Upload agent.py with huggingface_hub
Browse files
agent.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from datetime import datetime
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
+
from peft import PeftModel, PeftConfig
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
def load_model():
|
10 |
+
base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
11 |
+
adapter_path = "Harish2002/cli-lora-tinyllama" # ✅ fixed path
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
15 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
16 |
+
return tokenizer, model
|
17 |
+
|
18 |
+
# Generate plan from input instruction
|
19 |
+
def generate_plan(prompt, tokenizer, model):
|
20 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256)
|
21 |
+
output = pipe(prompt)[0]['generated_text']
|
22 |
+
return output.strip()
|
23 |
+
|
24 |
+
# Check if first line is a shell command
|
25 |
+
def is_shell_command(line):
|
26 |
+
return line.startswith(("git", "bash", "tar", "gzip", "grep", "python", "./", "cd", "ls"))
|
27 |
+
|
28 |
+
# Log to logs/trace.jsonl
|
29 |
+
def log_trace(prompt, response):
|
30 |
+
os.makedirs("logs", exist_ok=True)
|
31 |
+
trace = {
|
32 |
+
"timestamp": datetime.utcnow().isoformat(),
|
33 |
+
"input": prompt,
|
34 |
+
"response": response
|
35 |
+
}
|
36 |
+
with open("logs/trace.jsonl", "a") as f:
|
37 |
+
f.write(json.dumps(trace) + "\n")
|
38 |
+
|
39 |
+
# Main
|
40 |
+
if __name__ == "__main__":
|
41 |
+
if len(sys.argv) < 2:
|
42 |
+
print("Usage: python agent.py \"Your instruction here\"")
|
43 |
+
sys.exit(1)
|
44 |
+
|
45 |
+
user_input = sys.argv[1]
|
46 |
+
tokenizer, model = load_model()
|
47 |
+
result = generate_plan(user_input, tokenizer, model)
|
48 |
+
|
49 |
+
# Print result and echo dry-run if it's a shell command
|
50 |
+
print("\nGenerated Plan:\n")
|
51 |
+
print(result)
|
52 |
+
|
53 |
+
first_line = result.splitlines()[0]
|
54 |
+
if is_shell_command(first_line):
|
55 |
+
print("\nDry-run:")
|
56 |
+
print(f"echo {first_line}")
|
57 |
+
|
58 |
+
log_trace(user_input, result)
|