 176 |
-
# The output of the [`SiglipVisionModel`].
|
| 177 |
-
# """
|
| 178 |
-
|
| 179 |
-
# loss: Optional[torch.FloatTensor] = None
|
| 180 |
-
# logits_per_image: torch.FloatTensor = None
|
| 181 |
-
# logits_per_text: torch.FloatTensor = None
|
| 182 |
-
# text_embeds: torch.FloatTensor = None
|
| 183 |
-
# image_embeds: torch.FloatTensor = None
|
| 184 |
-
# text_model_output: BaseModelOutputWithPooling = None
|
| 185 |
-
# vision_model_output: BaseModelOutputWithPooling = None
|
| 186 |
-
|
| 187 |
-
# def to_tuple(self) -> Tuple[Any]:
|
| 188 |
-
# return tuple(
|
| 189 |
-
# self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 190 |
-
# for k in self.keys()
|
| 191 |
-
# )
|
| 192 |
-
|
| 193 |
-
|
| 194 |
class SiglipVisionEmbeddings(nn.Module):
|
| 195 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 196 |
super().__init__()
|
|
@@ -220,40 +112,6 @@ class SiglipVisionEmbeddings(nn.Module):
|
|
| 220 |
return embeddings
|
| 221 |
|
| 222 |
|
| 223 |
-
# # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
| 224 |
-
# class SiglipTextEmbeddings(nn.Module):
|
| 225 |
-
# def __init__(self, config: SiglipTextConfig):
|
| 226 |
-
# super().__init__()
|
| 227 |
-
# embed_dim = config.hidden_size
|
| 228 |
-
|
| 229 |
-
# self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 230 |
-
# self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 231 |
-
|
| 232 |
-
# # position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 233 |
-
# self.register_buffer(
|
| 234 |
-
# "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 235 |
-
# )
|
| 236 |
-
|
| 237 |
-
# def forward(
|
| 238 |
-
# self,
|
| 239 |
-
# input_ids: Optional[torch.LongTensor] = None,
|
| 240 |
-
# position_ids: Optional[torch.LongTensor] = None,
|
| 241 |
-
# inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 242 |
-
# ) -> torch.Tensor:
|
| 243 |
-
# seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 244 |
-
|
| 245 |
-
# if position_ids is None:
|
| 246 |
-
# position_ids = self.position_ids[:, :seq_length]
|
| 247 |
-
|
| 248 |
-
# if inputs_embeds is None:
|
| 249 |
-
# inputs_embeds = self.token_embedding(input_ids)
|
| 250 |
-
|
| 251 |
-
# position_embeddings = self.position_embedding(position_ids)
|
| 252 |
-
# embeddings = inputs_embeds + position_embeddings
|
| 253 |
-
|
| 254 |
-
# return embeddings
|
| 255 |
-
|
| 256 |
-
|
| 257 |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
| 258 |
class SiglipAttention(nn.Module):
|
| 259 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
@@ -618,150 +476,6 @@ class SiglipEncoderLayer(nn.Module):
|
|
| 618 |
return outputs
|
| 619 |
|
| 620 |
|
| 621 |
-
# class SiglipPreTrainedModel(PreTrainedModel):
|
| 622 |
-
# """
|
| 623 |
-
# An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 624 |
-
# models.
|
| 625 |
-
# """
|
| 626 |
-
|
| 627 |
-
# config_class = SiglipConfig
|
| 628 |
-
# base_model_prefix = "siglip"
|
| 629 |
-
# supports_gradient_checkpointing = True
|
| 630 |
-
|
| 631 |
-
# def _init_weights(self, module):
|
| 632 |
-
# """Initialize the weights"""
|
| 633 |
-
# factor = self.config.initializer_factor
|
| 634 |
-
# if isinstance(module, SiglipVisionEmbeddings):
|
| 635 |
-
# factor = self.config.initializer_factor
|
| 636 |
-
# nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
| 637 |
-
# nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
| 638 |
-
# elif isinstance(module, SiglipAttention):
|
| 639 |
-
# factor = self.config.initializer_factor
|
| 640 |
-
# in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 641 |
-
# out_proj_std = (module.embed_dim**-0.5) * factor
|
| 642 |
-
# nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
| 643 |
-
# nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
| 644 |
-
# nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
| 645 |
-
# nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
| 646 |
-
# elif isinstance(module, SiglipMLP):
|
| 647 |
-
# factor = self.config.initializer_factor
|
| 648 |
-
# in_proj_std = (
|
| 649 |
-
# (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
| 650 |
-
# )
|
| 651 |
-
# fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
| 652 |
-
# nn.init.normal_(module.fc1.weight, std=fc_std)
|
| 653 |
-
# nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
| 654 |
-
# if isinstance(module, nn.LayerNorm):
|
| 655 |
-
# module.bias.data.zero_()
|
| 656 |
-
# module.weight.data.fill_(1.0)
|
| 657 |
-
# if isinstance(module, nn.Linear) and module.bias is not None:
|
| 658 |
-
# module.bias.data.zero_()
|
| 659 |
-
|
| 660 |
-
# def _set_gradient_checkpointing(self, module, value=False):
|
| 661 |
-
# if isinstance(module, SiglipEncoder):
|
| 662 |
-
# module.gradient_checkpointing = value
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
# SIGLIP_START_DOCSTRING = r"""
|
| 666 |
-
# This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 667 |
-
# library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 668 |
-
# etc.)
|
| 669 |
-
|
| 670 |
-
# This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 671 |
-
# Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 672 |
-
# and behavior.
|
| 673 |
-
|
| 674 |
-
# Parameters:
|
| 675 |
-
# config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
| 676 |
-
# Initializing with a config file does not load the weights associated with the model, only the
|
| 677 |
-
# configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 678 |
-
# """
|
| 679 |
-
|
| 680 |
-
# SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 681 |
-
# Args:
|
| 682 |
-
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 683 |
-
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 684 |
-
# it.
|
| 685 |
-
|
| 686 |
-
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 687 |
-
# [`PreTrainedTokenizer.__call__`] for details.
|
| 688 |
-
|
| 689 |
-
# [What are input IDs?](../glossary#input-ids)
|
| 690 |
-
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 691 |
-
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 692 |
-
|
| 693 |
-
# - 1 for tokens that are **not masked**,
|
| 694 |
-
# - 0 for tokens that are **masked**.
|
| 695 |
-
|
| 696 |
-
# [What are attention masks?](../glossary#attention-mask)
|
| 697 |
-
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 698 |
-
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 699 |
-
# config.max_position_embeddings - 1]`.
|
| 700 |
-
|
| 701 |
-
# [What are position IDs?](../glossary#position-ids)
|
| 702 |
-
# output_attentions (`bool`, *optional*):
|
| 703 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 704 |
-
# tensors for more detail.
|
| 705 |
-
# output_hidden_states (`bool`, *optional*):
|
| 706 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 707 |
-
# more detail.
|
| 708 |
-
# return_dict (`bool`, *optional*):
|
| 709 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 710 |
-
# """
|
| 711 |
-
|
| 712 |
-
# SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 713 |
-
# Args:
|
| 714 |
-
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 715 |
-
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 716 |
-
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 717 |
-
# output_attentions (`bool`, *optional*):
|
| 718 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 719 |
-
# tensors for more detail.
|
| 720 |
-
# output_hidden_states (`bool`, *optional*):
|
| 721 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 722 |
-
# more detail.
|
| 723 |
-
# return_dict (`bool`, *optional*):
|
| 724 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 725 |
-
# """
|
| 726 |
-
|
| 727 |
-
# SIGLIP_INPUTS_DOCSTRING = r"""
|
| 728 |
-
# Args:
|
| 729 |
-
# input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 730 |
-
# Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 731 |
-
# it.
|
| 732 |
-
|
| 733 |
-
# Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 734 |
-
# [`PreTrainedTokenizer.__call__`] for details.
|
| 735 |
-
|
| 736 |
-
# [What are input IDs?](../glossary#input-ids)
|
| 737 |
-
# attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 738 |
-
# Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 739 |
-
|
| 740 |
-
# - 1 for tokens that are **not masked**,
|
| 741 |
-
# - 0 for tokens that are **masked**.
|
| 742 |
-
|
| 743 |
-
# [What are attention masks?](../glossary#attention-mask)
|
| 744 |
-
# position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 745 |
-
# Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 746 |
-
# config.max_position_embeddings - 1]`.
|
| 747 |
-
|
| 748 |
-
# [What are position IDs?](../glossary#position-ids)
|
| 749 |
-
# pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 750 |
-
# Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 751 |
-
# [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 752 |
-
# return_loss (`bool`, *optional*):
|
| 753 |
-
# Whether or not to return the contrastive loss.
|
| 754 |
-
# output_attentions (`bool`, *optional*):
|
| 755 |
-
# Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 756 |
-
# tensors for more detail.
|
| 757 |
-
# output_hidden_states (`bool`, *optional*):
|
| 758 |
-
# Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 759 |
-
# more detail.
|
| 760 |
-
# return_dict (`bool`, *optional*):
|
| 761 |
-
# Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 762 |
-
# """
|
| 763 |
-
|
| 764 |
-
|
| 765 |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
| 766 |
class SiglipEncoder(nn.Module):
|
| 767 |
"""
|
|
@@ -787,35 +501,6 @@ class SiglipEncoder(nn.Module):
|
|
| 787 |
output_hidden_states: Optional[bool] = None,
|
| 788 |
return_dict: Optional[bool] = None,
|
| 789 |
) -> Union[Tuple, BaseModelOutput]:
|
| 790 |
-
r"""
|
| 791 |
-
Args:
|
| 792 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 793 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 794 |
-
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 795 |
-
than the model's internal embedding lookup matrix.
|
| 796 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 797 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 798 |
-
|
| 799 |
-
- 1 for tokens that are **not masked**,
|
| 800 |
-
- 0 for tokens that are **masked**.
|
| 801 |
-
|
| 802 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 803 |
-
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 804 |
-
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
| 805 |
-
|
| 806 |
-
- 1 for tokens that are **not masked**,
|
| 807 |
-
- 0 for tokens that are **masked**.
|
| 808 |
-
|
| 809 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 810 |
-
output_attentions (`bool`, *optional*):
|
| 811 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 812 |
-
returned tensors for more detail.
|
| 813 |
-
output_hidden_states (`bool`, *optional*):
|
| 814 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 815 |
-
for more detail.
|
| 816 |
-
return_dict (`bool`, *optional*):
|
| 817 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 818 |
-
"""
|
| 819 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 820 |
output_hidden_states = (
|
| 821 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -866,140 +551,6 @@ class SiglipEncoder(nn.Module):
|
|
| 866 |
)
|
| 867 |
|
| 868 |
|
| 869 |
-
# class SiglipTextTransformer(nn.Module):
|
| 870 |
-
# def __init__(self, config: SiglipTextConfig):
|
| 871 |
-
# super().__init__()
|
| 872 |
-
# self.config = config
|
| 873 |
-
# embed_dim = config.hidden_size
|
| 874 |
-
# self.embeddings = SiglipTextEmbeddings(config)
|
| 875 |
-
# self.encoder = SiglipEncoder(config)
|
| 876 |
-
# self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 877 |
-
|
| 878 |
-
# self.head = nn.Linear(embed_dim, embed_dim)
|
| 879 |
-
|
| 880 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 881 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 882 |
-
# def forward(
|
| 883 |
-
# self,
|
| 884 |
-
# input_ids: Optional[torch.Tensor] = None,
|
| 885 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
| 886 |
-
# position_ids: Optional[torch.Tensor] = None,
|
| 887 |
-
# output_attentions: Optional[bool] = None,
|
| 888 |
-
# output_hidden_states: Optional[bool] = None,
|
| 889 |
-
# return_dict: Optional[bool] = None,
|
| 890 |
-
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 891 |
-
# r"""
|
| 892 |
-
# Returns:
|
| 893 |
-
|
| 894 |
-
# """
|
| 895 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 896 |
-
# output_hidden_states = (
|
| 897 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 898 |
-
# )
|
| 899 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 900 |
-
|
| 901 |
-
# if input_ids is None:
|
| 902 |
-
# raise ValueError("You have to specify input_ids")
|
| 903 |
-
|
| 904 |
-
# input_shape = input_ids.size()
|
| 905 |
-
# input_ids = input_ids.view(-1, input_shape[-1])
|
| 906 |
-
|
| 907 |
-
# hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
| 908 |
-
|
| 909 |
-
# # note: SigLIP's text model does not use q causal mask, unlike the original CLIP model.
|
| 910 |
-
# # expand attention_mask
|
| 911 |
-
# if attention_mask is not None:
|
| 912 |
-
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 913 |
-
# attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
| 914 |
-
|
| 915 |
-
# encoder_outputs = self.encoder(
|
| 916 |
-
# inputs_embeds=hidden_states,
|
| 917 |
-
# attention_mask=None,
|
| 918 |
-
# causal_attention_mask=None,
|
| 919 |
-
# output_attentions=output_attentions,
|
| 920 |
-
# output_hidden_states=output_hidden_states,
|
| 921 |
-
# return_dict=return_dict,
|
| 922 |
-
# )
|
| 923 |
-
|
| 924 |
-
# last_hidden_state = encoder_outputs[0]
|
| 925 |
-
# last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 926 |
-
|
| 927 |
-
# # Assuming "sticky" EOS tokenization, last token is always EOS.
|
| 928 |
-
# pooled_output = last_hidden_state[:, -1, :]
|
| 929 |
-
# pooled_output = self.head(pooled_output)
|
| 930 |
-
|
| 931 |
-
# if not return_dict:
|
| 932 |
-
# return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 933 |
-
|
| 934 |
-
# return BaseModelOutputWithPooling(
|
| 935 |
-
# last_hidden_state=last_hidden_state,
|
| 936 |
-
# pooler_output=pooled_output,
|
| 937 |
-
# hidden_states=encoder_outputs.hidden_states,
|
| 938 |
-
# attentions=encoder_outputs.attentions,
|
| 939 |
-
# )
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
# @add_start_docstrings(
|
| 943 |
-
# """The text model from SigLIP without any head or projection on top.""",
|
| 944 |
-
# SIGLIP_START_DOCSTRING,
|
| 945 |
-
# )
|
| 946 |
-
# class SiglipTextModel(SiglipPreTrainedModel):
|
| 947 |
-
# config_class = SiglipTextConfig
|
| 948 |
-
|
| 949 |
-
# _no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
| 950 |
-
|
| 951 |
-
# def __init__(self, config: SiglipTextConfig):
|
| 952 |
-
# super().__init__(config)
|
| 953 |
-
# self.text_model = SiglipTextTransformer(config)
|
| 954 |
-
# # Initialize weights and apply final processing
|
| 955 |
-
# self.post_init()
|
| 956 |
-
|
| 957 |
-
# def get_input_embeddings(self) -> nn.Module:
|
| 958 |
-
# return self.text_model.embeddings.token_embedding
|
| 959 |
-
|
| 960 |
-
# def set_input_embeddings(self, value):
|
| 961 |
-
# self.text_model.embeddings.token_embedding = value
|
| 962 |
-
|
| 963 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 964 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 965 |
-
# def forward(
|
| 966 |
-
# self,
|
| 967 |
-
# input_ids: Optional[torch.Tensor] = None,
|
| 968 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
| 969 |
-
# position_ids: Optional[torch.Tensor] = None,
|
| 970 |
-
# output_attentions: Optional[bool] = None,
|
| 971 |
-
# output_hidden_states: Optional[bool] = None,
|
| 972 |
-
# return_dict: Optional[bool] = None,
|
| 973 |
-
# ) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 974 |
-
# r"""
|
| 975 |
-
# Returns:
|
| 976 |
-
|
| 977 |
-
# Examples:
|
| 978 |
-
|
| 979 |
-
# ```python
|
| 980 |
-
# >>> from transformers import AutoTokenizer, SiglipTextModel
|
| 981 |
-
|
| 982 |
-
# >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
| 983 |
-
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 984 |
-
|
| 985 |
-
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 986 |
-
|
| 987 |
-
# >>> outputs = model(**inputs)
|
| 988 |
-
# >>> last_hidden_state = outputs.last_hidden_state
|
| 989 |
-
# >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
| 990 |
-
# ```"""
|
| 991 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 992 |
-
|
| 993 |
-
# return self.text_model(
|
| 994 |
-
# input_ids=input_ids,
|
| 995 |
-
# attention_mask=attention_mask,
|
| 996 |
-
# position_ids=position_ids,
|
| 997 |
-
# output_attentions=output_attentions,
|
| 998 |
-
# output_hidden_states=output_hidden_states,
|
| 999 |
-
# return_dict=return_dict,
|
| 1000 |
-
# )
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
class SiglipVisionTransformer(nn.Module):
|
| 1004 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 1005 |
super().__init__()
|
|
@@ -1011,8 +562,6 @@ class SiglipVisionTransformer(nn.Module):
|
|
| 1011 |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1012 |
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
| 1013 |
|
| 1014 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1015 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig)
|
| 1016 |
def forward(
|
| 1017 |
self,
|
| 1018 |
pixel_values,
|
|
@@ -1079,24 +628,13 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
|
| 1079 |
return hidden_state[:, 0]
|
| 1080 |
|
| 1081 |
|
| 1082 |
-
# @add_start_docstrings(
|
| 1083 |
-
# """The vision model from SigLIP without any head or projection on top.""",
|
| 1084 |
-
# SIGLIP_START_DOCSTRING,
|
| 1085 |
-
# )
|
| 1086 |
class SiglipVisionModel(nn.Module):
|
| 1087 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 1088 |
super().__init__()
|
| 1089 |
|
|
|
|
| 1090 |
self.vision_model = SiglipVisionTransformer(config)
|
| 1091 |
|
| 1092 |
-
# # Initialize weights and apply final processing
|
| 1093 |
-
# self.post_init()
|
| 1094 |
-
|
| 1095 |
-
# def get_input_embeddings(self) -> nn.Module:
|
| 1096 |
-
# return self.vision_model.embeddings.patch_embedding
|
| 1097 |
-
|
| 1098 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1099 |
-
# @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Img2HTMLVisionConfig)
|
| 1100 |
def forward(
|
| 1101 |
self,
|
| 1102 |
pixel_values,
|
|
@@ -1104,28 +642,6 @@ class SiglipVisionModel(nn.Module):
|
|
| 1104 |
output_hidden_states: Optional[bool] = None,
|
| 1105 |
return_dict: Optional[bool] = None,
|
| 1106 |
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1107 |
-
# r"""
|
| 1108 |
-
# Returns:
|
| 1109 |
-
|
| 1110 |
-
# Examples:
|
| 1111 |
-
|
| 1112 |
-
# ```python
|
| 1113 |
-
# >>> from PIL import Image
|
| 1114 |
-
# >>> import requests
|
| 1115 |
-
# >>> from transformers import AutoProcessor, SiglipVisionModel
|
| 1116 |
-
|
| 1117 |
-
# >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1118 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1119 |
-
|
| 1120 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1121 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1122 |
-
|
| 1123 |
-
# >>> inputs = processor(images=image, return_tensors="pt")
|
| 1124 |
-
|
| 1125 |
-
# >>> outputs = model(**inputs)
|
| 1126 |
-
# >>> last_hidden_state = outputs.last_hidden_state
|
| 1127 |
-
# >>> pooled_output = outputs.pooler_output # pooled CLS states
|
| 1128 |
-
# ```"""
|
| 1129 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1130 |
|
| 1131 |
return self.vision_model(
|
|
@@ -1134,228 +650,3 @@ class SiglipVisionModel(nn.Module):
|
|
| 1134 |
output_hidden_states=output_hidden_states,
|
| 1135 |
return_dict=return_dict,
|
| 1136 |
)
|
| 1137 |
-
|
| 1138 |
-
|
| 1139 |
-
# @add_start_docstrings(SIGLIP_START_DOCSTRING)
|
| 1140 |
-
# class SiglipModel(SiglipPreTrainedModel):
|
| 1141 |
-
# config_class = SiglipConfig
|
| 1142 |
-
|
| 1143 |
-
# def __init__(self, config: SiglipConfig):
|
| 1144 |
-
# super().__init__(config)
|
| 1145 |
-
|
| 1146 |
-
# if not isinstance(config.text_config, SiglipTextConfig):
|
| 1147 |
-
# raise ValueError(
|
| 1148 |
-
# "config.text_config is expected to be of type SiglipTextConfig but is of type"
|
| 1149 |
-
# f" {type(config.text_config)}."
|
| 1150 |
-
# )
|
| 1151 |
-
|
| 1152 |
-
# if not isinstance(config.vision_config, SiglipVisionConfig):
|
| 1153 |
-
# raise ValueError(
|
| 1154 |
-
# "config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
| 1155 |
-
# f" {type(config.vision_config)}."
|
| 1156 |
-
# )
|
| 1157 |
-
|
| 1158 |
-
# text_config = config.text_config
|
| 1159 |
-
# vision_config = config.vision_config
|
| 1160 |
-
|
| 1161 |
-
# self.text_model = SiglipTextModel(text_config)
|
| 1162 |
-
# self.vision_model = SiglipVisionModel(vision_config)
|
| 1163 |
-
|
| 1164 |
-
# self.temperature = nn.Parameter(
|
| 1165 |
-
# torch.randn(
|
| 1166 |
-
# 1,
|
| 1167 |
-
# )
|
| 1168 |
-
# )
|
| 1169 |
-
# self.bias = nn.Parameter(
|
| 1170 |
-
# torch.randn(
|
| 1171 |
-
# 1,
|
| 1172 |
-
# )
|
| 1173 |
-
# )
|
| 1174 |
-
|
| 1175 |
-
# # Initialize weights and apply final processing
|
| 1176 |
-
# self.post_init()
|
| 1177 |
-
|
| 1178 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1179 |
-
# def get_text_features(
|
| 1180 |
-
# self,
|
| 1181 |
-
# input_ids: Optional[torch.Tensor] = None,
|
| 1182 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
| 1183 |
-
# position_ids: Optional[torch.Tensor] = None,
|
| 1184 |
-
# output_attentions: Optional[bool] = None,
|
| 1185 |
-
# output_hidden_states: Optional[bool] = None,
|
| 1186 |
-
# return_dict: Optional[bool] = None,
|
| 1187 |
-
# ) -> torch.FloatTensor:
|
| 1188 |
-
# r"""
|
| 1189 |
-
# Returns:
|
| 1190 |
-
# text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 1191 |
-
# applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 1192 |
-
|
| 1193 |
-
# Examples:
|
| 1194 |
-
|
| 1195 |
-
# ```python
|
| 1196 |
-
# >>> from transformers import AutoTokenizer, SiglipModel
|
| 1197 |
-
|
| 1198 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1199 |
-
# >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 1200 |
-
|
| 1201 |
-
# >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
| 1202 |
-
# >>> text_features = model.get_text_features(**inputs)
|
| 1203 |
-
# ```"""
|
| 1204 |
-
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1205 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1206 |
-
# output_hidden_states = (
|
| 1207 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1208 |
-
# )
|
| 1209 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1210 |
-
|
| 1211 |
-
# text_outputs = self.text_model(
|
| 1212 |
-
# input_ids=input_ids,
|
| 1213 |
-
# attention_mask=attention_mask,
|
| 1214 |
-
# position_ids=position_ids,
|
| 1215 |
-
# output_attentions=output_attentions,
|
| 1216 |
-
# output_hidden_states=output_hidden_states,
|
| 1217 |
-
# return_dict=return_dict,
|
| 1218 |
-
# )
|
| 1219 |
-
|
| 1220 |
-
# pooled_output = text_outputs[1]
|
| 1221 |
-
|
| 1222 |
-
# return pooled_output
|
| 1223 |
-
|
| 1224 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1225 |
-
# def get_image_features(
|
| 1226 |
-
# self,
|
| 1227 |
-
# pixel_values: Optional[torch.FloatTensor] = None,
|
| 1228 |
-
# output_attentions: Optional[bool] = None,
|
| 1229 |
-
# output_hidden_states: Optional[bool] = None,
|
| 1230 |
-
# return_dict: Optional[bool] = None,
|
| 1231 |
-
# ) -> torch.FloatTensor:
|
| 1232 |
-
# r"""
|
| 1233 |
-
# Returns:
|
| 1234 |
-
# image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 1235 |
-
# applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
| 1236 |
-
|
| 1237 |
-
# Examples:
|
| 1238 |
-
|
| 1239 |
-
# ```python
|
| 1240 |
-
# >>> from PIL import Image
|
| 1241 |
-
# >>> import requests
|
| 1242 |
-
# >>> from transformers import AutoProcessor, SiglipModel
|
| 1243 |
-
|
| 1244 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1245 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1246 |
-
|
| 1247 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1248 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1249 |
-
|
| 1250 |
-
# >>> inputs = processor(images=image, return_tensors="pt")
|
| 1251 |
-
|
| 1252 |
-
# >>> image_features = model.get_image_features(**inputs)
|
| 1253 |
-
# ```"""
|
| 1254 |
-
# # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
| 1255 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1256 |
-
# output_hidden_states = (
|
| 1257 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1258 |
-
# )
|
| 1259 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1260 |
-
|
| 1261 |
-
# vision_outputs = self.vision_model(
|
| 1262 |
-
# pixel_values=pixel_values,
|
| 1263 |
-
# output_attentions=output_attentions,
|
| 1264 |
-
# output_hidden_states=output_hidden_states,
|
| 1265 |
-
# return_dict=return_dict,
|
| 1266 |
-
# )
|
| 1267 |
-
|
| 1268 |
-
# pooled_output = vision_outputs[1]
|
| 1269 |
-
|
| 1270 |
-
# return pooled_output
|
| 1271 |
-
|
| 1272 |
-
# @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
| 1273 |
-
# @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
| 1274 |
-
# def forward(
|
| 1275 |
-
# self,
|
| 1276 |
-
# input_ids: Optional[torch.LongTensor] = None,
|
| 1277 |
-
# pixel_values: Optional[torch.FloatTensor] = None,
|
| 1278 |
-
# attention_mask: Optional[torch.Tensor] = None,
|
| 1279 |
-
# position_ids: Optional[torch.LongTensor] = None,
|
| 1280 |
-
# return_loss: Optional[bool] = None,
|
| 1281 |
-
# output_attentions: Optional[bool] = None,
|
| 1282 |
-
# output_hidden_states: Optional[bool] = None,
|
| 1283 |
-
# return_dict: Optional[bool] = None,
|
| 1284 |
-
# ) -> Union[Tuple, SiglipOutput]:
|
| 1285 |
-
# r"""
|
| 1286 |
-
# Returns:
|
| 1287 |
-
|
| 1288 |
-
# Examples:
|
| 1289 |
-
|
| 1290 |
-
# ```python
|
| 1291 |
-
# >>> from PIL import Image
|
| 1292 |
-
# >>> import requests
|
| 1293 |
-
# >>> from transformers import AutoProcessor, SiglipModel
|
| 1294 |
-
|
| 1295 |
-
# >>> model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1296 |
-
# >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1297 |
-
|
| 1298 |
-
# >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1299 |
-
# >>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1300 |
-
|
| 1301 |
-
# >>> inputs = processor(
|
| 1302 |
-
# ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
| 1303 |
-
# ... )
|
| 1304 |
-
|
| 1305 |
-
# >>> outputs = model(**inputs)
|
| 1306 |
-
# >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 1307 |
-
# >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 1308 |
-
# ```"""
|
| 1309 |
-
# # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1310 |
-
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1311 |
-
# output_hidden_states = (
|
| 1312 |
-
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1313 |
-
# )
|
| 1314 |
-
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1315 |
-
|
| 1316 |
-
# vision_outputs = self.vision_model(
|
| 1317 |
-
# pixel_values=pixel_values,
|
| 1318 |
-
# output_attentions=output_attentions,
|
| 1319 |
-
# output_hidden_states=output_hidden_states,
|
| 1320 |
-
# return_dict=return_dict,
|
| 1321 |
-
# )
|
| 1322 |
-
|
| 1323 |
-
# text_outputs = self.text_model(
|
| 1324 |
-
# input_ids=input_ids,
|
| 1325 |
-
# attention_mask=attention_mask,
|
| 1326 |
-
# position_ids=position_ids,
|
| 1327 |
-
# output_attentions=output_attentions,
|
| 1328 |
-
# output_hidden_states=output_hidden_states,
|
| 1329 |
-
# return_dict=return_dict,
|
| 1330 |
-
# )
|
| 1331 |
-
|
| 1332 |
-
# image_embeds = vision_outputs[1]
|
| 1333 |
-
# text_embeds = text_outputs[1]
|
| 1334 |
-
|
| 1335 |
-
# # normalized features
|
| 1336 |
-
# image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1337 |
-
# text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1338 |
-
|
| 1339 |
-
# # cosine similarity as logits
|
| 1340 |
-
# logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.temperature.exp() + self.bias
|
| 1341 |
-
# logits_per_image = logits_per_text.t()
|
| 1342 |
-
|
| 1343 |
-
# z = torch.matmul(image_embeds, text_embeds.t()) * self.temperature.exp()
|
| 1344 |
-
|
| 1345 |
-
# loss = None
|
| 1346 |
-
# if return_loss:
|
| 1347 |
-
# raise NotImplementedError("SigLIP loss to be implemented")
|
| 1348 |
-
|
| 1349 |
-
# if not return_dict:
|
| 1350 |
-
# output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 1351 |
-
# return ((loss,) + output) if loss is not None else output
|
| 1352 |
-
|
| 1353 |
-
# return SiglipOutput(
|
| 1354 |
-
# loss=loss,
|
| 1355 |
-
# logits_per_image=logits_per_image,
|
| 1356 |
-
# logits_per_text=logits_per_text,
|
| 1357 |
-
# text_embeds=text_embeds,
|
| 1358 |
-
# image_embeds=image_embeds,
|
| 1359 |
-
# text_model_output=text_outputs,
|
| 1360 |
-
# vision_model_output=vision_outputs,
|
| 1361 |
-
# )
|
|
|
|
| 24 |
from torch import nn
|
| 25 |
from transformers.activations import ACT2FN
|
| 26 |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
|
|
|
| 27 |
from transformers.utils import (
|
| 28 |
ModelOutput,
|
|
|
|
|
|
|
| 29 |
is_flash_attn_2_available,
|
| 30 |
+
logging,)
|
|
|
|
|
|
|
| 31 |
|
| 32 |
from .configuration_img2html import Img2HTMLVisionConfig
|
| 33 |
|
| 34 |
|
| 35 |
logger = logging.get_logger(__name__)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
if is_flash_attn_2_available():
|
| 39 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
@dataclass
|
| 57 |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
| 58 |
class SiglipVisionModelOutput(ModelOutput):
|
|
|
|
| 83 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 84 |
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
class SiglipVisionEmbeddings(nn.Module):
|
| 87 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 88 |
super().__init__()
|
|
|
|
| 112 |
return embeddings
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
|
| 116 |
class SiglipAttention(nn.Module):
|
| 117 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
| 476 |
return outputs
|
| 477 |
|
| 478 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
| 480 |
class SiglipEncoder(nn.Module):
|
| 481 |
"""
|
|
|
|
| 501 |
output_hidden_states: Optional[bool] = None,
|
| 502 |
return_dict: Optional[bool] = None,
|
| 503 |
) -> Union[Tuple, BaseModelOutput]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 505 |
output_hidden_states = (
|
| 506 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 551 |
)
|
| 552 |
|
| 553 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
class SiglipVisionTransformer(nn.Module):
|
| 555 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 556 |
super().__init__()
|
|
|
|
| 562 |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 563 |
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
| 564 |
|
|
|
|
|
|
|
| 565 |
def forward(
|
| 566 |
self,
|
| 567 |
pixel_values,
|
|
|
|
| 628 |
return hidden_state[:, 0]
|
| 629 |
|
| 630 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
class SiglipVisionModel(nn.Module):
|
| 632 |
def __init__(self, config: Img2HTMLVisionConfig):
|
| 633 |
super().__init__()
|
| 634 |
|
| 635 |
+
self.config = config
|
| 636 |
self.vision_model = SiglipVisionTransformer(config)
|
| 637 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
def forward(
|
| 639 |
self,
|
| 640 |
pixel_values,
|
|
|
|
| 642 |
output_hidden_states: Optional[bool] = None,
|
| 643 |
return_dict: Optional[bool] = None,
|
| 644 |
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 646 |
|
| 647 |
return self.vision_model(
|
|
|
|
| 650 |
output_hidden_states=output_hidden_states,
|
| 651 |
return_dict=return_dict,
|
| 652 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|