--- license: mit tags: - tinyllama - lora - cli - fine-tuning - qna - transformers - peft library_name: transformers datasets: - custom language: en model_type: causal-lm --- # 🔧 CLI LoRA-TinyLlama A fine-tuned version of [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on a custom dataset of command-line Q&A, using **LoRA** (Low-Rank Adaptation). Built for fast, accurate help on common CLI topics. --- ## 🧩 Base Model - Model: `TinyLlama/TinyLlama-1.1B-Chat-v1.0` - Fine-Tuning Method: [LoRA](https://arxiv.org/abs/2106.09685) - Libraries Used: `transformers`, `peft`, `datasets`, `accelerate` --- ## 📚 Dataset - Custom dataset with **150+ Q&A pairs** covering: - `git`, `bash`, `grep`, `tar`, `venv` - Raw file: `cli_questions.json` - Tokenized version: `tokenized_dataset/` --- ## 🛠️ Training Configuration ```python from peft import LoraConfig base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" )