Abhaykoul commited on
Commit
e1db6ad
·
verified ·
0 Parent(s):

Duplicate from Abhaykoul/hai3.1-pretrained_final

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ ---
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- set model_identity = "You are HelpingAI 3.1, the most emotionally intelligent and human-like AI model created by HelpingAI. Knowledge cutoff: 2024-01\nCurrent date: " + strftime_now("%Y-%m-%d") + "\n" %}
2
+ {%- if tools %}
3
+ {{- '<|im_start|>system\n' }}
4
+ {{- model_identity }}
5
+ {%- if messages[0].role == 'system' %}
6
+ {{- messages[0].content + '\n\n' }}
7
+ {%- endif %}
8
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {{- '<|im_start|>system\n' + model_identity }}
16
+ {%- if messages[0].role == 'system' %}
17
+ {{- messages[0].content + '<|im_end|>\n' }}
18
+ {%- else %}
19
+ {{- '<|im_end|>\n' }}
20
+ {%- endif %}
21
+ {%- endif %}
22
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
23
+ {%- set last_tool_call = namespace(name=none) %}
24
+ {%- set ns_assistant = namespace(open=false) %}
25
+ {%- for forward_message in messages %}
26
+ {%- set index = (messages|length - 1) - loop.index0 %}
27
+ {%- set message = messages[index] %}
28
+ {%- set current_content = message.content if message.content is not none else '' %}
29
+ {%- set tool_start = '<tool_response>' %}
30
+ {%- set tool_start_length = tool_start|length %}
31
+ {%- set start_of_message = current_content[:tool_start_length] %}
32
+ {%- set tool_end = '</tool_response>' %}
33
+ {%- set tool_end_length = tool_end|length %}
34
+ {%- set start_pos = (current_content|length) - tool_end_length %}
35
+ {%- if start_pos < 0 %}
36
+ {%- set start_pos = 0 %}
37
+ {%- endif %}
38
+ {%- set end_of_message = current_content[start_pos:] %}
39
+ {%- if ns.multi_step_tool and message.role == "user" and not(start_of_message == tool_start and end_of_message == tool_end) %}
40
+ {%- set ns.multi_step_tool = false %}
41
+ {%- set ns.last_query_index = index %}
42
+ {%- endif %}
43
+ {%- endfor %}
44
+ {%- for message in messages %}
45
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
46
+ {%- if ns_assistant.open %}
47
+ {{- '<|im_end|>\n' }}
48
+ {%- set ns_assistant.open = false %}
49
+ {%- endif %}
50
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
51
+ {%- elif message.role == "assistant" %}
52
+ {%- if not ns_assistant.open %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- set ns_assistant.open = true %}
55
+ {%- endif %}
56
+ {%- if message.content %}
57
+ {{- message.content }}
58
+ {%- endif %}
59
+ {%- if message.tool_calls %}
60
+ {%- for tool_call in message.tool_calls %}
61
+ {%- if (loop.first and content) or (not loop.first) %}
62
+ {{- '\n' }}
63
+ {%- endif %}
64
+ {%- if tool_call.function %}
65
+ {%- set tool_call = tool_call.function %}
66
+ {%- endif %}
67
+ {{- '<tool_call>\n{"name": "' }}
68
+ {{- tool_call.name }}
69
+ {{- '", "arguments": ' }}
70
+ {%- if tool_call.arguments is string %}
71
+ {{- tool_call.arguments }}
72
+ {%- else %}
73
+ {{- tool_call.arguments | tojson }}
74
+ {%- endif %}
75
+ {{- '}\n</tool_call>' }}
76
+ {%- set last_tool_call.name = tool_call.name %}
77
+ {%- endfor %}
78
+ {%- else %}
79
+ {%- set last_tool_call.name = none %}
80
+ {%- endif %}
81
+ {%- if loop.last or (messages[loop.index0 + 1].role not in ["assistant", "tool"]) %}
82
+ {{- '<|im_end|>\n' }}
83
+ {%- set ns_assistant.open = false %}
84
+ {%- endif %}
85
+ {%- elif message.role == "tool" %}
86
+ {%- if last_tool_call.name is none %}
87
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
88
+ {%- endif %}
89
+ {%- if not ns_assistant.open %}
90
+ {{- '<|im_start|>assistant\n' }}
91
+ {%- set ns_assistant.open = true %}
92
+ {%- endif %}
93
+ {{- '\n<tool_response>\n' }}
94
+ {{- message.content }}
95
+ {{- '\n</tool_response>' }}
96
+ {%- if loop.last or (messages[loop.index0 + 1].role not in ["assistant", "tool"]) %}
97
+ {{- '<|im_end|>\n' }}
98
+ {%- set ns_assistant.open = false %}
99
+ {%- endif %}
100
+ {%- endif %}
101
+ {%- endfor %}
102
+ {%- if add_generation_prompt %}
103
+ {{- '<|im_start|>assistant\n' }}
104
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HelpingAIForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_helpingai.HelpingAIConfig",
9
+ "AutoModelForCausalLM": "modeling_helpingai.HelpingAIForCausalLM"
10
+ },
11
+ "bos_token_id": 151643,
12
+ "emotion_hidden_size": 512,
13
+ "empathy_scaling_factor": 1.2,
14
+ "eos_token_id": 151645,
15
+ "head_dim": 128,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 5120,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 17408,
20
+ "layer_types": [
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention",
59
+ "full_attention",
60
+ "full_attention"
61
+ ],
62
+ "max_position_embeddings": 40960,
63
+ "max_window_layers": 40,
64
+ "model_type": "helpingai",
65
+ "num_attention_heads": 40,
66
+ "num_emotion_heads": 4,
67
+ "num_hidden_layers": 40,
68
+ "num_key_value_heads": 8,
69
+ "num_thinking_stages": 3,
70
+ "perspective_threads": 4,
71
+ "reasoning_temperature": 0.8,
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_scaling": null,
74
+ "rope_theta": 1000000,
75
+ "sliding_window": null,
76
+ "structured_output_vocab_size": 100,
77
+ "thinking_depth": 2,
78
+ "tie_word_embeddings": false,
79
+ "torch_dtype": "bfloat16",
80
+ "transformers_version": "4.55.0",
81
+ "use_cache": true,
82
+ "use_emotional_reasoning": false,
83
+ "use_perspective_threading": true,
84
+ "use_sliding_window": false,
85
+ "vocab_size": 151669
86
+ }
configuration_helpingai.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """HelpingAI model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig, layer_type_validation
4
+ from transformers.modeling_rope_utils import rope_config_validation
5
+ from transformers.utils import logging
6
+
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+
11
+ class HelpingAIConfig(PretrainedConfig):
12
+ r"""
13
+ This is the configuration class to store the configuration of a [`HelpingAIModel`]. It is used to instantiate a
14
+ HelpingAI model according to the specified arguments, defining the model architecture. Instantiating a configuration
15
+ with the defaults will yield a similar configuration to that of
16
+ HelpingAI-8B [HelpingAI/HelpingAI-8B](https://huggingface.co/HelpingAI/HelpingAI-8B).
17
+
18
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
19
+ documentation from [`PretrainedConfig`] for more information.
20
+
21
+
22
+ Args:
23
+ vocab_size (`int`, *optional*, defaults to 151936):
24
+ Vocabulary size of the HelpingAI model. Defines the number of different tokens that can be represented by the
25
+ `inputs_ids` passed when calling [`HelpingAIModel`]
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the hidden representations.
28
+ intermediate_size (`int`, *optional*, defaults to 22016):
29
+ Dimension of the MLP representations.
30
+ num_hidden_layers (`int`, *optional*, defaults to 32):
31
+ Number of hidden layers in the Transformer encoder.
32
+ num_attention_heads (`int`, *optional*, defaults to 32):
33
+ Number of attention heads for each attention layer in the Transformer encoder.
34
+ num_key_value_heads (`int`, *optional*, defaults to 32):
35
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
36
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
37
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
38
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
39
+ by meanpooling all the original heads within that group. For more details, check out [this
40
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
41
+ head_dim (`int`, *optional*, defaults to 128):
42
+ The attention head dimension.
43
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
44
+ The non-linear activation function (function or string) in the decoder.
45
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
46
+ The maximum sequence length that this model might ever be used with.
47
+ initializer_range (`float`, *optional*, defaults to 0.02):
48
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
49
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
50
+ The epsilon used by the rms normalization layers.
51
+ use_cache (`bool`, *optional*, defaults to `True`):
52
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
53
+ relevant if `config.is_decoder=True`.
54
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
55
+ Whether the model's input and output word embeddings should be tied.
56
+ rope_theta (`float`, *optional*, defaults to 10000.0):
57
+ The base period of the RoPE embeddings.
58
+ rope_scaling (`Dict`, *optional*):
59
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
60
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
61
+ accordingly.
62
+ Expected contents:
63
+ `rope_type` (`str`):
64
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
65
+ 'llama3'], with 'default' being the original RoPE implementation.
66
+ `factor` (`float`, *optional*):
67
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
68
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
69
+ original maximum pre-trained length.
70
+ `original_max_position_embeddings` (`int`, *optional*):
71
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
72
+ pretraining.
73
+ `attention_factor` (`float`, *optional*):
74
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
75
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
76
+ `factor` field to infer the suggested value.
77
+ `beta_fast` (`float`, *optional*):
78
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
79
+ ramp function. If unspecified, it defaults to 32.
80
+ `beta_slow` (`float`, *optional*):
81
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
82
+ ramp function. If unspecified, it defaults to 1.
83
+ `short_factor` (`list[float]`, *optional*):
84
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
85
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
86
+ size divided by the number of attention heads divided by 2
87
+ `long_factor` (`list[float]`, *optional*):
88
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
89
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
90
+ size divided by the number of attention heads divided by 2
91
+ `low_freq_factor` (`float`, *optional*):
92
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
93
+ `high_freq_factor` (`float`, *optional*):
94
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
95
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
96
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
97
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
98
+ Whether to use sliding window attention.
99
+ sliding_window (`int`, *optional*, defaults to 4096):
100
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
101
+ max_window_layers (`int`, *optional*, defaults to 28):
102
+ The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
103
+ additional layer afterwards will use SWA (Sliding Window Attention).
104
+ layer_types (`list`, *optional*):
105
+ Attention pattern for each layer.
106
+ attention_dropout (`float`, *optional*, defaults to 0.0):
107
+ The dropout ratio for the attention probabilities.
108
+ use_emotional_reasoning (`bool`, *optional*, defaults to `True`):
109
+ Whether to enable Semantic Emotion Reasoning (SER) capabilities for emotional understanding and processing.
110
+ use_perspective_threading (`bool`, *optional*, defaults to `True`):
111
+ Whether to enable Perspective Emotion Threading (PET) for multi-threaded emotional reasoning.
112
+ num_emotion_heads (`int`, *optional*, defaults to 4):
113
+ Number of specialized attention heads dedicated to emotional processing and reasoning.
114
+ num_thinking_stages (`int`, *optional*, defaults to 3):
115
+ Number of thinking stages for multi-stage reasoning and reflection processing.
116
+ emotion_hidden_size (`int`, *optional*, defaults to 512):
117
+ Hidden size for the emotional reasoning layers and SER processing modules.
118
+ perspective_threads (`int`, *optional*, defaults to 4):
119
+ Number of parallel perspective threads for PET processing (relatable, supportive, motivational, analytical).
120
+ thinking_depth (`int`, *optional*, defaults to 2):
121
+ Depth of thinking layers for internal reasoning and reflection processes.
122
+ structured_output_vocab_size (`int`, *optional*, defaults to 100):
123
+ Additional vocabulary size for structured output tokens like <think>, <ser>, <pet>, etc.
124
+ empathy_scaling_factor (`float`, *optional*, defaults to 1.2):
125
+ Scaling factor for empathy-related attention weights and emotional processing.
126
+ reasoning_temperature (`float`, *optional*, defaults to 0.8):
127
+ Temperature parameter for reasoning and thinking processes to balance creativity and coherence.
128
+
129
+ ```python
130
+ >>> from transformers import HelpingAIModel, HelpingAIConfig
131
+
132
+ >>> # Initializing a HelpingAI style configuration with advanced reasoning
133
+ >>> configuration = HelpingAIConfig(
134
+ ... use_emotional_reasoning=True,
135
+ ... use_perspective_threading=True,
136
+ ... num_emotion_heads=4,
137
+ ... num_thinking_stages=3
138
+ ... )
139
+
140
+ >>> # Initializing a model from the HelpingAI-8B style configuration
141
+ >>> model = HelpingAIModel(configuration)
142
+
143
+ >>> # Accessing the model configuration
144
+ >>> configuration = model.config
145
+ ```"""
146
+
147
+ model_type = "helpingai"
148
+ keys_to_ignore_at_inference = ["past_key_values"]
149
+
150
+ # Default tensor parallel plan for base model `HelpingAI`
151
+ base_model_tp_plan = {
152
+ "layers.*.self_attn.q_proj": "colwise",
153
+ "layers.*.self_attn.k_proj": "colwise",
154
+ "layers.*.self_attn.v_proj": "colwise",
155
+ "layers.*.self_attn.o_proj": "rowwise",
156
+ "layers.*.mlp.gate_proj": "colwise",
157
+ "layers.*.mlp.up_proj": "colwise",
158
+ "layers.*.mlp.down_proj": "rowwise",
159
+ }
160
+ base_model_pp_plan = {
161
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
162
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
163
+ "norm": (["hidden_states"], ["hidden_states"]),
164
+ }
165
+
166
+ def __init__(
167
+ self,
168
+ vocab_size=151936,
169
+ hidden_size=4096,
170
+ intermediate_size=22016,
171
+ num_hidden_layers=32,
172
+ num_attention_heads=32,
173
+ num_key_value_heads=8, # Match num_attention_heads for compatibility
174
+ head_dim=128,
175
+ hidden_act="silu",
176
+ max_position_embeddings=32768,
177
+ initializer_range=0.02,
178
+ rms_norm_eps=1e-6,
179
+ use_cache=True,
180
+ tie_word_embeddings=False,
181
+ rope_theta=10000.0,
182
+ rope_scaling=None,
183
+ attention_bias=False,
184
+ use_sliding_window=False,
185
+ sliding_window=4096,
186
+ max_window_layers=28,
187
+ layer_types=None,
188
+ attention_dropout=0.0,
189
+ # Advanced reasoning parameters
190
+ use_emotional_reasoning=False, # Disable by default for now
191
+ use_perspective_threading=True,
192
+ num_emotion_heads=4,
193
+ num_thinking_stages=3,
194
+ emotion_hidden_size=512,
195
+ perspective_threads=4,
196
+ thinking_depth=2,
197
+ structured_output_vocab_size=100,
198
+ empathy_scaling_factor=1.2,
199
+ reasoning_temperature=0.8,
200
+ **kwargs,
201
+ ):
202
+ self.vocab_size = vocab_size
203
+ self.max_position_embeddings = max_position_embeddings
204
+ self.hidden_size = hidden_size
205
+ self.intermediate_size = intermediate_size
206
+ self.num_hidden_layers = num_hidden_layers
207
+ self.num_attention_heads = num_attention_heads
208
+ self.use_sliding_window = use_sliding_window
209
+ self.sliding_window = sliding_window if self.use_sliding_window else None
210
+ self.max_window_layers = max_window_layers
211
+
212
+ # for backward compatibility
213
+ if num_key_value_heads is None:
214
+ num_key_value_heads = num_attention_heads
215
+
216
+ self.num_key_value_heads = num_key_value_heads
217
+ self.head_dim = head_dim
218
+ self.hidden_act = hidden_act
219
+ self.initializer_range = initializer_range
220
+ self.rms_norm_eps = rms_norm_eps
221
+ self.use_cache = use_cache
222
+ self.rope_theta = rope_theta
223
+ self.rope_scaling = rope_scaling
224
+ self.attention_bias = attention_bias
225
+ self.attention_dropout = attention_dropout
226
+
227
+ # Advanced reasoning capabilities
228
+ self.use_emotional_reasoning = use_emotional_reasoning
229
+ self.use_perspective_threading = use_perspective_threading
230
+ self.num_emotion_heads = num_emotion_heads
231
+ self.num_thinking_stages = num_thinking_stages
232
+ self.emotion_hidden_size = emotion_hidden_size
233
+ self.perspective_threads = perspective_threads
234
+ self.thinking_depth = thinking_depth
235
+ self.structured_output_vocab_size = structured_output_vocab_size
236
+ self.empathy_scaling_factor = empathy_scaling_factor
237
+ self.reasoning_temperature = reasoning_temperature
238
+
239
+ # Validate emotional reasoning parameters
240
+ if self.use_emotional_reasoning and self.num_emotion_heads > self.num_attention_heads:
241
+ raise ValueError(f"num_emotion_heads ({self.num_emotion_heads}) cannot exceed num_attention_heads ({self.num_attention_heads})")
242
+
243
+ if self.use_perspective_threading and self.perspective_threads < 2:
244
+ raise ValueError(f"perspective_threads ({self.perspective_threads}) must be at least 2 for meaningful threading")
245
+
246
+ # Validate the correctness of rotary position embeddings parameters
247
+ # BC: if there is a 'type' field, move it to 'rope_type'.
248
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
249
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
250
+ rope_config_validation(self)
251
+
252
+ self.layer_types = layer_types
253
+ if self.layer_types is None:
254
+ self.layer_types = [
255
+ "sliding_attention"
256
+ if self.sliding_window is not None and i >= self.max_window_layers
257
+ else "full_attention"
258
+ for i in range(self.num_hidden_layers)
259
+ ]
260
+ layer_type_validation(self.layer_types)
261
+
262
+ super().__init__(
263
+ tie_word_embeddings=tie_word_embeddings,
264
+ **kwargs,
265
+ )
266
+
267
+
268
+ __all__ = ["HelpingAIConfig"]
269
+
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.55.0"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0e66019b5ea698d577625397f8bd4e0e90b054b2f0d84c3d9af018d5cd34e4
3
+ size 4887893216
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932087a0b7283cc26967d9821b932a85a4f3b721af8d729b4c7c7c112411134d
3
+ size 4991798206
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97f54b342f1bf9c4cd5c8facef8f6f7db5608404d92bf28f2ccc4cca24026d3
3
+ size 4991798414
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0f940b8973cb5a2f9e6a3db0fde2d251245a252321d7f7f65e263ba8742822
3
+ size 4991798414
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bec76fc8084bf6d11e2d425bddfe6850076892b7cdb029ecc0b08a06428200c
3
+ size 4991798414
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d8fd601d8bc84783620827080d0d2ca6f690032923a3415b13b88ee339a090e
3
+ size 4991798414
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55ecd75276302f49e29c82352e5b19a6b7148e42f3c818dcf0ad0fe786750f3b
3
+ size 1812157362
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_helpingai.py ADDED
@@ -0,0 +1,969 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, Optional, Union
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from transformers.activations import ACT2FN
7
+ from transformers.cache_utils import Cache, DynamicCache
8
+ from transformers.generation import GenerationMixin
9
+ from transformers.integrations import use_kernel_forward_from_hub
10
+ from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
11
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
12
+ from transformers.modeling_layers import (
13
+ GenericForQuestionAnswering,
14
+ GenericForSequenceClassification,
15
+ GenericForTokenClassification,
16
+ GradientCheckpointingLayer,
17
+ )
18
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
19
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
20
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
21
+ from transformers.processing_utils import Unpack
22
+ from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
23
+ from transformers.utils.deprecation import deprecate_kwarg
24
+ from transformers.utils.generic import check_model_inputs
25
+ from .configuration_helpingai import HelpingAIConfig
26
+
27
+
28
+ @use_kernel_forward_from_hub("RMSNorm")
29
+ class HelpingAIRMSNorm(nn.Module):
30
+ def __init__(self, hidden_size, eps=1e-6):
31
+ """
32
+ HelpingAIRMSNorm is equivalent to T5LayerNorm
33
+ """
34
+ super().__init__()
35
+ self.weight = nn.Parameter(torch.ones(hidden_size))
36
+ self.variance_epsilon = eps
37
+
38
+ def forward(self, hidden_states):
39
+ input_dtype = hidden_states.dtype
40
+ hidden_states = hidden_states.to(torch.float32)
41
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
42
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
43
+ return self.weight * hidden_states.to(input_dtype)
44
+
45
+ def extra_repr(self):
46
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
47
+
48
+
49
+ class HelpingAISemanticEmotionReasoning(nn.Module):
50
+ """
51
+ Structured Emotional Reasoning (SER) layer for emotional understanding and processing.
52
+ Maps emotions to semantic representations and provides contextual emotion analysis.
53
+ """
54
+ def __init__(self, config: HelpingAIConfig):
55
+ super().__init__()
56
+ self.config = config
57
+ self.emotion_hidden_size = config.emotion_hidden_size
58
+ self.hidden_size = config.hidden_size
59
+
60
+ # Emotion detection and mapping
61
+ self.emotion_detector = nn.Linear(self.hidden_size, self.emotion_hidden_size)
62
+ self.emotion_mapper = nn.Linear(self.emotion_hidden_size, self.emotion_hidden_size)
63
+
64
+ # Contextual emotion analysis
65
+ self.emotion_context = nn.MultiheadAttention(
66
+ embed_dim=self.emotion_hidden_size,
67
+ num_heads=min(8, self.emotion_hidden_size // 64),
68
+ batch_first=True
69
+ )
70
+
71
+ # Emotion classification heads
72
+ self.primary_emotion = nn.Linear(self.emotion_hidden_size, 32) # Primary emotions
73
+ self.emotion_intensity = nn.Linear(self.emotion_hidden_size, 1) # Intensity score
74
+ self.emotion_valence = nn.Linear(self.emotion_hidden_size, 1) # Positive/negative
75
+
76
+ # Output projection
77
+ self.emotion_output = nn.Linear(self.emotion_hidden_size, self.hidden_size)
78
+ self.emotion_norm = HelpingAIRMSNorm(self.emotion_hidden_size, eps=config.rms_norm_eps)
79
+
80
+ # Activation
81
+ self.act_fn = ACT2FN[config.hidden_act]
82
+
83
+ def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, dict]:
84
+ # Detect emotional content
85
+ emotion_features = self.act_fn(self.emotion_detector(hidden_states))
86
+ emotion_mapped = self.emotion_mapper(emotion_features)
87
+ emotion_mapped = self.emotion_norm(emotion_mapped)
88
+
89
+ # Contextual emotion analysis
90
+ emotion_context, attention_weights = self.emotion_context(
91
+ emotion_mapped, emotion_mapped, emotion_mapped
92
+ )
93
+
94
+ # Emotion analysis outputs
95
+ primary_emotions = self.primary_emotion(emotion_context)
96
+ emotion_intensity = torch.sigmoid(self.emotion_intensity(emotion_context))
97
+ emotion_valence = torch.tanh(self.emotion_valence(emotion_context))
98
+
99
+ # Project back to hidden size
100
+ emotion_output = self.emotion_output(emotion_context)
101
+
102
+ # Emotion metadata
103
+ emotion_metadata = {
104
+ "primary_emotions": primary_emotions,
105
+ "intensity": emotion_intensity,
106
+ "valence": emotion_valence,
107
+ "attention_weights": attention_weights
108
+ }
109
+
110
+ return emotion_output, emotion_metadata
111
+
112
+
113
+ class HelpingAIPerspectiveEmotionThreading(nn.Module):
114
+ """
115
+ Parallel Empathic Threads (PET) layer for multi-threaded emotional reasoning.
116
+ Processes multiple perspective threads: relatable, supportive, motivational, analytical.
117
+ """
118
+ def __init__(self, config: HelpingAIConfig):
119
+ super().__init__()
120
+ self.config = config
121
+ self.hidden_size = config.hidden_size
122
+ self.perspective_threads = config.perspective_threads
123
+ self.thread_hidden_size = config.emotion_hidden_size
124
+
125
+ # Thread-specific processors
126
+ self.thread_projections = nn.ModuleList([
127
+ nn.Linear(self.hidden_size, self.thread_hidden_size)
128
+ for _ in range(self.perspective_threads)
129
+ ])
130
+
131
+ # Thread names for interpretability
132
+ self.thread_names = ["relatable", "supportive", "motivational", "analytical"][:self.perspective_threads]
133
+
134
+ # Cross-thread attention for perspective integration
135
+ self.cross_thread_attention = nn.MultiheadAttention(
136
+ embed_dim=self.thread_hidden_size,
137
+ num_heads=min(4, self.thread_hidden_size // 64),
138
+ batch_first=True
139
+ )
140
+
141
+ # Thread-specific processing layers
142
+ self.thread_processors = nn.ModuleList([
143
+ nn.Sequential(
144
+ nn.Linear(self.thread_hidden_size, self.thread_hidden_size * 2),
145
+ nn.GELU(),
146
+ nn.Linear(self.thread_hidden_size * 2, self.thread_hidden_size),
147
+ HelpingAIRMSNorm(self.thread_hidden_size, eps=config.rms_norm_eps)
148
+ )
149
+ for _ in range(self.perspective_threads)
150
+ ])
151
+
152
+ # Output integration
153
+ self.thread_combiner = nn.Linear(
154
+ self.thread_hidden_size * self.perspective_threads,
155
+ self.hidden_size
156
+ )
157
+
158
+ # Thread importance weighting
159
+ self.thread_weights = nn.Parameter(torch.ones(self.perspective_threads))
160
+
161
+ def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, dict]:
162
+ batch_size, seq_len, _ = hidden_states.shape
163
+
164
+ # Process each perspective thread
165
+ thread_outputs = []
166
+ thread_metadata = {}
167
+
168
+ for i, (projection, processor, thread_name) in enumerate(
169
+ zip(self.thread_projections, self.thread_processors, self.thread_names)
170
+ ):
171
+ # Project to thread space
172
+ thread_input = projection(hidden_states)
173
+
174
+ # Process thread-specific perspective
175
+ thread_output = processor(thread_input)
176
+ thread_outputs.append(thread_output)
177
+
178
+ # Store thread metadata
179
+ thread_metadata[f"{thread_name}_activation"] = torch.mean(torch.abs(thread_output))
180
+
181
+ # Stack threads for cross-thread attention
182
+ stacked_threads = torch.stack(thread_outputs, dim=2) # [batch, seq_len, num_threads, hidden]
183
+ stacked_threads = stacked_threads.reshape(batch_size * seq_len, self.perspective_threads, self.thread_hidden_size)
184
+
185
+ # Cross-thread attention for perspective integration
186
+ integrated_threads, cross_attention = self.cross_thread_attention(
187
+ stacked_threads, stacked_threads, stacked_threads
188
+ )
189
+
190
+ # Apply thread importance weighting
191
+ thread_weights_normalized = torch.softmax(self.thread_weights, dim=0)
192
+ weighted_threads = integrated_threads * thread_weights_normalized.unsqueeze(0).unsqueeze(-1)
193
+
194
+ # Combine threads - use reshape instead of view for memory layout compatibility
195
+ combined_threads = weighted_threads.reshape(batch_size, seq_len, -1)
196
+ final_output = self.thread_combiner(combined_threads)
197
+
198
+ # Thread metadata
199
+ thread_metadata.update({
200
+ "thread_weights": thread_weights_normalized,
201
+ "cross_attention": cross_attention,
202
+ "thread_activations": {
203
+ name: torch.mean(output) for name, output in zip(self.thread_names, thread_outputs)
204
+ }
205
+ })
206
+
207
+ return final_output, thread_metadata
208
+
209
+
210
+ class HelpingAIMultiStageThinking(nn.Module):
211
+ """
212
+ Multi-stage thinking module for internal reasoning and reflection processes.
213
+ Implements cascaded thinking stages with simplified feedback loops.
214
+ """
215
+ def __init__(self, config: HelpingAIConfig):
216
+ super().__init__()
217
+ self.config = config
218
+ self.hidden_size = config.hidden_size
219
+ self.thinking_stages = config.num_thinking_stages
220
+ self.thinking_depth = config.thinking_depth
221
+
222
+ # Thinking stage processors
223
+ self.thinking_layers = nn.ModuleList([
224
+ nn.Sequential(
225
+ nn.Linear(self.hidden_size, self.hidden_size),
226
+ nn.GELU(),
227
+ nn.Linear(self.hidden_size, self.hidden_size),
228
+ HelpingAIRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
229
+ )
230
+ for _ in range(self.thinking_stages)
231
+ ])
232
+
233
+ # Simple reflection mechanism without complex attention
234
+ self.reflection_layers = nn.ModuleList([
235
+ nn.Linear(self.hidden_size, self.hidden_size)
236
+ for _ in range(self.thinking_stages - 1)
237
+ ])
238
+
239
+ # Stage transition gates
240
+ self.stage_gates = nn.ModuleList([
241
+ nn.Linear(self.hidden_size, 1) for _ in range(self.thinking_stages - 1)
242
+ ])
243
+
244
+ # Thinking combination weights
245
+ self.stage_combiner = nn.Linear(self.thinking_stages * self.hidden_size, self.hidden_size)
246
+
247
+ def forward(self, hidden_states: torch.Tensor) -> tuple[torch.Tensor, dict]:
248
+ batch_size, seq_len, _ = hidden_states.shape
249
+ thinking_outputs = []
250
+ thinking_metadata = {}
251
+
252
+ current_thought = hidden_states
253
+
254
+ # Multi-stage thinking process
255
+ for stage_idx, stage_processor in enumerate(self.thinking_layers):
256
+ # Process current thinking stage
257
+ current_thought = stage_processor(current_thought)
258
+
259
+ # Store stage output
260
+ thinking_outputs.append(current_thought)
261
+ thinking_metadata[f"stage_{stage_idx}_activation"] = torch.mean(torch.abs(current_thought)).item()
262
+
263
+ # Apply reflection if not the last stage
264
+ if stage_idx < self.thinking_stages - 1:
265
+ # Simple reflection mechanism
266
+ reflection = self.reflection_layers[stage_idx](current_thought)
267
+ current_thought = current_thought + 0.1 * reflection # Small reflection influence
268
+
269
+ # Stage transition gating
270
+ gate_weight = torch.sigmoid(self.stage_gates[stage_idx](current_thought))
271
+ current_thought = gate_weight * current_thought + (1 - gate_weight) * hidden_states
272
+
273
+ # Combine all thinking stages
274
+ all_thoughts = torch.cat(thinking_outputs, dim=-1) # Concatenate along hidden dimension
275
+ final_thought = self.stage_combiner(all_thoughts)
276
+
277
+ thinking_metadata["stage_contributions"] = [
278
+ torch.mean(torch.abs(output)).item() for output in thinking_outputs
279
+ ]
280
+
281
+ return final_thought, thinking_metadata
282
+
283
+
284
+ class HelpingAIMLP(nn.Module):
285
+ def __init__(self, config):
286
+ super().__init__()
287
+ self.config = config
288
+ self.hidden_size = config.hidden_size
289
+ self.intermediate_size = config.intermediate_size
290
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
291
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
292
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
293
+ self.act_fn = ACT2FN[config.hidden_act]
294
+
295
+ # Enhanced MLP with thinking modules
296
+ if hasattr(config, 'use_emotional_reasoning') and config.use_emotional_reasoning:
297
+ self.thinking_module = HelpingAIMultiStageThinking(config)
298
+ self.use_thinking = True
299
+ else:
300
+ self.use_thinking = False
301
+
302
+ # Reasoning temperature for controlled generation
303
+ self.reasoning_temperature = getattr(config, 'reasoning_temperature', 1.0)
304
+
305
+ def forward(self, x):
306
+ # Standard MLP forward pass
307
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
308
+
309
+ # Apply multi-stage thinking if enabled
310
+ if self.use_thinking:
311
+ thinking_output, thinking_metadata = self.thinking_module(down_proj)
312
+ # Apply reasoning temperature
313
+ down_proj = down_proj + (thinking_output * self.reasoning_temperature)
314
+
315
+ return down_proj
316
+
317
+
318
+ def rotate_half(x):
319
+ """Rotates half the hidden dims of the input."""
320
+ x1 = x[..., : x.shape[-1] // 2]
321
+ x2 = x[..., x.shape[-1] // 2 :]
322
+ return torch.cat((-x2, x1), dim=-1)
323
+
324
+
325
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
326
+ """Applies Rotary Position Embedding to the query and key tensors.
327
+
328
+ Args:
329
+ q (`torch.Tensor`): The query tensor.
330
+ k (`torch.Tensor`): The key tensor.
331
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
332
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
333
+ position_ids (`torch.Tensor`, *optional*):
334
+ Deprecated and unused.
335
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
336
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
337
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
338
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
339
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
340
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
341
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
342
+ Returns:
343
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
344
+ """
345
+ cos = cos.unsqueeze(unsqueeze_dim)
346
+ sin = sin.unsqueeze(unsqueeze_dim)
347
+ q_embed = (q * cos) + (rotate_half(q) * sin)
348
+ k_embed = (k * cos) + (rotate_half(k) * sin)
349
+ return q_embed, k_embed
350
+
351
+
352
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
353
+ """
354
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
355
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
356
+ """
357
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
358
+ if n_rep == 1:
359
+ return hidden_states
360
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
361
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
362
+
363
+
364
+ def eager_attention_forward(
365
+ module: nn.Module,
366
+ query: torch.Tensor,
367
+ key: torch.Tensor,
368
+ value: torch.Tensor,
369
+ attention_mask: Optional[torch.Tensor],
370
+ scaling: float,
371
+ dropout: float = 0.0,
372
+ **kwargs: Unpack[TransformersKwargs],
373
+ ):
374
+ key_states = repeat_kv(key, module.num_key_value_groups)
375
+ value_states = repeat_kv(value, module.num_key_value_groups)
376
+
377
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
378
+ if attention_mask is not None:
379
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
380
+ attn_weights = attn_weights + causal_mask
381
+
382
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
383
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
384
+ attn_output = torch.matmul(attn_weights, value_states)
385
+ attn_output = attn_output.transpose(1, 2).contiguous()
386
+
387
+ return attn_output, attn_weights
388
+
389
+
390
+ class HelpingAIAttention(nn.Module):
391
+ """Multi-headed attention with specialized emotional and empathetic reasoning capabilities"""
392
+
393
+ def __init__(self, config: HelpingAIConfig, layer_idx: int):
394
+ super().__init__()
395
+ self.config = config
396
+ self.layer_idx = layer_idx
397
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
398
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
399
+ self.scaling = self.head_dim**-0.5
400
+ self.attention_dropout = config.attention_dropout
401
+ self.is_causal = True
402
+
403
+ self.q_proj = nn.Linear(
404
+ config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
405
+ )
406
+ self.k_proj = nn.Linear(
407
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
408
+ )
409
+ self.v_proj = nn.Linear(
410
+ config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
411
+ )
412
+ self.o_proj = nn.Linear(
413
+ config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
414
+ )
415
+ self.q_norm = HelpingAIRMSNorm(self.head_dim, eps=config.rms_norm_eps)
416
+ self.k_norm = HelpingAIRMSNorm(self.head_dim, eps=config.rms_norm_eps)
417
+ self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
418
+
419
+ # Enhanced emotional and empathetic attention
420
+ if hasattr(config, 'use_emotional_reasoning') and config.use_emotional_reasoning:
421
+ self.num_emotion_heads = getattr(config, 'num_emotion_heads', 4)
422
+ self.empathy_scaling_factor = getattr(config, 'empathy_scaling_factor', 1.2)
423
+
424
+ # Specialized emotion attention projections
425
+ self.emotion_q_proj = nn.Linear(config.hidden_size, self.num_emotion_heads * self.head_dim, bias=False)
426
+ self.emotion_k_proj = nn.Linear(config.hidden_size, self.num_emotion_heads * self.head_dim, bias=False)
427
+ self.emotion_v_proj = nn.Linear(config.hidden_size, self.num_emotion_heads * self.head_dim, bias=False)
428
+
429
+ # Empathy enhancement layer
430
+ self.empathy_enhancer = nn.Sequential(
431
+ nn.Linear(config.hidden_size, config.hidden_size // 2),
432
+ nn.GELU(),
433
+ nn.Linear(config.hidden_size // 2, config.num_attention_heads),
434
+ nn.Softmax(dim=-1)
435
+ )
436
+
437
+ self.use_emotional_attention = True
438
+ else:
439
+ self.use_emotional_attention = False
440
+
441
+ @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
442
+ def forward(
443
+ self,
444
+ hidden_states: torch.Tensor,
445
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
446
+ attention_mask: Optional[torch.Tensor],
447
+ past_key_values: Optional[Cache] = None,
448
+ cache_position: Optional[torch.LongTensor] = None,
449
+ **kwargs: Unpack[FlashAttentionKwargs],
450
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
451
+ input_shape = hidden_states.shape[:-1]
452
+ hidden_shape = (*input_shape, -1, self.head_dim)
453
+
454
+ # Standard attention processing
455
+ query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
456
+ key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
457
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
458
+
459
+ cos, sin = position_embeddings
460
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
461
+
462
+ if past_key_values is not None:
463
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
464
+ key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
465
+
466
+ # Enhanced emotional attention processing
467
+ if self.use_emotional_attention:
468
+ # Compute empathy weights
469
+ empathy_weights = self.empathy_enhancer(hidden_states.mean(dim=1)) # [batch, num_heads]
470
+
471
+ # Emotional query, key, value computation
472
+ emotion_query = self.emotion_q_proj(hidden_states).view(*input_shape, self.num_emotion_heads, self.head_dim).transpose(1, 2)
473
+ emotion_key = self.emotion_k_proj(hidden_states).view(*input_shape, self.num_emotion_heads, self.head_dim).transpose(1, 2)
474
+ emotion_value = self.emotion_v_proj(hidden_states).view(*input_shape, self.num_emotion_heads, self.head_dim).transpose(1, 2)
475
+
476
+ # Apply rotary embeddings to emotional attention
477
+ emotion_query, emotion_key = apply_rotary_pos_emb(emotion_query, emotion_key, cos, sin)
478
+
479
+ # Emotional attention computation
480
+ emotion_scaling = (self.head_dim ** -0.5) * self.empathy_scaling_factor
481
+ emotion_attn_weights = torch.matmul(emotion_query, emotion_key.transpose(2, 3)) * emotion_scaling
482
+
483
+ if attention_mask is not None:
484
+ emotion_causal_mask = attention_mask[:, :, :, :emotion_key.shape[-2]]
485
+ emotion_attn_weights = emotion_attn_weights + emotion_causal_mask
486
+
487
+ emotion_attn_weights = nn.functional.softmax(emotion_attn_weights, dim=-1, dtype=torch.float32).to(emotion_query.dtype)
488
+ emotion_output = torch.matmul(emotion_attn_weights, emotion_value)
489
+
490
+ # Integrate emotional attention with standard attention
491
+ # Pad or truncate emotional attention to match standard attention heads
492
+ if self.num_emotion_heads < self.config.num_attention_heads:
493
+ padding_heads = self.config.num_attention_heads - self.num_emotion_heads
494
+ emotion_padding = torch.zeros(
495
+ *emotion_output.shape[:-3], padding_heads, *emotion_output.shape[-2:],
496
+ device=emotion_output.device, dtype=emotion_output.dtype
497
+ )
498
+ emotion_output = torch.cat([emotion_output, emotion_padding], dim=1)
499
+
500
+ # Standard attention computation
501
+ attention_interface: Callable = eager_attention_forward
502
+ if self.config._attn_implementation != "eager":
503
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
504
+
505
+ attn_output, attn_weights = attention_interface(
506
+ self,
507
+ query_states,
508
+ key_states,
509
+ value_states,
510
+ attention_mask,
511
+ dropout=0.0 if not self.training else self.attention_dropout,
512
+ scaling=self.scaling,
513
+ sliding_window=self.sliding_window,
514
+ **kwargs,
515
+ )
516
+
517
+ # Blend standard and emotional attention if emotional reasoning is enabled
518
+ if self.use_emotional_attention:
519
+ # For now, use a simplified approach - just apply empathy scaling
520
+ # This avoids the complex tensor dimension matching issues
521
+ batch_size, num_heads, seq_len, head_dim = attn_output.shape
522
+
523
+ # Get average empathy weight per batch
524
+ empathy_scale = torch.mean(empathy_weights, dim=1, keepdim=True) # [batch, 1]
525
+ empathy_scale = empathy_scale.view(batch_size, 1, 1, 1) # [batch, 1, 1, 1]
526
+ empathy_scale = empathy_scale.expand(batch_size, num_heads, seq_len, head_dim)
527
+
528
+ # Apply empathy scaling to attention output
529
+ attn_output = attn_output * (1.0 + empathy_scale * 0.1) # Small empathy influence
530
+
531
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
532
+ attn_output = self.o_proj(attn_output)
533
+ return attn_output, attn_weights
534
+
535
+
536
+ class HelpingAIDecoderLayer(GradientCheckpointingLayer):
537
+ def __init__(self, config: HelpingAIConfig, layer_idx: int):
538
+ super().__init__()
539
+ self.hidden_size = config.hidden_size
540
+ self.layer_idx = layer_idx
541
+
542
+ self.self_attn = HelpingAIAttention(config=config, layer_idx=layer_idx)
543
+ self.mlp = HelpingAIMLP(config)
544
+ self.input_layernorm = HelpingAIRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
545
+ self.post_attention_layernorm = HelpingAIRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
546
+ self.attention_type = config.layer_types[layer_idx]
547
+
548
+ # Enhanced reasoning layers
549
+ if hasattr(config, 'use_emotional_reasoning') and config.use_emotional_reasoning:
550
+ self.ser_layer = HelpingAISemanticEmotionReasoning(config)
551
+ self.use_ser = True
552
+ else:
553
+ self.use_ser = False
554
+
555
+ if hasattr(config, 'use_perspective_threading') and config.use_perspective_threading:
556
+ self.pet_layer = HelpingAIPerspectiveEmotionThreading(config)
557
+ self.use_pet = True
558
+ else:
559
+ self.use_pet = False
560
+
561
+ # Reasoning integration layers
562
+ if self.use_ser or self.use_pet:
563
+ self.reasoning_norm = HelpingAIRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
564
+ self.reasoning_gate = nn.Linear(config.hidden_size, 1)
565
+
566
+ @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
567
+ def forward(
568
+ self,
569
+ hidden_states: torch.Tensor,
570
+ attention_mask: Optional[torch.Tensor] = None,
571
+ position_ids: Optional[torch.LongTensor] = None,
572
+ past_key_values: Optional[Cache] = None,
573
+ use_cache: Optional[bool] = False,
574
+ cache_position: Optional[torch.LongTensor] = None,
575
+ position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
576
+ **kwargs: Unpack[TransformersKwargs],
577
+ ) -> torch.Tensor:
578
+ residual = hidden_states
579
+ hidden_states = self.input_layernorm(hidden_states)
580
+
581
+ # Self Attention
582
+ hidden_states, attention_weights = self.self_attn(
583
+ hidden_states=hidden_states,
584
+ attention_mask=attention_mask,
585
+ position_ids=position_ids,
586
+ past_key_values=past_key_values,
587
+ use_cache=use_cache,
588
+ cache_position=cache_position,
589
+ position_embeddings=position_embeddings,
590
+ **kwargs,
591
+ )
592
+ hidden_states = residual + hidden_states
593
+
594
+ # Enhanced reasoning processing
595
+ reasoning_outputs = []
596
+ reasoning_metadata = {}
597
+
598
+ if self.use_ser:
599
+ # Semantic Emotion Reasoning
600
+ ser_output, ser_meta = self.ser_layer(hidden_states)
601
+ reasoning_outputs.append(ser_output)
602
+ reasoning_metadata['ser'] = ser_meta
603
+
604
+ if self.use_pet:
605
+ # Perspective Emotion Threading
606
+ pet_output, pet_meta = self.pet_layer(hidden_states)
607
+ reasoning_outputs.append(pet_output)
608
+ reasoning_metadata['pet'] = pet_meta
609
+
610
+ # Integrate reasoning outputs if any
611
+ if reasoning_outputs:
612
+ # Combine reasoning outputs
613
+ combined_reasoning = torch.stack(reasoning_outputs, dim=0).mean(dim=0)
614
+ combined_reasoning = self.reasoning_norm(combined_reasoning)
615
+
616
+ # Apply gating to control reasoning influence
617
+ reasoning_gate = torch.sigmoid(self.reasoning_gate(hidden_states))
618
+ hidden_states = hidden_states + (reasoning_gate * combined_reasoning)
619
+
620
+ # Fully Connected (MLP)
621
+ residual = hidden_states
622
+ hidden_states = self.post_attention_layernorm(hidden_states)
623
+ hidden_states = self.mlp(hidden_states)
624
+ hidden_states = residual + hidden_states
625
+
626
+ # Store reasoning metadata for analysis (optional)
627
+ if hasattr(hidden_states, '_reasoning_metadata'):
628
+ hidden_states._reasoning_metadata = reasoning_metadata
629
+
630
+ return hidden_states
631
+
632
+
633
+ @auto_docstring
634
+ class HelpingAIPreTrainedModel(PreTrainedModel):
635
+ config: HelpingAIConfig
636
+ base_model_prefix = "model"
637
+ supports_gradient_checkpointing = True
638
+ _no_split_modules = ["HelpingAIDecoderLayer"]
639
+ _skip_keys_device_placement = ["past_key_values"]
640
+ _supports_flash_attn = True
641
+ _supports_sdpa = True
642
+ _supports_flex_attn = True
643
+
644
+ _can_compile_fullgraph = True
645
+ _supports_attention_backend = True
646
+ _can_record_outputs = {
647
+ "hidden_states": HelpingAIDecoderLayer,
648
+ "attentions": HelpingAIAttention,
649
+ }
650
+
651
+
652
+ class HelpingAIRotaryEmbedding(nn.Module):
653
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
654
+
655
+ def __init__(self, config: HelpingAIConfig, device=None):
656
+ super().__init__()
657
+ # BC: "rope_type" was originally "type"
658
+ if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
659
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
660
+ else:
661
+ self.rope_type = "default"
662
+ self.max_seq_len_cached = config.max_position_embeddings
663
+ self.original_max_seq_len = config.max_position_embeddings
664
+
665
+ self.config = config
666
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
667
+
668
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
669
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
670
+ self.original_inv_freq = self.inv_freq
671
+
672
+ @torch.no_grad()
673
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
674
+ def forward(self, x, position_ids):
675
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
676
+ position_ids_expanded = position_ids[:, None, :].float()
677
+
678
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
679
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
680
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
681
+ emb = torch.cat((freqs, freqs), dim=-1)
682
+ cos = emb.cos() * self.attention_scaling
683
+ sin = emb.sin() * self.attention_scaling
684
+
685
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
686
+
687
+
688
+ @auto_docstring
689
+ class HelpingAIModel(HelpingAIPreTrainedModel):
690
+ def __init__(self, config: HelpingAIConfig):
691
+ super().__init__(config)
692
+ self.padding_idx = config.pad_token_id
693
+ self.vocab_size = config.vocab_size
694
+
695
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
696
+ self.layers = nn.ModuleList(
697
+ [HelpingAIDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
698
+ )
699
+ self.norm = HelpingAIRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
700
+ self.rotary_emb = HelpingAIRotaryEmbedding(config=config)
701
+ self.gradient_checkpointing = False
702
+ self.has_sliding_layers = "sliding_attention" in self.config.layer_types
703
+
704
+ # Initialize weights and apply final processing
705
+ self.post_init()
706
+
707
+ @check_model_inputs
708
+ @auto_docstring
709
+ def forward(
710
+ self,
711
+ input_ids: Optional[torch.LongTensor] = None,
712
+ attention_mask: Optional[torch.Tensor] = None,
713
+ position_ids: Optional[torch.LongTensor] = None,
714
+ past_key_values: Optional[Cache] = None,
715
+ inputs_embeds: Optional[torch.FloatTensor] = None,
716
+ use_cache: Optional[bool] = None,
717
+ cache_position: Optional[torch.LongTensor] = None,
718
+ **kwargs: Unpack[TransformersKwargs],
719
+ ) -> BaseModelOutputWithPast:
720
+ if (input_ids is None) ^ (inputs_embeds is not None):
721
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
722
+
723
+ if inputs_embeds is None:
724
+ inputs_embeds = self.embed_tokens(input_ids)
725
+
726
+ if use_cache and past_key_values is None:
727
+ past_key_values = DynamicCache()
728
+
729
+ if cache_position is None:
730
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
731
+ cache_position = torch.arange(
732
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
733
+ )
734
+
735
+ if position_ids is None:
736
+ position_ids = cache_position.unsqueeze(0)
737
+
738
+ # It may already have been prepared by e.g. `generate`
739
+ if not isinstance(causal_mask_mapping := attention_mask, dict):
740
+ # Prepare mask arguments
741
+ mask_kwargs = {
742
+ "config": self.config,
743
+ "input_embeds": inputs_embeds,
744
+ "attention_mask": attention_mask,
745
+ "cache_position": cache_position,
746
+ "past_key_values": past_key_values,
747
+ "position_ids": position_ids,
748
+ }
749
+ # Create the masks
750
+ causal_mask_mapping = {
751
+ "full_attention": create_causal_mask(**mask_kwargs),
752
+ }
753
+ # The sliding window alternating layers are not always activated depending on the config
754
+ if self.has_sliding_layers:
755
+ causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
756
+
757
+ hidden_states = inputs_embeds
758
+
759
+ # create position embeddings to be shared across the decoder layers
760
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
761
+
762
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
763
+ hidden_states = decoder_layer(
764
+ hidden_states,
765
+ attention_mask=causal_mask_mapping[decoder_layer.attention_type],
766
+ position_ids=position_ids,
767
+ past_key_values=past_key_values,
768
+ use_cache=use_cache,
769
+ cache_position=cache_position,
770
+ position_embeddings=position_embeddings,
771
+ **kwargs,
772
+ )
773
+
774
+ hidden_states = self.norm(hidden_states)
775
+ return BaseModelOutputWithPast(
776
+ last_hidden_state=hidden_states,
777
+ past_key_values=past_key_values if use_cache else None,
778
+ )
779
+
780
+
781
+ @auto_docstring
782
+ class HelpingAIForCausalLM(HelpingAIPreTrainedModel, GenerationMixin):
783
+ _tied_weights_keys = ["lm_head.weight"]
784
+ _tp_plan = {"lm_head": "colwise_rep"}
785
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
786
+
787
+ def __init__(self, config):
788
+ super().__init__(config)
789
+ self.model = HelpingAIModel(config)
790
+ self.vocab_size = config.vocab_size
791
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
792
+
793
+ # Enhanced structured output support
794
+ if hasattr(config, 'structured_output_vocab_size') and config.structured_output_vocab_size > 0:
795
+ self.structured_vocab_size = config.structured_output_vocab_size
796
+ self.structured_lm_head = nn.Linear(config.hidden_size, self.structured_vocab_size, bias=False)
797
+ self.use_structured_output = True
798
+
799
+ # Special token embeddings for structured reasoning
800
+ self.structured_token_embeddings = nn.Embedding(self.structured_vocab_size, config.hidden_size)
801
+
802
+ # Reasoning mode classifier
803
+ self.reasoning_mode_classifier = nn.Sequential(
804
+ nn.Linear(config.hidden_size, config.hidden_size // 2),
805
+ nn.GELU(),
806
+ nn.Linear(config.hidden_size // 2, 4), # think, ser, pet, normal
807
+ nn.Softmax(dim=-1)
808
+ )
809
+ else:
810
+ self.use_structured_output = False
811
+
812
+ # Initialize weights and apply final processing
813
+ self.post_init()
814
+
815
+ def set_decoder(self, decoder):
816
+ self.model = decoder
817
+
818
+ def get_decoder(self):
819
+ return self.model
820
+
821
+ def get_reasoning_mode_probabilities(self, hidden_states: torch.Tensor) -> torch.Tensor:
822
+ """Get probabilities for different reasoning modes: think, ser, pet, normal"""
823
+ if self.use_structured_output:
824
+ # Use the last token's hidden state for mode classification
825
+ last_hidden = hidden_states[:, -1, :] # [batch_size, hidden_size]
826
+ mode_probs = self.reasoning_mode_classifier(last_hidden)
827
+ return mode_probs
828
+ return None
829
+
830
+ @can_return_tuple
831
+ @auto_docstring
832
+ def forward(
833
+ self,
834
+ input_ids: Optional[torch.LongTensor] = None,
835
+ attention_mask: Optional[torch.Tensor] = None,
836
+ position_ids: Optional[torch.LongTensor] = None,
837
+ past_key_values: Optional[Cache] = None,
838
+ inputs_embeds: Optional[torch.FloatTensor] = None,
839
+ labels: Optional[torch.LongTensor] = None,
840
+ use_cache: Optional[bool] = None,
841
+ cache_position: Optional[torch.LongTensor] = None,
842
+ logits_to_keep: Union[int, torch.Tensor] = 0,
843
+ return_reasoning_metadata: Optional[bool] = False,
844
+ **kwargs: Unpack[TransformersKwargs],
845
+ ) -> CausalLMOutputWithPast:
846
+ r"""
847
+ Enhanced HelpingAI forward pass with structured reasoning support.
848
+
849
+ Args:
850
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
851
+ Indices of input sequence tokens in the vocabulary.
852
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
853
+ Mask to avoid performing attention on padding token indices.
854
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
855
+ Indices of positions of each input sequence tokens in the position embeddings.
856
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
857
+ Pre-computed hidden-states that can be used to speed up autoregressive decoding.
858
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
859
+ Embedded representation of the input tokens. Can be used instead of `input_ids`.
860
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
861
+ Labels for computing the masked language modeling loss.
862
+ use_cache (`bool`, *optional*):
863
+ If set to `True`, past key values are returned and can be used to speed up decoding.
864
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
865
+ Indices depicting the position of the input tokens in the sequence.
866
+ logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0):
867
+ Number of logits to keep from the end of the sequence.
868
+ return_reasoning_metadata (`bool`, *optional*, defaults to `False`):
869
+ Whether to return reasoning metadata including SER and PET analysis for structured reasoning.
870
+
871
+ Returns:
872
+ `CausalLMOutputWithPast`: Model output containing logits, past key values, and optional reasoning metadata.
873
+
874
+ Example:
875
+
876
+ ```python
877
+ >>> from transformers import AutoTokenizer, HelpingAIForCausalLM
878
+
879
+ >>> model = HelpingAIForCausalLM.from_pretrained("HelpingAI/HelpingAI-8B")
880
+ >>> tokenizer = AutoTokenizer.from_pretrained("HelpingAI/HelpingAI-8B")
881
+
882
+ >>> # Standard generation
883
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
884
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
885
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
886
+ >>> response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
887
+
888
+ >>> # Structured reasoning generation
889
+ >>> outputs = model(inputs.input_ids, return_reasoning_metadata=True)
890
+ >>> reasoning_modes = model.get_reasoning_mode_probabilities(outputs.hidden_states)
891
+ ```"""
892
+ outputs: BaseModelOutputWithPast = self.model(
893
+ input_ids=input_ids,
894
+ attention_mask=attention_mask,
895
+ position_ids=position_ids,
896
+ past_key_values=past_key_values,
897
+ inputs_embeds=inputs_embeds,
898
+ use_cache=use_cache,
899
+ cache_position=cache_position,
900
+ **kwargs,
901
+ )
902
+
903
+ hidden_states = outputs.last_hidden_state
904
+
905
+ # Standard language modeling head
906
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
907
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
908
+
909
+ # Enhanced structured output logits
910
+ structured_logits = None
911
+ reasoning_mode_probs = None
912
+ if self.use_structured_output:
913
+ structured_logits = self.structured_lm_head(hidden_states[:, slice_indices, :])
914
+ reasoning_mode_probs = self.get_reasoning_mode_probabilities(hidden_states)
915
+
916
+ loss = None
917
+ if labels is not None:
918
+ # Standard loss computation
919
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
920
+
921
+ # Add structured output loss if applicable
922
+ if self.use_structured_output and structured_logits is not None:
923
+ # Additional loss term for structured reasoning (if labels include structured tokens)
924
+ structured_loss_weight = 0.1 # Weight for structured output loss
925
+ structured_loss = self.loss_function(
926
+ logits=structured_logits,
927
+ labels=labels,
928
+ vocab_size=self.structured_vocab_size,
929
+ **kwargs
930
+ )
931
+ loss = loss + (structured_loss_weight * structured_loss)
932
+
933
+ # Prepare output with enhanced reasoning metadata
934
+ output = CausalLMOutputWithPast(
935
+ loss=loss,
936
+ logits=logits,
937
+ past_key_values=outputs.past_key_values,
938
+ hidden_states=outputs.hidden_states,
939
+ attentions=outputs.attentions,
940
+ )
941
+
942
+ # Add custom attributes for reasoning
943
+ if return_reasoning_metadata and self.use_structured_output:
944
+ output.structured_logits = structured_logits
945
+ output.reasoning_mode_probabilities = reasoning_mode_probs
946
+
947
+ return output
948
+
949
+
950
+ class HelpingAIForSequenceClassification(GenericForSequenceClassification, HelpingAIPreTrainedModel):
951
+ pass
952
+
953
+
954
+ class HelpingAIForTokenClassification(GenericForTokenClassification, HelpingAIPreTrainedModel):
955
+ pass
956
+
957
+
958
+ class HelpingAIForQuestionAnswering(GenericForQuestionAnswering, HelpingAIPreTrainedModel):
959
+ base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
960
+
961
+
962
+ __all__ = [
963
+ "HelpingAIForCausalLM",
964
+ "HelpingAIForQuestionAnswering",
965
+ "HelpingAIPreTrainedModel",
966
+ "HelpingAIModel",
967
+ "HelpingAIForSequenceClassification",
968
+ "HelpingAIForTokenClassification",
969
+ ]
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 40960,
235
+ "pad_token": "<|vision_pad|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff