from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch import json device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device set to use: {device}") # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0").to(device) tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "Harish2002/cli-lora-tinyllama") model.to(device) model.eval() # Utility function to generate answers def generate_answer(question): prompt = f"{question}\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=128) return tokenizer.decode(outputs[0], skip_special_tokens=True).replace(prompt, "").strip() # Questions to test questions = { "Git": "How do I create a new branch and switch to it in Git?", "Bash": "How to list all files including hidden ones?", "Grep": "How do I search for a pattern in multiple files using grep?", "Tar/Gzip": "How to extract a .tar.gz file?", "Python venv": "How do I activate a virtual environment on Windows?" } # Run test and save results results = {} for category, question in questions.items(): print(f"\n🧪 {category}:") print(f"Q: {question}") answer = generate_answer(question) print(f"A: {answer}\n") results[category] = {"question": question, "answer": answer} # Save to JSON with open("test_outputs.json", "w") as f: json.dump(results, f, indent=2) print("\n✅ All outputs saved to test_outputs.json")