Upload modeling_deepseek.py
Browse files- modeling_deepseek.py +1922 -0
    	
        modeling_deepseek.py
    ADDED
    
    | @@ -0,0 +1,1922 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ PyTorch DeepSeek model."""
         | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            import warnings
         | 
| 23 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import torch
         | 
| 26 | 
            +
            import torch.nn.functional as F
         | 
| 27 | 
            +
            import torch.utils.checkpoint
         | 
| 28 | 
            +
            from torch import nn
         | 
| 29 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from transformers.activations import ACT2FN
         | 
| 32 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 33 | 
            +
            from transformers.modeling_attn_mask_utils import (
         | 
| 34 | 
            +
                AttentionMaskConverter,
         | 
| 35 | 
            +
                _prepare_4d_attention_mask,
         | 
| 36 | 
            +
                _prepare_4d_causal_attention_mask,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from transformers.modeling_outputs import (
         | 
| 39 | 
            +
                BaseModelOutputWithPast,
         | 
| 40 | 
            +
                CausalLMOutputWithPast,
         | 
| 41 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 42 | 
            +
            )
         | 
| 43 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 44 | 
            +
            from transformers.pytorch_utils import (
         | 
| 45 | 
            +
                ALL_LAYERNORM_LAYERS,
         | 
| 46 | 
            +
                is_torch_greater_or_equal_than_1_13,
         | 
| 47 | 
            +
            )
         | 
| 48 | 
            +
            from transformers.utils import (
         | 
| 49 | 
            +
                add_start_docstrings,
         | 
| 50 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 51 | 
            +
                is_flash_attn_2_available,
         | 
| 52 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 53 | 
            +
                logging,
         | 
| 54 | 
            +
                replace_return_docstrings,
         | 
| 55 | 
            +
            )
         | 
| 56 | 
            +
            from transformers.utils.import_utils import is_torch_fx_available
         | 
| 57 | 
            +
            from .configuration_deepseek import DeepseekV2Config
         | 
| 58 | 
            +
            import torch.distributed as dist
         | 
| 59 | 
            +
            import numpy as np
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            if is_flash_attn_2_available():
         | 
| 62 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 63 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 64 | 
            +
             | 
| 65 | 
            +
             | 
| 66 | 
            +
            # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
         | 
| 67 | 
            +
            # It means that the function will not be traced through and simply appear as a node in the graph.
         | 
| 68 | 
            +
            if is_torch_fx_available():
         | 
| 69 | 
            +
                if not is_torch_greater_or_equal_than_1_13:
         | 
| 70 | 
            +
                    import torch.fx
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            _CONFIG_FOR_DOC = "DeepseekV2Config"
         | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 81 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 82 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 83 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 84 | 
            +
                cu_seqlens = F.pad(
         | 
| 85 | 
            +
                    torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
         | 
| 86 | 
            +
                )
         | 
| 87 | 
            +
                return (
         | 
| 88 | 
            +
                    indices,
         | 
| 89 | 
            +
                    cu_seqlens,
         | 
| 90 | 
            +
                    max_seqlen_in_batch,
         | 
| 91 | 
            +
                )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            class DeepseekV2RMSNorm(nn.Module):
         | 
| 95 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 96 | 
            +
                    """
         | 
| 97 | 
            +
                    DeepseekV2RMSNorm is equivalent to T5LayerNorm
         | 
| 98 | 
            +
                    """
         | 
| 99 | 
            +
                    super().__init__()
         | 
| 100 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 101 | 
            +
                    self.variance_epsilon = eps
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def forward(self, hidden_states):
         | 
| 104 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 105 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 106 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 107 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 108 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
             | 
| 114 | 
            +
            class DeepseekV2RotaryEmbedding(nn.Module):
         | 
| 115 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 116 | 
            +
                    super().__init__()
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    self.dim = dim
         | 
| 119 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 120 | 
            +
                    self.base = base
         | 
| 121 | 
            +
                    inv_freq = 1.0 / (
         | 
| 122 | 
            +
                        self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
         | 
| 123 | 
            +
                    )
         | 
| 124 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 127 | 
            +
                    self._set_cos_sin_cache(
         | 
| 128 | 
            +
                        seq_len=max_position_embeddings,
         | 
| 129 | 
            +
                        device=self.inv_freq.device,
         | 
| 130 | 
            +
                        dtype=torch.get_default_dtype(),
         | 
| 131 | 
            +
                    )
         | 
| 132 | 
            +
                    self.max_seq_len_cached = None
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 135 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 136 | 
            +
                    t = torch.arange(
         | 
| 137 | 
            +
                        self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
         | 
| 138 | 
            +
                    )
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    freqs = torch.outer(t, self.inv_freq.to(t.device))
         | 
| 141 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 142 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 143 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 144 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 147 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 148 | 
            +
                    if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
         | 
| 149 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    return (
         | 
| 152 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 153 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 154 | 
            +
                    )
         | 
| 155 | 
            +
             | 
| 156 | 
            +
             | 
| 157 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
         | 
| 158 | 
            +
            class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
         | 
| 159 | 
            +
                """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def __init__(
         | 
| 162 | 
            +
                    self,
         | 
| 163 | 
            +
                    dim,
         | 
| 164 | 
            +
                    max_position_embeddings=2048,
         | 
| 165 | 
            +
                    base=10000,
         | 
| 166 | 
            +
                    device=None,
         | 
| 167 | 
            +
                    scaling_factor=1.0,
         | 
| 168 | 
            +
                ):
         | 
| 169 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 170 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 173 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 174 | 
            +
                    t = torch.arange(
         | 
| 175 | 
            +
                        self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
         | 
| 176 | 
            +
                    )
         | 
| 177 | 
            +
                    t = t / self.scaling_factor
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 180 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 181 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 182 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 183 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
             | 
| 186 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
         | 
| 187 | 
            +
            class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
         | 
| 188 | 
            +
                """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                def __init__(
         | 
| 191 | 
            +
                    self,
         | 
| 192 | 
            +
                    dim,
         | 
| 193 | 
            +
                    max_position_embeddings=2048,
         | 
| 194 | 
            +
                    base=10000,
         | 
| 195 | 
            +
                    device=None,
         | 
| 196 | 
            +
                    scaling_factor=1.0,
         | 
| 197 | 
            +
                ):
         | 
| 198 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 199 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 202 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 205 | 
            +
                        base = self.base * (
         | 
| 206 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings)
         | 
| 207 | 
            +
                            - (self.scaling_factor - 1)
         | 
| 208 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 209 | 
            +
                        inv_freq = 1.0 / (
         | 
| 210 | 
            +
                            base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
         | 
| 211 | 
            +
                        )
         | 
| 212 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    t = torch.arange(
         | 
| 215 | 
            +
                        self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
         | 
| 216 | 
            +
                    )
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 219 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 220 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 221 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 222 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
             | 
| 225 | 
            +
            # Inverse dim formula to find dim based on number of rotations
         | 
| 226 | 
            +
            def yarn_find_correction_dim(
         | 
| 227 | 
            +
                num_rotations, dim, base=10000, max_position_embeddings=2048
         | 
| 228 | 
            +
            ):
         | 
| 229 | 
            +
                return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
         | 
| 230 | 
            +
                    2 * math.log(base)
         | 
| 231 | 
            +
                )
         | 
| 232 | 
            +
             | 
| 233 | 
            +
             | 
| 234 | 
            +
            # Find dim range bounds based on rotations
         | 
| 235 | 
            +
            def yarn_find_correction_range(
         | 
| 236 | 
            +
                low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
         | 
| 237 | 
            +
            ):
         | 
| 238 | 
            +
                low = math.floor(
         | 
| 239 | 
            +
                    yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
         | 
| 240 | 
            +
                )
         | 
| 241 | 
            +
                high = math.ceil(
         | 
| 242 | 
            +
                    yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
         | 
| 243 | 
            +
                )
         | 
| 244 | 
            +
                return max(low, 0), min(high, dim - 1)  # Clamp values just in case
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            def yarn_get_mscale(scale=1, mscale=1):
         | 
| 248 | 
            +
                if scale <= 1:
         | 
| 249 | 
            +
                    return 1.0
         | 
| 250 | 
            +
                return 0.1 * mscale * math.log(scale) + 1.0
         | 
| 251 | 
            +
             | 
| 252 | 
            +
             | 
| 253 | 
            +
            def yarn_linear_ramp_mask(min, max, dim):
         | 
| 254 | 
            +
                if min == max:
         | 
| 255 | 
            +
                    max += 0.001  # Prevent singularity
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
         | 
| 258 | 
            +
                ramp_func = torch.clamp(linear_func, 0, 1)
         | 
| 259 | 
            +
                return ramp_func
         | 
| 260 | 
            +
             | 
| 261 | 
            +
             | 
| 262 | 
            +
            class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                def __init__(
         | 
| 265 | 
            +
                    self,
         | 
| 266 | 
            +
                    dim,
         | 
| 267 | 
            +
                    max_position_embeddings=2048,
         | 
| 268 | 
            +
                    base=10000,
         | 
| 269 | 
            +
                    device=None,
         | 
| 270 | 
            +
                    scaling_factor=1.0,
         | 
| 271 | 
            +
                    original_max_position_embeddings=4096,
         | 
| 272 | 
            +
                    beta_fast=32,
         | 
| 273 | 
            +
                    beta_slow=1,
         | 
| 274 | 
            +
                    mscale=1,
         | 
| 275 | 
            +
                    mscale_all_dim=0,
         | 
| 276 | 
            +
                ):
         | 
| 277 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 278 | 
            +
                    self.original_max_position_embeddings = original_max_position_embeddings
         | 
| 279 | 
            +
                    self.beta_fast = beta_fast
         | 
| 280 | 
            +
                    self.beta_slow = beta_slow
         | 
| 281 | 
            +
                    self.mscale = mscale
         | 
| 282 | 
            +
                    self.mscale_all_dim = mscale_all_dim
         | 
| 283 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 286 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 287 | 
            +
                    dim = self.dim
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    freq_extra = 1.0 / (
         | 
| 290 | 
            +
                        self.base
         | 
| 291 | 
            +
                        ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
         | 
| 292 | 
            +
                    )
         | 
| 293 | 
            +
                    freq_inter = 1.0 / (
         | 
| 294 | 
            +
                        self.scaling_factor
         | 
| 295 | 
            +
                        * self.base
         | 
| 296 | 
            +
                        ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
         | 
| 297 | 
            +
                    )
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    low, high = yarn_find_correction_range(
         | 
| 300 | 
            +
                        self.beta_fast,
         | 
| 301 | 
            +
                        self.beta_slow,
         | 
| 302 | 
            +
                        dim,
         | 
| 303 | 
            +
                        self.base,
         | 
| 304 | 
            +
                        self.original_max_position_embeddings,
         | 
| 305 | 
            +
                    )
         | 
| 306 | 
            +
                    inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
         | 
| 307 | 
            +
                        device=device, dtype=torch.float32
         | 
| 308 | 
            +
                    )
         | 
| 309 | 
            +
                    inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
         | 
| 310 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    t = torch.arange(seq_len, device=device, dtype=torch.float32)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    freqs = torch.outer(t, inv_freq)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    _mscale = float(
         | 
| 317 | 
            +
                        yarn_get_mscale(self.scaling_factor, self.mscale)
         | 
| 318 | 
            +
                        / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
         | 
| 319 | 
            +
                    )
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 322 | 
            +
                    self.register_buffer(
         | 
| 323 | 
            +
                        "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
         | 
| 324 | 
            +
                    )
         | 
| 325 | 
            +
                    self.register_buffer(
         | 
| 326 | 
            +
                        "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
         | 
| 327 | 
            +
                    )
         | 
| 328 | 
            +
             | 
| 329 | 
            +
             | 
| 330 | 
            +
            # Copied from transformers.models.llama.modeling_llama.rotate_half
         | 
| 331 | 
            +
            def rotate_half(x):
         | 
| 332 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 333 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 334 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 335 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 336 | 
            +
             | 
| 337 | 
            +
             | 
| 338 | 
            +
            # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
         | 
| 339 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         | 
| 340 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                Args:
         | 
| 343 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 344 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 345 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 346 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 347 | 
            +
                    position_ids (`torch.Tensor`):
         | 
| 348 | 
            +
                        The position indices of the tokens corresponding to the query and key tensors. For example, this can be
         | 
| 349 | 
            +
                        used to pass offsetted position ids when working with a KV-cache.
         | 
| 350 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 351 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 352 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 353 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 354 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 355 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 356 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 357 | 
            +
                Returns:
         | 
| 358 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 359 | 
            +
                """
         | 
| 360 | 
            +
                cos = cos[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 361 | 
            +
                sin = sin[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                b, h, s, d = q.shape
         | 
| 364 | 
            +
                q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                b, h, s, d = k.shape
         | 
| 367 | 
            +
                k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 370 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 371 | 
            +
                return q_embed, k_embed
         | 
| 372 | 
            +
             | 
| 373 | 
            +
             | 
| 374 | 
            +
            class DeepseekV2MLP(nn.Module):
         | 
| 375 | 
            +
                def __init__(self, config, hidden_size=None, intermediate_size=None):
         | 
| 376 | 
            +
                    super().__init__()
         | 
| 377 | 
            +
                    self.config = config
         | 
| 378 | 
            +
                    self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
         | 
| 379 | 
            +
                    self.intermediate_size = (
         | 
| 380 | 
            +
                        config.intermediate_size if intermediate_size is None else intermediate_size
         | 
| 381 | 
            +
                    )
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 384 | 
            +
                    self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 385 | 
            +
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 386 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                def forward(self, x):
         | 
| 389 | 
            +
                    down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 390 | 
            +
                    return down_proj
         | 
| 391 | 
            +
             | 
| 392 | 
            +
             | 
| 393 | 
            +
            class MoEGate(nn.Module):
         | 
| 394 | 
            +
                def __init__(self, config):
         | 
| 395 | 
            +
                    super().__init__()
         | 
| 396 | 
            +
                    self.config = config
         | 
| 397 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 398 | 
            +
                    self.n_routed_experts = config.n_routed_experts
         | 
| 399 | 
            +
                    self.routed_scaling_factor = config.routed_scaling_factor
         | 
| 400 | 
            +
                    self.scoring_func = config.scoring_func
         | 
| 401 | 
            +
                    self.alpha = config.aux_loss_alpha
         | 
| 402 | 
            +
                    self.seq_aux = config.seq_aux
         | 
| 403 | 
            +
                    self.topk_method = config.topk_method
         | 
| 404 | 
            +
                    self.n_group = config.n_group
         | 
| 405 | 
            +
                    self.topk_group = config.topk_group
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    # topk selection algorithm
         | 
| 408 | 
            +
                    self.norm_topk_prob = config.norm_topk_prob
         | 
| 409 | 
            +
                    self.gating_dim = config.hidden_size
         | 
| 410 | 
            +
                    self.weight = nn.Parameter(
         | 
| 411 | 
            +
                        torch.empty((self.n_routed_experts, self.gating_dim))
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
                    self.reset_parameters()
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                def reset_parameters(self) -> None:
         | 
| 416 | 
            +
                    import torch.nn.init as init
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    init.kaiming_uniform_(self.weight, a=math.sqrt(5))
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                def forward(self, hidden_states):
         | 
| 421 | 
            +
                    bsz, seq_len, h = hidden_states.shape
         | 
| 422 | 
            +
                    ### compute gating score
         | 
| 423 | 
            +
                    hidden_states = hidden_states.view(-1, h)
         | 
| 424 | 
            +
                    logits = F.linear(
         | 
| 425 | 
            +
                        hidden_states.type(torch.float32), self.weight.type(torch.float32), None
         | 
| 426 | 
            +
                    )
         | 
| 427 | 
            +
                    if self.scoring_func == "softmax":
         | 
| 428 | 
            +
                        scores = logits.softmax(dim=-1, dtype=torch.float32)
         | 
| 429 | 
            +
                    else:
         | 
| 430 | 
            +
                        raise NotImplementedError(
         | 
| 431 | 
            +
                            f"insupportable scoring function for MoE gating: {self.scoring_func}"
         | 
| 432 | 
            +
                        )
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    ### select top-k experts
         | 
| 435 | 
            +
                    if self.topk_method == "greedy":
         | 
| 436 | 
            +
                        topk_weight, topk_idx = torch.topk(
         | 
| 437 | 
            +
                            scores, k=self.top_k, dim=-1, sorted=False
         | 
| 438 | 
            +
                        )
         | 
| 439 | 
            +
                    elif self.topk_method == "group_limited_greedy":
         | 
| 440 | 
            +
                        group_scores = (
         | 
| 441 | 
            +
                            scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
         | 
| 442 | 
            +
                        )  # [n, n_group]
         | 
| 443 | 
            +
                        group_idx = torch.topk(
         | 
| 444 | 
            +
                            group_scores, k=self.topk_group, dim=-1, sorted=False
         | 
| 445 | 
            +
                        )[
         | 
| 446 | 
            +
                            1
         | 
| 447 | 
            +
                        ]  # [n, top_k_group]
         | 
| 448 | 
            +
                        group_mask = torch.zeros_like(group_scores)  # [n, n_group]
         | 
| 449 | 
            +
                        group_mask.scatter_(1, group_idx, 1)  # [n, n_group]
         | 
| 450 | 
            +
                        score_mask = (
         | 
| 451 | 
            +
                            group_mask.unsqueeze(-1)
         | 
| 452 | 
            +
                            .expand(
         | 
| 453 | 
            +
                                bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
         | 
| 454 | 
            +
                            )
         | 
| 455 | 
            +
                            .reshape(bsz * seq_len, -1)
         | 
| 456 | 
            +
                        )  # [n, e]
         | 
| 457 | 
            +
                        tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0)  # [n, e]
         | 
| 458 | 
            +
                        topk_weight, topk_idx = torch.topk(
         | 
| 459 | 
            +
                            tmp_scores, k=self.top_k, dim=-1, sorted=False
         | 
| 460 | 
            +
                        )
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    ### norm gate to sum 1
         | 
| 463 | 
            +
                    if self.top_k > 1 and self.norm_topk_prob:
         | 
| 464 | 
            +
                        denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
         | 
| 465 | 
            +
                        topk_weight = topk_weight / denominator
         | 
| 466 | 
            +
                    else:
         | 
| 467 | 
            +
                        topk_weight = topk_weight * self.routed_scaling_factor
         | 
| 468 | 
            +
                    ### expert-level computation auxiliary loss
         | 
| 469 | 
            +
                    if self.training and self.alpha > 0.0:
         | 
| 470 | 
            +
                        scores_for_aux = scores
         | 
| 471 | 
            +
                        aux_topk = self.top_k
         | 
| 472 | 
            +
                        # always compute aux loss based on the naive greedy topk method
         | 
| 473 | 
            +
                        topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
         | 
| 474 | 
            +
                        if self.seq_aux:
         | 
| 475 | 
            +
                            scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
         | 
| 476 | 
            +
                            ce = torch.zeros(
         | 
| 477 | 
            +
                                bsz, self.n_routed_experts, device=hidden_states.device
         | 
| 478 | 
            +
                            )
         | 
| 479 | 
            +
                            ce.scatter_add_(
         | 
| 480 | 
            +
                                1,
         | 
| 481 | 
            +
                                topk_idx_for_aux_loss,
         | 
| 482 | 
            +
                                torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
         | 
| 483 | 
            +
                            ).div_(seq_len * aux_topk / self.n_routed_experts)
         | 
| 484 | 
            +
                            aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
         | 
| 485 | 
            +
                                dim=1
         | 
| 486 | 
            +
                            ).mean() * self.alpha
         | 
| 487 | 
            +
                        else:
         | 
| 488 | 
            +
                            mask_ce = F.one_hot(
         | 
| 489 | 
            +
                                topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
         | 
| 490 | 
            +
                            )
         | 
| 491 | 
            +
                            ce = mask_ce.float().mean(0)
         | 
| 492 | 
            +
                            Pi = scores_for_aux.mean(0)
         | 
| 493 | 
            +
                            fi = ce * self.n_routed_experts
         | 
| 494 | 
            +
                            aux_loss = (Pi * fi).sum() * self.alpha
         | 
| 495 | 
            +
                    else:
         | 
| 496 | 
            +
                        aux_loss = None
         | 
| 497 | 
            +
                    return topk_idx, topk_weight, aux_loss
         | 
| 498 | 
            +
             | 
| 499 | 
            +
             | 
| 500 | 
            +
            class AddAuxiliaryLoss(torch.autograd.Function):
         | 
| 501 | 
            +
                """
         | 
| 502 | 
            +
                The trick function of adding auxiliary (aux) loss,
         | 
| 503 | 
            +
                which includes the gradient of the aux loss during backpropagation.
         | 
| 504 | 
            +
                """
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                @staticmethod
         | 
| 507 | 
            +
                def forward(ctx, x, loss):
         | 
| 508 | 
            +
                    assert loss.numel() == 1
         | 
| 509 | 
            +
                    ctx.dtype = loss.dtype
         | 
| 510 | 
            +
                    ctx.required_aux_loss = loss.requires_grad
         | 
| 511 | 
            +
                    return x
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                @staticmethod
         | 
| 514 | 
            +
                def backward(ctx, grad_output):
         | 
| 515 | 
            +
                    grad_loss = None
         | 
| 516 | 
            +
                    if ctx.required_aux_loss:
         | 
| 517 | 
            +
                        grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
         | 
| 518 | 
            +
                    return grad_output, grad_loss
         | 
| 519 | 
            +
             | 
| 520 | 
            +
             | 
| 521 | 
            +
            class DeepseekV2MoE(nn.Module):
         | 
| 522 | 
            +
                """
         | 
| 523 | 
            +
                A mixed expert module containing shared experts.
         | 
| 524 | 
            +
                """
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                def __init__(self, config):
         | 
| 527 | 
            +
                    super().__init__()
         | 
| 528 | 
            +
                    self.config = config
         | 
| 529 | 
            +
                    self.num_experts_per_tok = config.num_experts_per_tok
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                    if hasattr(config, "ep_size") and config.ep_size > 1:
         | 
| 532 | 
            +
                        assert config.ep_size == dist.get_world_size()
         | 
| 533 | 
            +
                        self.ep_size = config.ep_size
         | 
| 534 | 
            +
                        self.experts_per_rank = config.n_routed_experts // config.ep_size
         | 
| 535 | 
            +
                        self.ep_rank = dist.get_rank()
         | 
| 536 | 
            +
                        self.experts = nn.ModuleList(
         | 
| 537 | 
            +
                            [
         | 
| 538 | 
            +
                                (
         | 
| 539 | 
            +
                                    DeepseekV2MLP(
         | 
| 540 | 
            +
                                        config, intermediate_size=config.moe_intermediate_size
         | 
| 541 | 
            +
                                    )
         | 
| 542 | 
            +
                                    if i >= self.ep_rank * self.experts_per_rank
         | 
| 543 | 
            +
                                    and i < (self.ep_rank + 1) * self.experts_per_rank
         | 
| 544 | 
            +
                                    else None
         | 
| 545 | 
            +
                                )
         | 
| 546 | 
            +
                                for i in range(config.n_routed_experts)
         | 
| 547 | 
            +
                            ]
         | 
| 548 | 
            +
                        )
         | 
| 549 | 
            +
                    else:
         | 
| 550 | 
            +
                        self.ep_size = 1
         | 
| 551 | 
            +
                        self.experts_per_rank = config.n_routed_experts
         | 
| 552 | 
            +
                        self.ep_rank = 0
         | 
| 553 | 
            +
                        self.experts = nn.ModuleList(
         | 
| 554 | 
            +
                            [
         | 
| 555 | 
            +
                                DeepseekV2MLP(
         | 
| 556 | 
            +
                                    config, intermediate_size=config.moe_intermediate_size
         | 
| 557 | 
            +
                                )
         | 
| 558 | 
            +
                                for i in range(config.n_routed_experts)
         | 
| 559 | 
            +
                            ]
         | 
| 560 | 
            +
                        )
         | 
| 561 | 
            +
                    self.gate = MoEGate(config)
         | 
| 562 | 
            +
                    if config.n_shared_experts is not None:
         | 
| 563 | 
            +
                        intermediate_size = config.moe_intermediate_size * config.n_shared_experts
         | 
| 564 | 
            +
                        self.shared_experts = DeepseekV2MLP(
         | 
| 565 | 
            +
                            config=config, intermediate_size=intermediate_size
         | 
| 566 | 
            +
                        )
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                def forward(self, hidden_states):
         | 
| 569 | 
            +
                    identity = hidden_states
         | 
| 570 | 
            +
                    orig_shape = hidden_states.shape
         | 
| 571 | 
            +
                    topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
         | 
| 572 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
         | 
| 573 | 
            +
                    flat_topk_idx = topk_idx.view(-1)
         | 
| 574 | 
            +
                    if self.training:
         | 
| 575 | 
            +
                        hidden_states = hidden_states.repeat_interleave(
         | 
| 576 | 
            +
                            self.num_experts_per_tok, dim=0
         | 
| 577 | 
            +
                        )
         | 
| 578 | 
            +
                        y = torch.empty_like(hidden_states)
         | 
| 579 | 
            +
                        for i, expert in enumerate(self.experts):
         | 
| 580 | 
            +
                            y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
         | 
| 581 | 
            +
                        y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
         | 
| 582 | 
            +
                        y = y.to(hidden_states.dtype).view(*orig_shape)
         | 
| 583 | 
            +
                        y = AddAuxiliaryLoss.apply(y, aux_loss)
         | 
| 584 | 
            +
                    else:
         | 
| 585 | 
            +
                        y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
         | 
| 586 | 
            +
                    if self.config.n_shared_experts is not None:
         | 
| 587 | 
            +
                        y = y + self.shared_experts(identity)
         | 
| 588 | 
            +
                    return y
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                @torch.no_grad()
         | 
| 591 | 
            +
                def moe_infer(self, x, topk_ids, topk_weight):
         | 
| 592 | 
            +
                    cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
         | 
| 593 | 
            +
                    cnts.scatter_(1, topk_ids, 1)
         | 
| 594 | 
            +
                    tokens_per_expert = cnts.sum(dim=0)
         | 
| 595 | 
            +
                    idxs = topk_ids.view(-1).argsort()
         | 
| 596 | 
            +
                    sorted_tokens = x[idxs // topk_ids.shape[1]]
         | 
| 597 | 
            +
                    sorted_tokens_shape = sorted_tokens.shape
         | 
| 598 | 
            +
                    if self.ep_size > 1:
         | 
| 599 | 
            +
                        tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
         | 
| 600 | 
            +
                        tokens_per_expert_group = tokens_per_expert.new_empty(
         | 
| 601 | 
            +
                            tokens_per_expert.shape[0]
         | 
| 602 | 
            +
                        )
         | 
| 603 | 
            +
                        dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
         | 
| 604 | 
            +
                        output_splits = (
         | 
| 605 | 
            +
                            tokens_per_expert_group.view(self.ep_size, -1)
         | 
| 606 | 
            +
                            .sum(1)
         | 
| 607 | 
            +
                            .cpu()
         | 
| 608 | 
            +
                            .numpy()
         | 
| 609 | 
            +
                            .tolist()
         | 
| 610 | 
            +
                        )
         | 
| 611 | 
            +
                        gathered_tokens = sorted_tokens.new_empty(
         | 
| 612 | 
            +
                            tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
         | 
| 613 | 
            +
                        )
         | 
| 614 | 
            +
                        input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
         | 
| 615 | 
            +
                        dist.all_to_all(
         | 
| 616 | 
            +
                            list(gathered_tokens.split(output_splits)),
         | 
| 617 | 
            +
                            list(sorted_tokens.split(input_split_sizes)),
         | 
| 618 | 
            +
                        )
         | 
| 619 | 
            +
                        tokens_per_expert_post_gather = tokens_per_expert_group.view(
         | 
| 620 | 
            +
                            self.ep_size, self.experts_per_rank
         | 
| 621 | 
            +
                        ).sum(dim=0)
         | 
| 622 | 
            +
                        gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
         | 
| 623 | 
            +
                        s = 0
         | 
| 624 | 
            +
                        for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
         | 
| 625 | 
            +
                            gatherd_idxs[s : s + k] = i % self.experts_per_rank
         | 
| 626 | 
            +
                            s += k
         | 
| 627 | 
            +
                        gatherd_idxs = gatherd_idxs.argsort()
         | 
| 628 | 
            +
                        sorted_tokens = gathered_tokens[gatherd_idxs]
         | 
| 629 | 
            +
                        tokens_per_expert = tokens_per_expert_post_gather
         | 
| 630 | 
            +
                    tokens_per_expert = tokens_per_expert.cpu().numpy()
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                    outputs = []
         | 
| 633 | 
            +
                    start_idx = 0
         | 
| 634 | 
            +
                    for i, num_tokens in enumerate(tokens_per_expert):
         | 
| 635 | 
            +
                        end_idx = start_idx + num_tokens
         | 
| 636 | 
            +
                        if num_tokens == 0:
         | 
| 637 | 
            +
                            continue
         | 
| 638 | 
            +
                        expert = self.experts[i + self.ep_rank * self.experts_per_rank]
         | 
| 639 | 
            +
                        tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
         | 
| 640 | 
            +
                        expert_out = expert(tokens_for_this_expert)
         | 
| 641 | 
            +
                        outputs.append(expert_out)
         | 
| 642 | 
            +
                        start_idx = end_idx
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                    outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
         | 
| 645 | 
            +
                    if self.ep_size > 1:
         | 
| 646 | 
            +
                        new_x = torch.empty_like(outs)
         | 
| 647 | 
            +
                        new_x[gatherd_idxs] = outs
         | 
| 648 | 
            +
                        gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
         | 
| 649 | 
            +
                        dist.all_to_all(
         | 
| 650 | 
            +
                            list(gathered_tokens.split(input_split_sizes)),
         | 
| 651 | 
            +
                            list(new_x.split(output_splits)),
         | 
| 652 | 
            +
                        )
         | 
| 653 | 
            +
                        outs = gathered_tokens
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                    new_x = torch.empty_like(outs)
         | 
| 656 | 
            +
                    new_x[idxs] = outs
         | 
| 657 | 
            +
                    final_out = (
         | 
| 658 | 
            +
                        new_x.view(*topk_ids.shape, -1)
         | 
| 659 | 
            +
                        .type(topk_weight.dtype)
         | 
| 660 | 
            +
                        .mul_(topk_weight.unsqueeze(dim=-1))
         | 
| 661 | 
            +
                        .sum(dim=1)
         | 
| 662 | 
            +
                        .type(new_x.dtype)
         | 
| 663 | 
            +
                    )
         | 
| 664 | 
            +
                    return final_out
         | 
| 665 | 
            +
             | 
| 666 | 
            +
             | 
| 667 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv
         | 
| 668 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 669 | 
            +
                """
         | 
| 670 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 671 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 672 | 
            +
                """
         | 
| 673 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 674 | 
            +
                if n_rep == 1:
         | 
| 675 | 
            +
                    return hidden_states
         | 
| 676 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(
         | 
| 677 | 
            +
                    batch, num_key_value_heads, n_rep, slen, head_dim
         | 
| 678 | 
            +
                )
         | 
| 679 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 680 | 
            +
             | 
| 681 | 
            +
             | 
| 682 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
         | 
| 683 | 
            +
            class DeepseekV2Attention(nn.Module):
         | 
| 684 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
         | 
| 687 | 
            +
                    super().__init__()
         | 
| 688 | 
            +
                    self.config = config
         | 
| 689 | 
            +
                    self.layer_idx = layer_idx
         | 
| 690 | 
            +
                    if layer_idx is None:
         | 
| 691 | 
            +
                        logger.warning_once(
         | 
| 692 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
         | 
| 693 | 
            +
                            "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 694 | 
            +
                            "when creating this class."
         | 
| 695 | 
            +
                        )
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 698 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 699 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 702 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 703 | 
            +
                    self.q_lora_rank = config.q_lora_rank
         | 
| 704 | 
            +
                    self.qk_rope_head_dim = config.qk_rope_head_dim
         | 
| 705 | 
            +
                    self.kv_lora_rank = config.kv_lora_rank
         | 
| 706 | 
            +
                    self.v_head_dim = config.v_head_dim
         | 
| 707 | 
            +
                    self.qk_nope_head_dim = config.qk_nope_head_dim
         | 
| 708 | 
            +
                    self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                    self.is_causal = True
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    if self.q_lora_rank is None:
         | 
| 713 | 
            +
                        self.q_proj = nn.Linear(
         | 
| 714 | 
            +
                            self.hidden_size, self.num_heads * self.q_head_dim, bias=False
         | 
| 715 | 
            +
                        )
         | 
| 716 | 
            +
                    else:
         | 
| 717 | 
            +
                        self.q_a_proj = nn.Linear(
         | 
| 718 | 
            +
                            self.hidden_size, config.q_lora_rank, bias=config.attention_bias
         | 
| 719 | 
            +
                        )
         | 
| 720 | 
            +
                        self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
         | 
| 721 | 
            +
                        self.q_b_proj = nn.Linear(
         | 
| 722 | 
            +
                            config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
         | 
| 723 | 
            +
                        )
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                    self.kv_a_proj_with_mqa = nn.Linear(
         | 
| 726 | 
            +
                        self.hidden_size,
         | 
| 727 | 
            +
                        config.kv_lora_rank + config.qk_rope_head_dim,
         | 
| 728 | 
            +
                        bias=config.attention_bias,
         | 
| 729 | 
            +
                    )
         | 
| 730 | 
            +
                    self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
         | 
| 731 | 
            +
                    self.kv_b_proj = nn.Linear(
         | 
| 732 | 
            +
                        config.kv_lora_rank,
         | 
| 733 | 
            +
                        self.num_heads
         | 
| 734 | 
            +
                        * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
         | 
| 735 | 
            +
                        bias=False,
         | 
| 736 | 
            +
                    )
         | 
| 737 | 
            +
             | 
| 738 | 
            +
                    self.o_proj = nn.Linear(
         | 
| 739 | 
            +
                        self.num_heads * self.v_head_dim,
         | 
| 740 | 
            +
                        self.hidden_size,
         | 
| 741 | 
            +
                        bias=config.attention_bias,
         | 
| 742 | 
            +
                    )
         | 
| 743 | 
            +
                    self._init_rope()
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                    self.softmax_scale = self.q_head_dim ** (-0.5)
         | 
| 746 | 
            +
                    if self.config.rope_scaling is not None:
         | 
| 747 | 
            +
                        mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
         | 
| 748 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 749 | 
            +
                        if mscale_all_dim:
         | 
| 750 | 
            +
                            mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
         | 
| 751 | 
            +
                            self.softmax_scale = self.softmax_scale * mscale * mscale
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                def _init_rope(self):
         | 
| 754 | 
            +
                    if self.config.rope_scaling is None:
         | 
| 755 | 
            +
                        self.rotary_emb = DeepseekV2RotaryEmbedding(
         | 
| 756 | 
            +
                            self.qk_rope_head_dim,
         | 
| 757 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 758 | 
            +
                            base=self.rope_theta,
         | 
| 759 | 
            +
                        )
         | 
| 760 | 
            +
                    else:
         | 
| 761 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 762 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 763 | 
            +
                        if scaling_type == "linear":
         | 
| 764 | 
            +
                            self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
         | 
| 765 | 
            +
                                self.qk_rope_head_dim,
         | 
| 766 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 767 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 768 | 
            +
                                base=self.rope_theta,
         | 
| 769 | 
            +
                            )
         | 
| 770 | 
            +
                        elif scaling_type == "dynamic":
         | 
| 771 | 
            +
                            self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
         | 
| 772 | 
            +
                                self.qk_rope_head_dim,
         | 
| 773 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 774 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 775 | 
            +
                                base=self.rope_theta,
         | 
| 776 | 
            +
                            )
         | 
| 777 | 
            +
                        elif scaling_type == "yarn":
         | 
| 778 | 
            +
                            kwargs = {
         | 
| 779 | 
            +
                                key: self.config.rope_scaling[key]
         | 
| 780 | 
            +
                                for key in [
         | 
| 781 | 
            +
                                    "original_max_position_embeddings",
         | 
| 782 | 
            +
                                    "beta_fast",
         | 
| 783 | 
            +
                                    "beta_slow",
         | 
| 784 | 
            +
                                    "mscale",
         | 
| 785 | 
            +
                                    "mscale_all_dim",
         | 
| 786 | 
            +
                                ]
         | 
| 787 | 
            +
                                if key in self.config.rope_scaling
         | 
| 788 | 
            +
                            }
         | 
| 789 | 
            +
                            self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
         | 
| 790 | 
            +
                                self.qk_rope_head_dim,
         | 
| 791 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 792 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 793 | 
            +
                                base=self.rope_theta,
         | 
| 794 | 
            +
                                **kwargs,
         | 
| 795 | 
            +
                            )
         | 
| 796 | 
            +
                        else:
         | 
| 797 | 
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 800 | 
            +
                    return (
         | 
| 801 | 
            +
                        tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
         | 
| 802 | 
            +
                        .transpose(1, 2)
         | 
| 803 | 
            +
                        .contiguous()
         | 
| 804 | 
            +
                    )
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                def forward(
         | 
| 807 | 
            +
                    self,
         | 
| 808 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 809 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 810 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 811 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 812 | 
            +
                    output_attentions: bool = False,
         | 
| 813 | 
            +
                    use_cache: bool = False,
         | 
| 814 | 
            +
                    **kwargs,
         | 
| 815 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 816 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 817 | 
            +
                        warnings.warn(
         | 
| 818 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 819 | 
            +
                        )
         | 
| 820 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                    if self.q_lora_rank is None:
         | 
| 823 | 
            +
                        q = self.q_proj(hidden_states)
         | 
| 824 | 
            +
                    else:
         | 
| 825 | 
            +
                        q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
         | 
| 826 | 
            +
                    q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
         | 
| 827 | 
            +
                    q_nope, q_pe = torch.split(
         | 
| 828 | 
            +
                        q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
         | 
| 829 | 
            +
                    )
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                    compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
         | 
| 832 | 
            +
                    compressed_kv, k_pe = torch.split(
         | 
| 833 | 
            +
                        compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
         | 
| 834 | 
            +
                    )
         | 
| 835 | 
            +
                    k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
         | 
| 836 | 
            +
                    kv = (
         | 
| 837 | 
            +
                        self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
         | 
| 838 | 
            +
                        .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
         | 
| 839 | 
            +
                        .transpose(1, 2)
         | 
| 840 | 
            +
                    )
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    k_nope, value_states = torch.split(
         | 
| 843 | 
            +
                        kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
         | 
| 844 | 
            +
                    )
         | 
| 845 | 
            +
                    kv_seq_len = value_states.shape[-2]
         | 
| 846 | 
            +
                    if past_key_value is not None:
         | 
| 847 | 
            +
                        if self.layer_idx is None:
         | 
| 848 | 
            +
                            raise ValueError(
         | 
| 849 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 850 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 851 | 
            +
                                "with a layer index."
         | 
| 852 | 
            +
                            )
         | 
| 853 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 854 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                    q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
         | 
| 859 | 
            +
                    query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
         | 
| 860 | 
            +
                    query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
         | 
| 861 | 
            +
             | 
| 862 | 
            +
                    key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
         | 
| 863 | 
            +
                    key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
         | 
| 864 | 
            +
                    key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
         | 
| 865 | 
            +
                    if past_key_value is not None:
         | 
| 866 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 867 | 
            +
                        key_states, value_states = past_key_value.update(
         | 
| 868 | 
            +
                            key_states, value_states, self.layer_idx, cache_kwargs
         | 
| 869 | 
            +
                        )
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                    attn_weights = (
         | 
| 872 | 
            +
                        torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
         | 
| 873 | 
            +
                    )
         | 
| 874 | 
            +
             | 
| 875 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 876 | 
            +
                        raise ValueError(
         | 
| 877 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 878 | 
            +
                            f" {attn_weights.size()}"
         | 
| 879 | 
            +
                        )
         | 
| 880 | 
            +
                    assert attention_mask is not None
         | 
| 881 | 
            +
                    if attention_mask is not None:
         | 
| 882 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 883 | 
            +
                            raise ValueError(
         | 
| 884 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 885 | 
            +
                            )
         | 
| 886 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    # upcast attention to fp32
         | 
| 889 | 
            +
                    attn_weights = nn.functional.softmax(
         | 
| 890 | 
            +
                        attn_weights, dim=-1, dtype=torch.float32
         | 
| 891 | 
            +
                    ).to(query_states.dtype)
         | 
| 892 | 
            +
                    attn_weights = nn.functional.dropout(
         | 
| 893 | 
            +
                        attn_weights, p=self.attention_dropout, training=self.training
         | 
| 894 | 
            +
                    )
         | 
| 895 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 896 | 
            +
             | 
| 897 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
         | 
| 898 | 
            +
                        raise ValueError(
         | 
| 899 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
         | 
| 900 | 
            +
                            f" {attn_output.size()}"
         | 
| 901 | 
            +
                        )
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 904 | 
            +
             | 
| 905 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
         | 
| 906 | 
            +
             | 
| 907 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 908 | 
            +
             | 
| 909 | 
            +
                    if not output_attentions:
         | 
| 910 | 
            +
                        attn_weights = None
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 913 | 
            +
             | 
| 914 | 
            +
             | 
| 915 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
         | 
| 916 | 
            +
            class DeepseekV2FlashAttention2(DeepseekV2Attention):
         | 
| 917 | 
            +
                """
         | 
| 918 | 
            +
                DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
         | 
| 919 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 920 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 921 | 
            +
                """
         | 
| 922 | 
            +
             | 
| 923 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 924 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 927 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 928 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 929 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 930 | 
            +
             | 
| 931 | 
            +
                def forward(
         | 
| 932 | 
            +
                    self,
         | 
| 933 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 934 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 935 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 936 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 937 | 
            +
                    output_attentions: bool = False,
         | 
| 938 | 
            +
                    use_cache: bool = False,
         | 
| 939 | 
            +
                    **kwargs,
         | 
| 940 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 941 | 
            +
                    # DeepseekV2FlashAttention2 attention does not support output_attentions
         | 
| 942 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 943 | 
            +
                        warnings.warn(
         | 
| 944 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 945 | 
            +
                        )
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 948 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 949 | 
            +
             | 
| 950 | 
            +
                    output_attentions = False
         | 
| 951 | 
            +
             | 
| 952 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 953 | 
            +
             | 
| 954 | 
            +
                    if self.q_lora_rank is None:
         | 
| 955 | 
            +
                        q = self.q_proj(hidden_states)
         | 
| 956 | 
            +
                    else:
         | 
| 957 | 
            +
                        q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
         | 
| 958 | 
            +
                    q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
         | 
| 959 | 
            +
                    q_nope, q_pe = torch.split(
         | 
| 960 | 
            +
                        q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
         | 
| 961 | 
            +
                    )
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                    # Flash attention requires the input to have the shape
         | 
| 964 | 
            +
                    # batch_size x seq_length x head_dim x hidden_dim
         | 
| 965 | 
            +
                    # therefore we just need to keep the original shape
         | 
| 966 | 
            +
                    compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
         | 
| 967 | 
            +
                    compressed_kv, k_pe = torch.split(
         | 
| 968 | 
            +
                        compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
         | 
| 969 | 
            +
                    )
         | 
| 970 | 
            +
                    k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
         | 
| 971 | 
            +
                    kv = (
         | 
| 972 | 
            +
                        self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
         | 
| 973 | 
            +
                        .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
         | 
| 974 | 
            +
                        .transpose(1, 2)
         | 
| 975 | 
            +
                    )
         | 
| 976 | 
            +
             | 
| 977 | 
            +
                    k_nope, value_states = torch.split(
         | 
| 978 | 
            +
                        kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
         | 
| 979 | 
            +
                    )
         | 
| 980 | 
            +
                    kv_seq_len = value_states.shape[-2]
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                    kv_seq_len = value_states.shape[-2]
         | 
| 983 | 
            +
                    if past_key_value is not None:
         | 
| 984 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 987 | 
            +
                    q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
         | 
| 988 | 
            +
             | 
| 989 | 
            +
                    query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
         | 
| 990 | 
            +
                    query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
         | 
| 991 | 
            +
                    query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
         | 
| 992 | 
            +
             | 
| 993 | 
            +
                    key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
         | 
| 994 | 
            +
                    key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
         | 
| 995 | 
            +
                    key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    if self.q_head_dim != self.v_head_dim:
         | 
| 998 | 
            +
                        value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
         | 
| 999 | 
            +
             | 
| 1000 | 
            +
                    if past_key_value is not None:
         | 
| 1001 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 1002 | 
            +
                        key_states, value_states = past_key_value.update(
         | 
| 1003 | 
            +
                            key_states, value_states, self.layer_idx, cache_kwargs
         | 
| 1004 | 
            +
                        )
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 1007 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 1008 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 1009 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 1010 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
                    dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 1015 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 1016 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 1017 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 1018 | 
            +
                    # in fp32. (DeepseekV2RMSNorm handles it correctly)
         | 
| 1019 | 
            +
             | 
| 1020 | 
            +
                    input_dtype = query_states.dtype
         | 
| 1021 | 
            +
                    if input_dtype == torch.float32:
         | 
| 1022 | 
            +
                        # Handle the case where the model is quantized
         | 
| 1023 | 
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 1024 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 1025 | 
            +
                        elif torch.is_autocast_enabled():
         | 
| 1026 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 1027 | 
            +
                        else:
         | 
| 1028 | 
            +
                            target_dtype = (
         | 
| 1029 | 
            +
                                self.q_proj.weight.dtype
         | 
| 1030 | 
            +
                                if self.q_lora_rank is None
         | 
| 1031 | 
            +
                                else self.q_a_proj.weight.dtype
         | 
| 1032 | 
            +
                            )
         | 
| 1033 | 
            +
             | 
| 1034 | 
            +
                        logger.warning_once(
         | 
| 1035 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 1036 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 1037 | 
            +
                            f" {target_dtype}."
         | 
| 1038 | 
            +
                        )
         | 
| 1039 | 
            +
             | 
| 1040 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 1041 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 1042 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 1045 | 
            +
                        query_states,
         | 
| 1046 | 
            +
                        key_states,
         | 
| 1047 | 
            +
                        value_states,
         | 
| 1048 | 
            +
                        attention_mask,
         | 
| 1049 | 
            +
                        q_len,
         | 
| 1050 | 
            +
                        dropout=dropout_rate,
         | 
| 1051 | 
            +
                        softmax_scale=self.softmax_scale,
         | 
| 1052 | 
            +
                    )
         | 
| 1053 | 
            +
                    if self.q_head_dim != self.v_head_dim:
         | 
| 1054 | 
            +
                        attn_output = attn_output[:, :, :, : self.v_head_dim]
         | 
| 1055 | 
            +
             | 
| 1056 | 
            +
                    attn_output = attn_output.reshape(
         | 
| 1057 | 
            +
                        bsz, q_len, self.num_heads * self.v_head_dim
         | 
| 1058 | 
            +
                    ).contiguous()
         | 
| 1059 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 1060 | 
            +
             | 
| 1061 | 
            +
                    if not output_attentions:
         | 
| 1062 | 
            +
                        attn_weights = None
         | 
| 1063 | 
            +
             | 
| 1064 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 1065 | 
            +
             | 
| 1066 | 
            +
                def _flash_attention_forward(
         | 
| 1067 | 
            +
                    self,
         | 
| 1068 | 
            +
                    query_states,
         | 
| 1069 | 
            +
                    key_states,
         | 
| 1070 | 
            +
                    value_states,
         | 
| 1071 | 
            +
                    attention_mask,
         | 
| 1072 | 
            +
                    query_length,
         | 
| 1073 | 
            +
                    dropout=0.0,
         | 
| 1074 | 
            +
                    softmax_scale=None,
         | 
| 1075 | 
            +
                ):
         | 
| 1076 | 
            +
                    """
         | 
| 1077 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 1078 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                    Args:
         | 
| 1081 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 1082 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 1083 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 1084 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 1085 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 1086 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 1087 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 1088 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 1089 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 1090 | 
            +
                        dropout (`int`, *optional*):
         | 
| 1091 | 
            +
                            Attention dropout
         | 
| 1092 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 1093 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 1094 | 
            +
                    """
         | 
| 1095 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 1096 | 
            +
                        causal = self.is_causal
         | 
| 1097 | 
            +
                    else:
         | 
| 1098 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
         | 
| 1099 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 1100 | 
            +
             | 
| 1101 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 1102 | 
            +
                    if attention_mask is not None:
         | 
| 1103 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 1104 | 
            +
                        (
         | 
| 1105 | 
            +
                            query_states,
         | 
| 1106 | 
            +
                            key_states,
         | 
| 1107 | 
            +
                            value_states,
         | 
| 1108 | 
            +
                            indices_q,
         | 
| 1109 | 
            +
                            cu_seq_lens,
         | 
| 1110 | 
            +
                            max_seq_lens,
         | 
| 1111 | 
            +
                        ) = self._upad_input(
         | 
| 1112 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 1113 | 
            +
                        )
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 1116 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 1117 | 
            +
             | 
| 1118 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(
         | 
| 1119 | 
            +
                            query_states,
         | 
| 1120 | 
            +
                            key_states,
         | 
| 1121 | 
            +
                            value_states,
         | 
| 1122 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 1123 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 1124 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 1125 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 1126 | 
            +
                            dropout_p=dropout,
         | 
| 1127 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 1128 | 
            +
                            causal=causal,
         | 
| 1129 | 
            +
                        )
         | 
| 1130 | 
            +
             | 
| 1131 | 
            +
                        attn_output = pad_input(
         | 
| 1132 | 
            +
                            attn_output_unpad, indices_q, batch_size, query_length
         | 
| 1133 | 
            +
                        )
         | 
| 1134 | 
            +
                    else:
         | 
| 1135 | 
            +
                        attn_output = flash_attn_func(
         | 
| 1136 | 
            +
                            query_states,
         | 
| 1137 | 
            +
                            key_states,
         | 
| 1138 | 
            +
                            value_states,
         | 
| 1139 | 
            +
                            dropout,
         | 
| 1140 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 1141 | 
            +
                            causal=causal,
         | 
| 1142 | 
            +
                        )
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    return attn_output
         | 
| 1145 | 
            +
             | 
| 1146 | 
            +
                def _upad_input(
         | 
| 1147 | 
            +
                    self, query_layer, key_layer, value_layer, attention_mask, query_length
         | 
| 1148 | 
            +
                ):
         | 
| 1149 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 1150 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 1151 | 
            +
             | 
| 1152 | 
            +
                    key_layer = index_first_axis(
         | 
| 1153 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
         | 
| 1154 | 
            +
                        indices_k,
         | 
| 1155 | 
            +
                    )
         | 
| 1156 | 
            +
                    value_layer = index_first_axis(
         | 
| 1157 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
         | 
| 1158 | 
            +
                        indices_k,
         | 
| 1159 | 
            +
                    )
         | 
| 1160 | 
            +
                    if query_length == kv_seq_len:
         | 
| 1161 | 
            +
                        query_layer = index_first_axis(
         | 
| 1162 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
         | 
| 1163 | 
            +
                            indices_k,
         | 
| 1164 | 
            +
                        )
         | 
| 1165 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 1166 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 1167 | 
            +
                        indices_q = indices_k
         | 
| 1168 | 
            +
                    elif query_length == 1:
         | 
| 1169 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 1170 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 1171 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 1172 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 1173 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 1174 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 1175 | 
            +
                    else:
         | 
| 1176 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 1177 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 1178 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
         | 
| 1179 | 
            +
                            query_layer, attention_mask
         | 
| 1180 | 
            +
                        )
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
                    return (
         | 
| 1183 | 
            +
                        query_layer,
         | 
| 1184 | 
            +
                        key_layer,
         | 
| 1185 | 
            +
                        value_layer,
         | 
| 1186 | 
            +
                        indices_q,
         | 
| 1187 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 1188 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 1189 | 
            +
                    )
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
             | 
| 1192 | 
            +
            ATTENTION_CLASSES = {
         | 
| 1193 | 
            +
                "eager": DeepseekV2Attention,
         | 
| 1194 | 
            +
                "flash_attention_2": DeepseekV2FlashAttention2,
         | 
| 1195 | 
            +
            }
         | 
| 1196 | 
            +
             | 
| 1197 | 
            +
             | 
| 1198 | 
            +
            class DeepseekV2DecoderLayer(nn.Module):
         | 
| 1199 | 
            +
                def __init__(self, config: DeepseekV2Config, layer_idx: int):
         | 
| 1200 | 
            +
                    super().__init__()
         | 
| 1201 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 1202 | 
            +
             | 
| 1203 | 
            +
                    self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
         | 
| 1204 | 
            +
                        config=config, layer_idx=layer_idx
         | 
| 1205 | 
            +
                    )
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                    self.mlp = (
         | 
| 1208 | 
            +
                        DeepseekV2MoE(config)
         | 
| 1209 | 
            +
                        if (
         | 
| 1210 | 
            +
                            config.n_routed_experts is not None
         | 
| 1211 | 
            +
                            and layer_idx >= config.first_k_dense_replace
         | 
| 1212 | 
            +
                            and layer_idx % config.moe_layer_freq == 0
         | 
| 1213 | 
            +
                        )
         | 
| 1214 | 
            +
                        else DeepseekV2MLP(config)
         | 
| 1215 | 
            +
                    )
         | 
| 1216 | 
            +
                    self.input_layernorm = DeepseekV2RMSNorm(
         | 
| 1217 | 
            +
                        config.hidden_size, eps=config.rms_norm_eps
         | 
| 1218 | 
            +
                    )
         | 
| 1219 | 
            +
                    self.post_attention_layernorm = DeepseekV2RMSNorm(
         | 
| 1220 | 
            +
                        config.hidden_size, eps=config.rms_norm_eps
         | 
| 1221 | 
            +
                    )
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                def forward(
         | 
| 1224 | 
            +
                    self,
         | 
| 1225 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 1226 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1227 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1228 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 1229 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 1230 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 1231 | 
            +
                    **kwargs,
         | 
| 1232 | 
            +
                ) -> Tuple[
         | 
| 1233 | 
            +
                    torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
         | 
| 1234 | 
            +
                ]:
         | 
| 1235 | 
            +
                    """
         | 
| 1236 | 
            +
                    Args:
         | 
| 1237 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 1238 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 1239 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 1240 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 1241 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1242 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 1243 | 
            +
                            returned tensors for more detail.
         | 
| 1244 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 1245 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 1246 | 
            +
                            (see `past_key_values`).
         | 
| 1247 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 1248 | 
            +
                    """
         | 
| 1249 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 1250 | 
            +
                        warnings.warn(
         | 
| 1251 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 1252 | 
            +
                        )
         | 
| 1253 | 
            +
                    residual = hidden_states
         | 
| 1254 | 
            +
             | 
| 1255 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 1256 | 
            +
             | 
| 1257 | 
            +
                    # Self Attention
         | 
| 1258 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 1259 | 
            +
                        hidden_states=hidden_states,
         | 
| 1260 | 
            +
                        attention_mask=attention_mask,
         | 
| 1261 | 
            +
                        position_ids=position_ids,
         | 
| 1262 | 
            +
                        past_key_value=past_key_value,
         | 
| 1263 | 
            +
                        output_attentions=output_attentions,
         | 
| 1264 | 
            +
                        use_cache=use_cache,
         | 
| 1265 | 
            +
                        **kwargs,
         | 
| 1266 | 
            +
                    )
         | 
| 1267 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                    # Fully Connected
         | 
| 1270 | 
            +
                    residual = hidden_states
         | 
| 1271 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 1272 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 1273 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 1274 | 
            +
             | 
| 1275 | 
            +
                    outputs = (hidden_states,)
         | 
| 1276 | 
            +
             | 
| 1277 | 
            +
                    if output_attentions:
         | 
| 1278 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 1279 | 
            +
             | 
| 1280 | 
            +
                    if use_cache:
         | 
| 1281 | 
            +
                        outputs += (present_key_value,)
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
                    return outputs
         | 
| 1284 | 
            +
             | 
| 1285 | 
            +
             | 
| 1286 | 
            +
            DeepseekV2_START_DOCSTRING = r"""
         | 
| 1287 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 1288 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 1289 | 
            +
                etc.)
         | 
| 1290 | 
            +
             | 
| 1291 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 1292 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 1293 | 
            +
                and behavior.
         | 
| 1294 | 
            +
             | 
| 1295 | 
            +
                Parameters:
         | 
| 1296 | 
            +
                    config ([`DeepseekV2Config`]):
         | 
| 1297 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 1298 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 1299 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 1300 | 
            +
            """
         | 
| 1301 | 
            +
             | 
| 1302 | 
            +
             | 
| 1303 | 
            +
            @add_start_docstrings(
         | 
| 1304 | 
            +
                "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 1305 | 
            +
                DeepseekV2_START_DOCSTRING,
         | 
| 1306 | 
            +
            )
         | 
| 1307 | 
            +
            class DeepseekV2PreTrainedModel(PreTrainedModel):
         | 
| 1308 | 
            +
                config_class = DeepseekV2Config
         | 
| 1309 | 
            +
                base_model_prefix = "model"
         | 
| 1310 | 
            +
                supports_gradient_checkpointing = True
         | 
| 1311 | 
            +
                _no_split_modules = ["DeepseekV2DecoderLayer"]
         | 
| 1312 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 1313 | 
            +
                _supports_flash_attn_2 = True
         | 
| 1314 | 
            +
                _supports_cache_class = True
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
                def _init_weights(self, module):
         | 
| 1317 | 
            +
                    std = self.config.initializer_range
         | 
| 1318 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 1319 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1320 | 
            +
                        if module.bias is not None:
         | 
| 1321 | 
            +
                            module.bias.data.zero_()
         | 
| 1322 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 1323 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1324 | 
            +
                        if module.padding_idx is not None:
         | 
| 1325 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 1326 | 
            +
             | 
| 1327 | 
            +
             | 
| 1328 | 
            +
            DeepseekV2_INPUTS_DOCSTRING = r"""
         | 
| 1329 | 
            +
                Args:
         | 
| 1330 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 1331 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 1332 | 
            +
                        it.
         | 
| 1333 | 
            +
             | 
| 1334 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1335 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1336 | 
            +
             | 
| 1337 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 1338 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1339 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 1340 | 
            +
             | 
| 1341 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 1342 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 1343 | 
            +
             | 
| 1344 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 1345 | 
            +
             | 
| 1346 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1347 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1348 | 
            +
             | 
| 1349 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 1350 | 
            +
                        `past_key_values`).
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 1353 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 1354 | 
            +
                        information on the default strategy.
         | 
| 1355 | 
            +
             | 
| 1356 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 1357 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 1358 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1359 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 1360 | 
            +
                        config.n_positions - 1]`.
         | 
| 1361 | 
            +
             | 
| 1362 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 1363 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 1364 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 1365 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 1366 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 1367 | 
            +
             | 
| 1368 | 
            +
                        Two formats are allowed:
         | 
| 1369 | 
            +
                        - a [`~cache_utils.Cache`] instance;
         | 
| 1370 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 1371 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 1372 | 
            +
                        cache format.
         | 
| 1373 | 
            +
             | 
| 1374 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 1375 | 
            +
                        legacy cache format will be returned.
         | 
| 1376 | 
            +
             | 
| 1377 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 1378 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 1379 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 1380 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1381 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1382 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1383 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1384 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1385 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1386 | 
            +
                        `past_key_values`).
         | 
| 1387 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1388 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1389 | 
            +
                        tensors for more detail.
         | 
| 1390 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1391 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1392 | 
            +
                        more detail.
         | 
| 1393 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1394 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1395 | 
            +
            """
         | 
| 1396 | 
            +
             | 
| 1397 | 
            +
             | 
| 1398 | 
            +
            @add_start_docstrings(
         | 
| 1399 | 
            +
                "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 1400 | 
            +
                DeepseekV2_START_DOCSTRING,
         | 
| 1401 | 
            +
            )
         | 
| 1402 | 
            +
            class DeepseekV2Model(DeepseekV2PreTrainedModel):
         | 
| 1403 | 
            +
                """
         | 
| 1404 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
         | 
| 1405 | 
            +
             | 
| 1406 | 
            +
                Args:
         | 
| 1407 | 
            +
                    config: DeepseekV2Config
         | 
| 1408 | 
            +
                """
         | 
| 1409 | 
            +
             | 
| 1410 | 
            +
                def __init__(self, config: DeepseekV2Config):
         | 
| 1411 | 
            +
                    super().__init__(config)
         | 
| 1412 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1413 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1414 | 
            +
             | 
| 1415 | 
            +
                    self.embed_tokens = nn.Embedding(
         | 
| 1416 | 
            +
                        config.vocab_size, config.hidden_size, self.padding_idx
         | 
| 1417 | 
            +
                    )
         | 
| 1418 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1419 | 
            +
                        [
         | 
| 1420 | 
            +
                            DeepseekV2DecoderLayer(config, layer_idx)
         | 
| 1421 | 
            +
                            for layer_idx in range(config.num_hidden_layers)
         | 
| 1422 | 
            +
                        ]
         | 
| 1423 | 
            +
                    )
         | 
| 1424 | 
            +
                    self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
         | 
| 1425 | 
            +
                    self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
                    self.gradient_checkpointing = False
         | 
| 1428 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1429 | 
            +
                    self.post_init()
         | 
| 1430 | 
            +
             | 
| 1431 | 
            +
                def get_input_embeddings(self):
         | 
| 1432 | 
            +
                    return self.embed_tokens
         | 
| 1433 | 
            +
             | 
| 1434 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1435 | 
            +
                    self.embed_tokens = value
         | 
| 1436 | 
            +
             | 
| 1437 | 
            +
                @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
         | 
| 1438 | 
            +
                def forward(
         | 
| 1439 | 
            +
                    self,
         | 
| 1440 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1441 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1442 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1443 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1444 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1445 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1446 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1447 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1448 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1449 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 1450 | 
            +
                    output_attentions = (
         | 
| 1451 | 
            +
                        output_attentions
         | 
| 1452 | 
            +
                        if output_attentions is not None
         | 
| 1453 | 
            +
                        else self.config.output_attentions
         | 
| 1454 | 
            +
                    )
         | 
| 1455 | 
            +
                    output_hidden_states = (
         | 
| 1456 | 
            +
                        output_hidden_states
         | 
| 1457 | 
            +
                        if output_hidden_states is not None
         | 
| 1458 | 
            +
                        else self.config.output_hidden_states
         | 
| 1459 | 
            +
                    )
         | 
| 1460 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1461 | 
            +
             | 
| 1462 | 
            +
                    return_dict = (
         | 
| 1463 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1464 | 
            +
                    )
         | 
| 1465 | 
            +
             | 
| 1466 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 1467 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 1468 | 
            +
                        raise ValueError(
         | 
| 1469 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time"
         | 
| 1470 | 
            +
                        )
         | 
| 1471 | 
            +
                    elif input_ids is not None:
         | 
| 1472 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 1473 | 
            +
                    elif inputs_embeds is not None:
         | 
| 1474 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 1475 | 
            +
                    else:
         | 
| 1476 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1479 | 
            +
                        if use_cache:
         | 
| 1480 | 
            +
                            logger.warning_once(
         | 
| 1481 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
         | 
| 1482 | 
            +
                            )
         | 
| 1483 | 
            +
                            use_cache = False
         | 
| 1484 | 
            +
             | 
| 1485 | 
            +
                    past_key_values_length = 0
         | 
| 1486 | 
            +
                    if use_cache:
         | 
| 1487 | 
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 1488 | 
            +
                        if use_legacy_cache:
         | 
| 1489 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1490 | 
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 1491 | 
            +
             | 
| 1492 | 
            +
                    if position_ids is None:
         | 
| 1493 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 1494 | 
            +
                        position_ids = torch.arange(
         | 
| 1495 | 
            +
                            past_key_values_length,
         | 
| 1496 | 
            +
                            seq_length + past_key_values_length,
         | 
| 1497 | 
            +
                            dtype=torch.long,
         | 
| 1498 | 
            +
                            device=device,
         | 
| 1499 | 
            +
                        )
         | 
| 1500 | 
            +
                        position_ids = position_ids.unsqueeze(0)
         | 
| 1501 | 
            +
             | 
| 1502 | 
            +
                    if inputs_embeds is None:
         | 
| 1503 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 1504 | 
            +
             | 
| 1505 | 
            +
                    if self._use_flash_attention_2:
         | 
| 1506 | 
            +
                        # 2d mask is passed through the layers
         | 
| 1507 | 
            +
                        attention_mask = (
         | 
| 1508 | 
            +
                            attention_mask
         | 
| 1509 | 
            +
                            if (attention_mask is not None and 0 in attention_mask)
         | 
| 1510 | 
            +
                            else None
         | 
| 1511 | 
            +
                        )
         | 
| 1512 | 
            +
                    else:
         | 
| 1513 | 
            +
                        # 4d mask is passed through the layers
         | 
| 1514 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 1515 | 
            +
                            attention_mask,
         | 
| 1516 | 
            +
                            (batch_size, seq_length),
         | 
| 1517 | 
            +
                            inputs_embeds,
         | 
| 1518 | 
            +
                            past_key_values_length,
         | 
| 1519 | 
            +
                        )
         | 
| 1520 | 
            +
             | 
| 1521 | 
            +
                    # embed positions
         | 
| 1522 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1523 | 
            +
             | 
| 1524 | 
            +
                    # decoder layers
         | 
| 1525 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1526 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1527 | 
            +
                    next_decoder_cache = None
         | 
| 1528 | 
            +
             | 
| 1529 | 
            +
                    for decoder_layer in self.layers:
         | 
| 1530 | 
            +
                        if output_hidden_states:
         | 
| 1531 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1532 | 
            +
             | 
| 1533 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1534 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1535 | 
            +
                                decoder_layer.__call__,
         | 
| 1536 | 
            +
                                hidden_states,
         | 
| 1537 | 
            +
                                attention_mask,
         | 
| 1538 | 
            +
                                position_ids,
         | 
| 1539 | 
            +
                                past_key_values,
         | 
| 1540 | 
            +
                                output_attentions,
         | 
| 1541 | 
            +
                                use_cache,
         | 
| 1542 | 
            +
                            )
         | 
| 1543 | 
            +
                        else:
         | 
| 1544 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1545 | 
            +
                                hidden_states,
         | 
| 1546 | 
            +
                                attention_mask=attention_mask,
         | 
| 1547 | 
            +
                                position_ids=position_ids,
         | 
| 1548 | 
            +
                                past_key_value=past_key_values,
         | 
| 1549 | 
            +
                                output_attentions=output_attentions,
         | 
| 1550 | 
            +
                                use_cache=use_cache,
         | 
| 1551 | 
            +
                            )
         | 
| 1552 | 
            +
             | 
| 1553 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1554 | 
            +
             | 
| 1555 | 
            +
                        if use_cache:
         | 
| 1556 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1557 | 
            +
             | 
| 1558 | 
            +
                        if output_attentions:
         | 
| 1559 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1560 | 
            +
             | 
| 1561 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1562 | 
            +
             | 
| 1563 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1564 | 
            +
                    if output_hidden_states:
         | 
| 1565 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1566 | 
            +
             | 
| 1567 | 
            +
                    next_cache = None
         | 
| 1568 | 
            +
                    if use_cache:
         | 
| 1569 | 
            +
                        next_cache = (
         | 
| 1570 | 
            +
                            next_decoder_cache.to_legacy_cache()
         | 
| 1571 | 
            +
                            if use_legacy_cache
         | 
| 1572 | 
            +
                            else next_decoder_cache
         | 
| 1573 | 
            +
                        )
         | 
| 1574 | 
            +
                    if not return_dict:
         | 
| 1575 | 
            +
                        return tuple(
         | 
| 1576 | 
            +
                            v
         | 
| 1577 | 
            +
                            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
         | 
| 1578 | 
            +
                            if v is not None
         | 
| 1579 | 
            +
                        )
         | 
| 1580 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1581 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1582 | 
            +
                        past_key_values=next_cache,
         | 
| 1583 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1584 | 
            +
                        attentions=all_self_attns,
         | 
| 1585 | 
            +
                    )
         | 
| 1586 | 
            +
             | 
| 1587 | 
            +
             | 
| 1588 | 
            +
            class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
         | 
| 1589 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 1590 | 
            +
             | 
| 1591 | 
            +
                def __init__(self, config):
         | 
| 1592 | 
            +
                    super().__init__(config)
         | 
| 1593 | 
            +
                    self.model = DeepseekV2Model(config)
         | 
| 1594 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1595 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1596 | 
            +
             | 
| 1597 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1598 | 
            +
                    self.post_init()
         | 
| 1599 | 
            +
             | 
| 1600 | 
            +
                def get_input_embeddings(self):
         | 
| 1601 | 
            +
                    return self.model.embed_tokens
         | 
| 1602 | 
            +
             | 
| 1603 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1604 | 
            +
                    self.model.embed_tokens = value
         | 
| 1605 | 
            +
             | 
| 1606 | 
            +
                def get_output_embeddings(self):
         | 
| 1607 | 
            +
                    return self.lm_head
         | 
| 1608 | 
            +
             | 
| 1609 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1610 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1611 | 
            +
             | 
| 1612 | 
            +
                def set_decoder(self, decoder):
         | 
| 1613 | 
            +
                    self.model = decoder
         | 
| 1614 | 
            +
             | 
| 1615 | 
            +
                def get_decoder(self):
         | 
| 1616 | 
            +
                    return self.model
         | 
| 1617 | 
            +
             | 
| 1618 | 
            +
                @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
         | 
| 1619 | 
            +
                @replace_return_docstrings(
         | 
| 1620 | 
            +
                    output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
         | 
| 1621 | 
            +
                )
         | 
| 1622 | 
            +
                def forward(
         | 
| 1623 | 
            +
                    self,
         | 
| 1624 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1625 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1626 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1627 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1628 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1629 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1630 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1631 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1632 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1633 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1634 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1635 | 
            +
                    r"""
         | 
| 1636 | 
            +
                    Args:
         | 
| 1637 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1638 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
         | 
| 1639 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1640 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
         | 
| 1641 | 
            +
             | 
| 1642 | 
            +
                    Returns:
         | 
| 1643 | 
            +
             | 
| 1644 | 
            +
                    Example:
         | 
| 1645 | 
            +
             | 
| 1646 | 
            +
                    ```python
         | 
| 1647 | 
            +
                    >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
         | 
| 1648 | 
            +
             | 
| 1649 | 
            +
                    >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 1650 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 1651 | 
            +
             | 
| 1652 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1653 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1654 | 
            +
             | 
| 1655 | 
            +
                    >>> # Generate
         | 
| 1656 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1657 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1658 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1659 | 
            +
                    ```"""
         | 
| 1660 | 
            +
                    output_attentions = (
         | 
| 1661 | 
            +
                        output_attentions
         | 
| 1662 | 
            +
                        if output_attentions is not None
         | 
| 1663 | 
            +
                        else self.config.output_attentions
         | 
| 1664 | 
            +
                    )
         | 
| 1665 | 
            +
                    output_hidden_states = (
         | 
| 1666 | 
            +
                        output_hidden_states
         | 
| 1667 | 
            +
                        if output_hidden_states is not None
         | 
| 1668 | 
            +
                        else self.config.output_hidden_states
         | 
| 1669 | 
            +
                    )
         | 
| 1670 | 
            +
                    return_dict = (
         | 
| 1671 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1672 | 
            +
                    )
         | 
| 1673 | 
            +
             | 
| 1674 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1675 | 
            +
                    outputs = self.model(
         | 
| 1676 | 
            +
                        input_ids=input_ids,
         | 
| 1677 | 
            +
                        attention_mask=attention_mask,
         | 
| 1678 | 
            +
                        position_ids=position_ids,
         | 
| 1679 | 
            +
                        past_key_values=past_key_values,
         | 
| 1680 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1681 | 
            +
                        use_cache=use_cache,
         | 
| 1682 | 
            +
                        output_attentions=output_attentions,
         | 
| 1683 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1684 | 
            +
                        return_dict=return_dict,
         | 
| 1685 | 
            +
                    )
         | 
| 1686 | 
            +
             | 
| 1687 | 
            +
                    hidden_states = outputs[0]
         | 
| 1688 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1689 | 
            +
                    logits = logits.float()
         | 
| 1690 | 
            +
             | 
| 1691 | 
            +
                    loss = None
         | 
| 1692 | 
            +
                    if labels is not None:
         | 
| 1693 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1694 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1695 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1696 | 
            +
                        # Flatten the tokens
         | 
| 1697 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1698 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1699 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1700 | 
            +
                        # Enable model parallelism
         | 
| 1701 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1702 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1703 | 
            +
             | 
| 1704 | 
            +
                    if not return_dict:
         | 
| 1705 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1706 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1707 | 
            +
             | 
| 1708 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1709 | 
            +
                        loss=loss,
         | 
| 1710 | 
            +
                        logits=logits,
         | 
| 1711 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1712 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1713 | 
            +
                        attentions=outputs.attentions,
         | 
| 1714 | 
            +
                    )
         | 
| 1715 | 
            +
             | 
| 1716 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1717 | 
            +
                    self,
         | 
| 1718 | 
            +
                    input_ids,
         | 
| 1719 | 
            +
                    past_key_values=None,
         | 
| 1720 | 
            +
                    attention_mask=None,
         | 
| 1721 | 
            +
                    inputs_embeds=None,
         | 
| 1722 | 
            +
                    **kwargs,
         | 
| 1723 | 
            +
                ):
         | 
| 1724 | 
            +
                    if past_key_values is not None:
         | 
| 1725 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1726 | 
            +
                            cache_length = past_key_values.get_seq_length()
         | 
| 1727 | 
            +
                            past_length = past_key_values.seen_tokens
         | 
| 1728 | 
            +
                            max_cache_length = past_key_values.get_max_length()
         | 
| 1729 | 
            +
                        else:
         | 
| 1730 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1731 | 
            +
                            max_cache_length = None
         | 
| 1732 | 
            +
             | 
| 1733 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1734 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1735 | 
            +
                        # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
         | 
| 1736 | 
            +
                        # input)
         | 
| 1737 | 
            +
                        if (
         | 
| 1738 | 
            +
                            attention_mask is not None
         | 
| 1739 | 
            +
                            and attention_mask.shape[1] > input_ids.shape[1]
         | 
| 1740 | 
            +
                        ):
         | 
| 1741 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1742 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1743 | 
            +
                        # input_ids based on the past_length.
         | 
| 1744 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1745 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1746 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1747 | 
            +
             | 
| 1748 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1749 | 
            +
                        if (
         | 
| 1750 | 
            +
                            max_cache_length is not None
         | 
| 1751 | 
            +
                            and attention_mask is not None
         | 
| 1752 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1753 | 
            +
                        ):
         | 
| 1754 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1755 | 
            +
             | 
| 1756 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1757 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1758 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1759 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1760 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1761 | 
            +
                        if past_key_values:
         | 
| 1762 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1763 | 
            +
             | 
| 1764 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1765 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1766 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1767 | 
            +
                    else:
         | 
| 1768 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1769 | 
            +
             | 
| 1770 | 
            +
                    model_inputs.update(
         | 
| 1771 | 
            +
                        {
         | 
| 1772 | 
            +
                            "position_ids": position_ids,
         | 
| 1773 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1774 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1775 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1776 | 
            +
                        }
         | 
| 1777 | 
            +
                    )
         | 
| 1778 | 
            +
                    return model_inputs
         | 
| 1779 | 
            +
             | 
| 1780 | 
            +
                @staticmethod
         | 
| 1781 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1782 | 
            +
                    reordered_past = ()
         | 
| 1783 | 
            +
                    for layer_past in past_key_values:
         | 
| 1784 | 
            +
                        reordered_past += (
         | 
| 1785 | 
            +
                            tuple(
         | 
| 1786 | 
            +
                                past_state.index_select(0, beam_idx.to(past_state.device))
         | 
| 1787 | 
            +
                                for past_state in layer_past
         | 
| 1788 | 
            +
                            ),
         | 
| 1789 | 
            +
                        )
         | 
| 1790 | 
            +
                    return reordered_past
         | 
| 1791 | 
            +
             | 
| 1792 | 
            +
             | 
| 1793 | 
            +
            @add_start_docstrings(
         | 
| 1794 | 
            +
                """
         | 
| 1795 | 
            +
                The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
         | 
| 1796 | 
            +
             | 
| 1797 | 
            +
                [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1798 | 
            +
                (e.g. GPT-2) do.
         | 
| 1799 | 
            +
             | 
| 1800 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1801 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1802 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1803 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1804 | 
            +
                each row of the batch).
         | 
| 1805 | 
            +
                """,
         | 
| 1806 | 
            +
                DeepseekV2_START_DOCSTRING,
         | 
| 1807 | 
            +
            )
         | 
| 1808 | 
            +
            class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
         | 
| 1809 | 
            +
                def __init__(self, config):
         | 
| 1810 | 
            +
                    super().__init__(config)
         | 
| 1811 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1812 | 
            +
                    self.model = DeepseekV2Model(config)
         | 
| 1813 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1814 | 
            +
             | 
| 1815 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1816 | 
            +
                    self.post_init()
         | 
| 1817 | 
            +
             | 
| 1818 | 
            +
                def get_input_embeddings(self):
         | 
| 1819 | 
            +
                    return self.model.embed_tokens
         | 
| 1820 | 
            +
             | 
| 1821 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1822 | 
            +
                    self.model.embed_tokens = value
         | 
| 1823 | 
            +
             | 
| 1824 | 
            +
                @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
         | 
| 1825 | 
            +
                def forward(
         | 
| 1826 | 
            +
                    self,
         | 
| 1827 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1828 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1829 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1830 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1831 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1832 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1833 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1834 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1835 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1836 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1837 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1838 | 
            +
                    r"""
         | 
| 1839 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1840 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
         | 
| 1841 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1842 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1843 | 
            +
                    """
         | 
| 1844 | 
            +
                    return_dict = (
         | 
| 1845 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1846 | 
            +
                    )
         | 
| 1847 | 
            +
             | 
| 1848 | 
            +
                    transformer_outputs = self.model(
         | 
| 1849 | 
            +
                        input_ids,
         | 
| 1850 | 
            +
                        attention_mask=attention_mask,
         | 
| 1851 | 
            +
                        position_ids=position_ids,
         | 
| 1852 | 
            +
                        past_key_values=past_key_values,
         | 
| 1853 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1854 | 
            +
                        use_cache=use_cache,
         | 
| 1855 | 
            +
                        output_attentions=output_attentions,
         | 
| 1856 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1857 | 
            +
                        return_dict=return_dict,
         | 
| 1858 | 
            +
                    )
         | 
| 1859 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1860 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1861 | 
            +
             | 
| 1862 | 
            +
                    if input_ids is not None:
         | 
| 1863 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1864 | 
            +
                    else:
         | 
| 1865 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1866 | 
            +
             | 
| 1867 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1868 | 
            +
                        raise ValueError(
         | 
| 1869 | 
            +
                            "Cannot handle batch sizes > 1 if no padding token is defined."
         | 
| 1870 | 
            +
                        )
         | 
| 1871 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1872 | 
            +
                        sequence_lengths = -1
         | 
| 1873 | 
            +
                    else:
         | 
| 1874 | 
            +
                        if input_ids is not None:
         | 
| 1875 | 
            +
                            sequence_lengths = (
         | 
| 1876 | 
            +
                                torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1877 | 
            +
                            ).to(logits.device)
         | 
| 1878 | 
            +
                        else:
         | 
| 1879 | 
            +
                            sequence_lengths = -1
         | 
| 1880 | 
            +
             | 
| 1881 | 
            +
                    pooled_logits = logits[
         | 
| 1882 | 
            +
                        torch.arange(batch_size, device=logits.device), sequence_lengths
         | 
| 1883 | 
            +
                    ]
         | 
| 1884 | 
            +
             | 
| 1885 | 
            +
                    loss = None
         | 
| 1886 | 
            +
                    if labels is not None:
         | 
| 1887 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1888 | 
            +
                        if self.config.problem_type is None:
         | 
| 1889 | 
            +
                            if self.num_labels == 1:
         | 
| 1890 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1891 | 
            +
                            elif self.num_labels > 1 and (
         | 
| 1892 | 
            +
                                labels.dtype == torch.long or labels.dtype == torch.int
         | 
| 1893 | 
            +
                            ):
         | 
| 1894 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1895 | 
            +
                            else:
         | 
| 1896 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1897 | 
            +
             | 
| 1898 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1899 | 
            +
                            loss_fct = MSELoss()
         | 
| 1900 | 
            +
                            if self.num_labels == 1:
         | 
| 1901 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1902 | 
            +
                            else:
         | 
| 1903 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1904 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1905 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1906 | 
            +
                            loss = loss_fct(
         | 
| 1907 | 
            +
                                pooled_logits.view(-1, self.num_labels), labels.view(-1)
         | 
| 1908 | 
            +
                            )
         | 
| 1909 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1910 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1911 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1912 | 
            +
                    if not return_dict:
         | 
| 1913 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1914 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1915 | 
            +
             | 
| 1916 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1917 | 
            +
                        loss=loss,
         | 
| 1918 | 
            +
                        logits=pooled_logits,
         | 
| 1919 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1920 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1921 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1922 | 
            +
                    )
         |