Guilherme34 commited on
Commit
b512be3
·
verified ·
1 Parent(s): 11cc726

Upload modeling_navit_siglip.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_navit_siglip.py +940 -0
modeling_navit_siglip.py ADDED
@@ -0,0 +1,940 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Siglip model. """
16
+ # Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
17
+
18
+
19
+ import math
20
+ import os
21
+ import warnings
22
+ from dataclasses import dataclass
23
+ from typing import Optional
24
+ from typing import Tuple
25
+ from typing import Union
26
+
27
+ import numpy as np
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from torch import nn
32
+ from torch.nn.init import _calculate_fan_in_and_fan_out
33
+ from transformers.activations import ACT2FN
34
+ from transformers.configuration_utils import PretrainedConfig
35
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
36
+ from transformers.modeling_outputs import BaseModelOutput
37
+ from transformers.modeling_outputs import BaseModelOutputWithPooling
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import add_start_docstrings
40
+ from transformers.utils import add_start_docstrings_to_model_forward
41
+ from transformers.utils import is_flash_attn_2_available
42
+ from transformers.utils import logging
43
+ from transformers.utils import ModelOutput
44
+ from transformers.utils import replace_return_docstrings
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+
49
+ class SiglipVisionConfig(PretrainedConfig):
50
+ r"""
51
+ This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
52
+ Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
53
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
54
+ [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
55
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
56
+ documentation from [`PretrainedConfig`] for more information.
57
+ Args:
58
+ hidden_size (`int`, *optional*, defaults to 768):
59
+ Dimensionality of the encoder layers and the pooler layer.
60
+ intermediate_size (`int`, *optional*, defaults to 3072):
61
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
62
+ num_hidden_layers (`int`, *optional*, defaults to 12):
63
+ Number of hidden layers in the Transformer encoder.
64
+ num_attention_heads (`int`, *optional*, defaults to 12):
65
+ Number of attention heads for each attention layer in the Transformer encoder.
66
+ num_channels (`int`, *optional*, defaults to 3):
67
+ Number of channels in the input images.
68
+ image_size (`int`, *optional*, defaults to 224):
69
+ The size (resolution) of each image.
70
+ patch_size (`int`, *optional*, defaults to 16):
71
+ The size (resolution) of each patch.
72
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
73
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
74
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
75
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
76
+ The epsilon used by the layer normalization layers.
77
+ attention_dropout (`float`, *optional*, defaults to 0.0):
78
+ The dropout ratio for the attention probabilities.
79
+ Example:
80
+ ```python
81
+ >>> from transformers import SiglipVisionConfig, SiglipVisionModel
82
+ >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
83
+ >>> configuration = SiglipVisionConfig()
84
+ >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
85
+ >>> model = SiglipVisionModel(configuration)
86
+ >>> # Accessing the model configuration
87
+ >>> configuration = model.config
88
+ ```"""
89
+
90
+ model_type = "siglip_vision_model"
91
+
92
+ def __init__(
93
+ self,
94
+ hidden_size=768,
95
+ intermediate_size=3072,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=12,
98
+ num_channels=3,
99
+ image_size=224,
100
+ patch_size=16,
101
+ hidden_act="gelu_pytorch_tanh",
102
+ layer_norm_eps=1e-6,
103
+ attention_dropout=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(**kwargs)
107
+
108
+ self.hidden_size = hidden_size
109
+ self.intermediate_size = intermediate_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.num_channels = num_channels
113
+ self.patch_size = patch_size
114
+ self.image_size = image_size
115
+ self.attention_dropout = attention_dropout
116
+ self.layer_norm_eps = layer_norm_eps
117
+ self.hidden_act = hidden_act
118
+
119
+ @classmethod
120
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
121
+ cls._set_token_in_kwargs(kwargs)
122
+
123
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
124
+
125
+ # get the vision config dict if we are loading from SiglipConfig
126
+ if config_dict.get("model_type") == "siglip":
127
+ config_dict = config_dict["vision_config"]
128
+
129
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
130
+ logger.warning(
131
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
132
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
133
+ )
134
+
135
+ return cls.from_dict(config_dict, **kwargs)
136
+
137
+
138
+ _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
139
+
140
+ SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
141
+ "google/siglip-base-patch16-224",
142
+ # See all SigLIP models at https://huggingface.co/models?filter=siglip
143
+ ]
144
+
145
+ if is_flash_attn_2_available():
146
+ from flash_attn import flash_attn_func
147
+ from flash_attn import flash_attn_varlen_func
148
+ from flash_attn.bert_padding import index_first_axis # noqa
149
+ from flash_attn.bert_padding import pad_input
150
+ from flash_attn.bert_padding import unpad_input
151
+
152
+
153
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
154
+ def _get_unpad_data(attention_mask):
155
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
156
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
157
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
158
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
159
+ return (
160
+ indices,
161
+ cu_seqlens,
162
+ max_seqlen_in_batch,
163
+ )
164
+
165
+
166
+ def _trunc_normal_(tensor, mean, std, a, b):
167
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
168
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
169
+ def norm_cdf(x):
170
+ # Computes standard normal cumulative distribution function
171
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
172
+
173
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
174
+ warnings.warn(
175
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
176
+ "The distribution of values may be incorrect.",
177
+ stacklevel=2,
178
+ )
179
+
180
+ # Values are generated by using a truncated uniform distribution and
181
+ # then using the inverse CDF for the normal distribution.
182
+ # Get upper and lower cdf values
183
+ l = norm_cdf((a - mean) / std)
184
+ u = norm_cdf((b - mean) / std)
185
+
186
+ # Uniformly fill tensor with values from [l, u], then translate to
187
+ # [2l-1, 2u-1].
188
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
189
+
190
+ # Use inverse cdf transform for normal distribution to get truncated
191
+ # standard normal
192
+ if tensor.dtype in [torch.float16, torch.bfloat16]:
193
+ # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
194
+ og_dtype = tensor.dtype
195
+ tensor = tensor.to(torch.float32)
196
+ tensor.erfinv_()
197
+ tensor = tensor.to(og_dtype)
198
+ else:
199
+ tensor.erfinv_()
200
+
201
+ # Transform to proper mean, std
202
+ tensor.mul_(std * math.sqrt(2.0))
203
+ tensor.add_(mean)
204
+
205
+ # Clamp to ensure it's in the proper range
206
+ if tensor.dtype == torch.float16:
207
+ # The `clamp_` op is not (yet?) defined in float16+cpu
208
+ tensor = tensor.to(torch.float32)
209
+ tensor.clamp_(min=a, max=b)
210
+ tensor = tensor.to(torch.float16)
211
+ else:
212
+ tensor.clamp_(min=a, max=b)
213
+
214
+
215
+ def trunc_normal_tf_(
216
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
217
+ ) -> torch.Tensor:
218
+ """Fills the input Tensor with values drawn from a truncated
219
+ normal distribution. The values are effectively drawn from the
220
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
221
+ with values outside :math:`[a, b]` redrawn until they are within
222
+ the bounds. The method used for generating the random values works
223
+ best when :math:`a \\leq \text{mean} \\leq b`.
224
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
225
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
226
+ and the result is subsquently scaled and shifted by the mean and std args.
227
+ Args:
228
+ tensor: an n-dimensional `torch.Tensor`
229
+ mean: the mean of the normal distribution
230
+ std: the standard deviation of the normal distribution
231
+ a: the minimum cutoff value
232
+ b: the maximum cutoff value
233
+ """
234
+ with torch.no_grad():
235
+ _trunc_normal_(tensor, 0, 1.0, a, b)
236
+ tensor.mul_(std).add_(mean)
237
+
238
+
239
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
240
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
241
+ if mode == "fan_in":
242
+ denom = fan_in
243
+ elif mode == "fan_out":
244
+ denom = fan_out
245
+ elif mode == "fan_avg":
246
+ denom = (fan_in + fan_out) / 2
247
+
248
+ variance = scale / denom
249
+
250
+ if distribution == "truncated_normal":
251
+ # constant is stddev of standard normal truncated to (-2, 2)
252
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
253
+ elif distribution == "normal":
254
+ with torch.no_grad():
255
+ tensor.normal_(std=math.sqrt(variance))
256
+ elif distribution == "uniform":
257
+ bound = math.sqrt(3 * variance)
258
+ with torch.no_grad():
259
+ tensor.uniform_(-bound, bound)
260
+ else:
261
+ raise ValueError(f"invalid distribution {distribution}")
262
+
263
+
264
+ def lecun_normal_(tensor):
265
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
266
+
267
+
268
+ def default_flax_embed_init(tensor):
269
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
270
+
271
+
272
+ @dataclass
273
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
274
+ class SiglipVisionModelOutput(ModelOutput):
275
+ """
276
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
277
+ Args:
278
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
279
+ The image embeddings obtained by applying the projection layer to the pooler_output.
280
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
281
+ Sequence of hidden-states at the output of the last layer of the model.
282
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
283
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
284
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
285
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
286
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
287
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
288
+ sequence_length)`.
289
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
290
+ heads.
291
+ """
292
+
293
+ image_embeds: Optional[torch.FloatTensor] = None
294
+ last_hidden_state: torch.FloatTensor = None
295
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
296
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
297
+
298
+
299
+ class SiglipVisionEmbeddings(nn.Module):
300
+ def __init__(self, config: SiglipVisionConfig):
301
+ super().__init__()
302
+ self.config = config
303
+ self.embed_dim = config.hidden_size
304
+ self.image_size = config.image_size
305
+ self.patch_size = config.patch_size
306
+
307
+ self.patch_embedding = nn.Conv2d(
308
+ in_channels=config.num_channels,
309
+ out_channels=self.embed_dim,
310
+ kernel_size=self.patch_size,
311
+ stride=self.patch_size,
312
+ padding="valid",
313
+ )
314
+
315
+ self.num_patches_per_side = self.image_size // self.patch_size
316
+ self.num_patches = self.num_patches_per_side**2
317
+ self.num_positions = self.num_patches
318
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
319
+
320
+ def forward(
321
+ self,
322
+ pixel_values: torch.FloatTensor,
323
+ patch_attention_mask: torch.BoolTensor,
324
+ tgt_sizes: Optional[torch.IntTensor] = None,
325
+ ) -> torch.Tensor:
326
+ batch_size = pixel_values.size(0)
327
+
328
+ patch_embeds = self.patch_embedding(pixel_values)
329
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
330
+
331
+ max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
332
+ max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
333
+ boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
334
+ position_ids = torch.full(
335
+ size=(
336
+ batch_size,
337
+ max_nb_patches_h * max_nb_patches_w,
338
+ ),
339
+ fill_value=0,
340
+ )
341
+
342
+ for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
343
+ if tgt_sizes is not None:
344
+ nb_patches_h = tgt_sizes[batch_idx][0]
345
+ nb_patches_w = tgt_sizes[batch_idx][1]
346
+ else:
347
+ nb_patches_h = p_attn_mask[:, 0].sum()
348
+ nb_patches_w = p_attn_mask[0].sum()
349
+
350
+ fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
351
+ fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
352
+
353
+ bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
354
+ bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
355
+
356
+ pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
357
+ position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
358
+
359
+ position_ids = position_ids.to(self.position_embedding.weight.device)
360
+
361
+ embeddings = embeddings + self.position_embedding(position_ids)
362
+ return embeddings
363
+
364
+
365
+ class SiglipAttention(nn.Module):
366
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
367
+
368
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
369
+ def __init__(self, config):
370
+ super().__init__()
371
+ self.config = config
372
+ self.embed_dim = config.hidden_size
373
+ self.num_heads = config.num_attention_heads
374
+ self.head_dim = self.embed_dim // self.num_heads
375
+ if self.head_dim * self.num_heads != self.embed_dim:
376
+ raise ValueError(
377
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
378
+ f" {self.num_heads})."
379
+ )
380
+ self.scale = self.head_dim**-0.5
381
+ self.dropout = config.attention_dropout
382
+
383
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
384
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
385
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
386
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
387
+
388
+ def forward(
389
+ self,
390
+ hidden_states: torch.Tensor,
391
+ attention_mask: Optional[torch.Tensor] = None,
392
+ output_attentions: Optional[bool] = False,
393
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
394
+ """Input shape: Batch x Time x Channel"""
395
+
396
+ batch_size, q_len, _ = hidden_states.size()
397
+
398
+ query_states = self.q_proj(hidden_states)
399
+ key_states = self.k_proj(hidden_states)
400
+ value_states = self.v_proj(hidden_states)
401
+
402
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
403
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
404
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
405
+
406
+ k_v_seq_len = key_states.shape[-2]
407
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
408
+
409
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
410
+ raise ValueError(
411
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
412
+ f" {attn_weights.size()}"
413
+ )
414
+
415
+ if attention_mask is not None:
416
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
417
+ raise ValueError(
418
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
419
+ )
420
+ attn_weights = attn_weights + attention_mask
421
+
422
+ # upcast attention to fp32
423
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
424
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
425
+ attn_output = torch.matmul(attn_weights, value_states)
426
+
427
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
428
+ raise ValueError(
429
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
430
+ f" {attn_output.size()}"
431
+ )
432
+
433
+ attn_output = attn_output.transpose(1, 2).contiguous()
434
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
435
+
436
+ attn_output = self.out_proj(attn_output)
437
+
438
+ return attn_output, attn_weights
439
+
440
+
441
+ class SiglipFlashAttention2(SiglipAttention):
442
+ """
443
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
444
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
445
+ flash attention and deal with padding tokens in case the input contains any of them.
446
+ """
447
+
448
+ def __init__(self, *args, **kwargs):
449
+ super().__init__(*args, **kwargs)
450
+ self.is_causal = False # Hack to make sure we don't use a causal mask
451
+
452
+ def forward(
453
+ self,
454
+ hidden_states: torch.Tensor,
455
+ attention_mask: Optional[torch.LongTensor] = None,
456
+ position_ids: Optional[torch.LongTensor] = None,
457
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
458
+ output_attentions: bool = False,
459
+ use_cache: bool = False,
460
+ **kwargs,
461
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
462
+ output_attentions = False
463
+
464
+ bsz, q_len, _ = hidden_states.size()
465
+
466
+ query_states = self.q_proj(hidden_states)
467
+ key_states = self.k_proj(hidden_states)
468
+ value_states = self.v_proj(hidden_states)
469
+
470
+ # Flash attention requires the input to have the shape
471
+ # batch_size x seq_length x head_dim x hidden_dim
472
+ # therefore we just need to keep the original shape
473
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
474
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
475
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
476
+
477
+ kv_seq_len = key_states.shape[-2]
478
+ if past_key_value is not None:
479
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
480
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
481
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
482
+
483
+ # if past_key_value is not None:
484
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
485
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
486
+
487
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
488
+ # to be able to avoid many of these transpose/reshape/view.
489
+ query_states = query_states.transpose(1, 2)
490
+ key_states = key_states.transpose(1, 2)
491
+ value_states = value_states.transpose(1, 2)
492
+
493
+ dropout_rate = self.dropout if self.training else 0.0
494
+
495
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
496
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
497
+ # cast them back in the correct dtype just to be sure everything works as expected.
498
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
499
+ # in fp32. (LlamaRMSNorm handles it correctly)
500
+
501
+ input_dtype = query_states.dtype
502
+ if input_dtype == torch.float32:
503
+ if torch.is_autocast_enabled():
504
+ target_dtype = torch.get_autocast_gpu_dtype()
505
+ # Handle the case where the model is quantized
506
+ elif hasattr(self.config, "_pre_quantization_dtype"):
507
+ target_dtype = self.config._pre_quantization_dtype
508
+ else:
509
+ target_dtype = self.q_proj.weight.dtype
510
+
511
+ logger.warning_once(
512
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
513
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
514
+ f" {target_dtype}."
515
+ )
516
+
517
+ query_states = query_states.to(target_dtype)
518
+ key_states = key_states.to(target_dtype)
519
+ value_states = value_states.to(target_dtype)
520
+
521
+ attn_output = self._flash_attention_forward(
522
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
523
+ )
524
+
525
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
526
+ attn_output = self.out_proj(attn_output)
527
+
528
+ if not output_attentions:
529
+ attn_weights = None
530
+
531
+ return attn_output, attn_weights
532
+
533
+ def _flash_attention_forward(
534
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
535
+ ):
536
+ """
537
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
538
+ first unpad the input, then computes the attention scores and pad the final attention scores.
539
+ Args:
540
+ query_states (`torch.Tensor`):
541
+ Input query states to be passed to Flash Attention API
542
+ key_states (`torch.Tensor`):
543
+ Input key states to be passed to Flash Attention API
544
+ value_states (`torch.Tensor`):
545
+ Input value states to be passed to Flash Attention API
546
+ attention_mask (`torch.Tensor`):
547
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
548
+ position of padding tokens and 1 for the position of non-padding tokens.
549
+ dropout (`int`, *optional*):
550
+ Attention dropout
551
+ softmax_scale (`float`, *optional*):
552
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
553
+ """
554
+
555
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
556
+ causal = self.is_causal and query_length != 1
557
+
558
+ # Contains at least one padding token in the sequence
559
+ if attention_mask is not None:
560
+ batch_size = query_states.shape[0]
561
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
562
+ query_states, key_states, value_states, attention_mask, query_length
563
+ )
564
+
565
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
566
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
567
+
568
+ attn_output_unpad = flash_attn_varlen_func(
569
+ query_states,
570
+ key_states,
571
+ value_states,
572
+ cu_seqlens_q=cu_seqlens_q,
573
+ cu_seqlens_k=cu_seqlens_k,
574
+ max_seqlen_q=max_seqlen_in_batch_q,
575
+ max_seqlen_k=max_seqlen_in_batch_k,
576
+ dropout_p=dropout,
577
+ softmax_scale=softmax_scale,
578
+ causal=causal,
579
+ )
580
+
581
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
582
+ else:
583
+ attn_output = flash_attn_func(
584
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
585
+ )
586
+
587
+ return attn_output
588
+
589
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
590
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
591
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
592
+
593
+ key_layer = index_first_axis(
594
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
595
+ )
596
+ value_layer = index_first_axis(
597
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
598
+ )
599
+ if query_length == kv_seq_len:
600
+ query_layer = index_first_axis(
601
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
602
+ )
603
+ cu_seqlens_q = cu_seqlens_k
604
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
605
+ indices_q = indices_k
606
+ elif query_length == 1:
607
+ max_seqlen_in_batch_q = 1
608
+ cu_seqlens_q = torch.arange(
609
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
610
+ ) # There is a memcpy here, that is very bad.
611
+ indices_q = cu_seqlens_q[:-1]
612
+ query_layer = query_layer.squeeze(1)
613
+ else:
614
+ # The -q_len: slice assumes left padding.
615
+ attention_mask = attention_mask[:, -query_length:]
616
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
617
+
618
+ return (
619
+ query_layer,
620
+ key_layer,
621
+ value_layer,
622
+ indices_q,
623
+ (cu_seqlens_q, cu_seqlens_k),
624
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
625
+ )
626
+
627
+
628
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
629
+ class SiglipMLP(nn.Module):
630
+ def __init__(self, config):
631
+ super().__init__()
632
+ self.config = config
633
+ self.activation_fn = ACT2FN[config.hidden_act]
634
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
635
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
636
+
637
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
638
+ hidden_states = self.fc1(hidden_states)
639
+ hidden_states = self.activation_fn(hidden_states)
640
+ hidden_states = self.fc2(hidden_states)
641
+ return hidden_states
642
+
643
+
644
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
645
+ class SiglipEncoderLayer(nn.Module):
646
+ def __init__(self, config: SiglipVisionConfig):
647
+ super().__init__()
648
+ self.embed_dim = config.hidden_size
649
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
650
+ self.self_attn = SiglipAttention(config) if not self._use_flash_attention_2 else SiglipFlashAttention2(config)
651
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
652
+ self.mlp = SiglipMLP(config)
653
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
654
+
655
+ def forward(
656
+ self,
657
+ hidden_states: torch.Tensor,
658
+ attention_mask: torch.Tensor,
659
+ output_attentions: Optional[bool] = False,
660
+ ) -> Tuple[torch.FloatTensor]:
661
+ """
662
+ Args:
663
+ hidden_states (`torch.FloatTensor`):
664
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
665
+ attention_mask (`torch.FloatTensor`):
666
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
667
+ output_attentions (`bool`, *optional*, defaults to `False`):
668
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
669
+ returned tensors for more detail.
670
+ """
671
+ residual = hidden_states
672
+
673
+ hidden_states = self.layer_norm1(hidden_states)
674
+ hidden_states, attn_weights = self.self_attn(
675
+ hidden_states=hidden_states,
676
+ attention_mask=attention_mask,
677
+ output_attentions=output_attentions,
678
+ )
679
+ hidden_states = residual + hidden_states
680
+
681
+ residual = hidden_states
682
+ hidden_states = self.layer_norm2(hidden_states)
683
+ hidden_states = self.mlp(hidden_states)
684
+ hidden_states = residual + hidden_states
685
+
686
+ outputs = (hidden_states,)
687
+
688
+ if output_attentions:
689
+ outputs += (attn_weights,)
690
+
691
+ return outputs
692
+
693
+
694
+ class SiglipPreTrainedModel(PreTrainedModel):
695
+ """
696
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
697
+ models.
698
+ """
699
+
700
+ config_class = SiglipVisionConfig
701
+ base_model_prefix = "siglip"
702
+ supports_gradient_checkpointing = True
703
+
704
+ def _init_weights(self, module):
705
+ """Initialize the weights"""
706
+
707
+ if isinstance(module, SiglipVisionEmbeddings):
708
+ width = self.config.hidden_size
709
+ nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
710
+ elif isinstance(module, nn.Embedding):
711
+ default_flax_embed_init(module.weight)
712
+ elif isinstance(module, SiglipAttention):
713
+ nn.init.normal_(module.q_proj.weight)
714
+ nn.init.normal_(module.k_proj.weight)
715
+ nn.init.normal_(module.v_proj.weight)
716
+ nn.init.normal_(module.out_proj.weight)
717
+ nn.init.zeros_(module.q_proj.bias)
718
+ nn.init.zeros_(module.k_proj.bias)
719
+ nn.init.zeros_(module.v_proj.bias)
720
+ nn.init.zeros_(module.out_proj.bias)
721
+ elif isinstance(module, SiglipMLP):
722
+ nn.init.normal_(module.fc1.weight)
723
+ nn.init.normal_(module.fc2.weight)
724
+ nn.init.normal_(module.fc1.bias, std=1e-6)
725
+ nn.init.normal_(module.fc2.bias, std=1e-6)
726
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
727
+ lecun_normal_(module.weight)
728
+ if module.bias is not None:
729
+ nn.init.zeros_(module.bias)
730
+ elif isinstance(module, nn.LayerNorm):
731
+ module.bias.data.zero_()
732
+ module.weight.data.fill_(1.0)
733
+
734
+
735
+ SIGLIP_START_DOCSTRING = r"""
736
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
737
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
738
+ etc.)
739
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
740
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
741
+ and behavior.
742
+ Parameters:
743
+ config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
744
+ Initializing with a config file does not load the weights associated with the model, only the
745
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
746
+ """
747
+
748
+
749
+ SIGLIP_VISION_INPUTS_DOCSTRING = r"""
750
+ Args:
751
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
752
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
753
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
754
+ output_attentions (`bool`, *optional*):
755
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
756
+ tensors for more detail.
757
+ output_hidden_states (`bool`, *optional*):
758
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
759
+ more detail.
760
+ return_dict (`bool`, *optional*):
761
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
762
+ """
763
+
764
+
765
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
766
+ class SiglipEncoder(nn.Module):
767
+ """
768
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
769
+ [`SiglipEncoderLayer`].
770
+ Args:
771
+ config: SiglipConfig
772
+ """
773
+
774
+ def __init__(self, config: SiglipVisionConfig):
775
+ super().__init__()
776
+ self.config = config
777
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
778
+ self.gradient_checkpointing = False
779
+
780
+ # Ignore copy
781
+ def forward(
782
+ self,
783
+ inputs_embeds,
784
+ attention_mask: Optional[torch.Tensor] = None,
785
+ output_attentions: Optional[bool] = None,
786
+ output_hidden_states: Optional[bool] = None,
787
+ return_dict: Optional[bool] = None,
788
+ ) -> Union[Tuple, BaseModelOutput]:
789
+ r"""
790
+ Args:
791
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
792
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
793
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
794
+ than the model's internal embedding lookup matrix.
795
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
796
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
797
+ - 1 for tokens that are **not masked**,
798
+ - 0 for tokens that are **masked**.
799
+ [What are attention masks?](../glossary#attention-mask)
800
+ output_attentions (`bool`, *optional*):
801
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
802
+ returned tensors for more detail.
803
+ output_hidden_states (`bool`, *optional*):
804
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
805
+ for more detail.
806
+ return_dict (`bool`, *optional*):
807
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
808
+ """
809
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
810
+ output_hidden_states = (
811
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
812
+ )
813
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
814
+
815
+ encoder_states = () if output_hidden_states else None
816
+ all_attentions = () if output_attentions else None
817
+
818
+ hidden_states = inputs_embeds
819
+ for encoder_layer in self.layers:
820
+ if output_hidden_states:
821
+ encoder_states = encoder_states + (hidden_states,)
822
+ if self.gradient_checkpointing and self.training:
823
+ layer_outputs = self._gradient_checkpointing_func(
824
+ encoder_layer.__call__,
825
+ hidden_states,
826
+ attention_mask,
827
+ output_attentions,
828
+ )
829
+ else:
830
+ layer_outputs = encoder_layer(
831
+ hidden_states,
832
+ attention_mask,
833
+ output_attentions=output_attentions,
834
+ )
835
+
836
+ hidden_states = layer_outputs[0]
837
+
838
+ if output_attentions:
839
+ all_attentions = all_attentions + (layer_outputs[1],)
840
+
841
+ if output_hidden_states:
842
+ encoder_states = encoder_states + (hidden_states,)
843
+
844
+ if not return_dict:
845
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
846
+ return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
847
+
848
+
849
+ @add_start_docstrings("""The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING)
850
+ class SiglipVisionTransformer(SiglipPreTrainedModel):
851
+ config_class = SiglipVisionConfig
852
+ main_input_name = "pixel_values"
853
+ _supports_flash_attn_2 = True
854
+ _no_split_modules = []
855
+
856
+ def __init__(self, config: SiglipVisionConfig):
857
+ super().__init__(config)
858
+ self.config = config
859
+ embed_dim = config.hidden_size
860
+
861
+ self.embeddings = SiglipVisionEmbeddings(config)
862
+ self.encoder = SiglipEncoder(config)
863
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
864
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
865
+
866
+ # Initialize weights and apply final processing
867
+ self.post_init()
868
+
869
+ def get_input_embeddings(self) -> nn.Module:
870
+ return self.embeddings.patch_embedding
871
+
872
+ @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
873
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
874
+ def forward(
875
+ self,
876
+ pixel_values,
877
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
878
+ tgt_sizes: Optional[torch.IntTensor] = None,
879
+ output_attentions: Optional[bool] = None,
880
+ output_hidden_states: Optional[bool] = None,
881
+ return_dict: Optional[bool] = None,
882
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
883
+ r"""
884
+ Returns:
885
+ """
886
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
887
+ output_hidden_states = (
888
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
889
+ )
890
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
891
+
892
+ batch_size = pixel_values.size(0)
893
+ if patch_attention_mask is None:
894
+ patch_attention_mask = torch.ones(
895
+ size=(
896
+ batch_size,
897
+ pixel_values.size(2) // self.config.patch_size,
898
+ pixel_values.size(3) // self.config.patch_size,
899
+ ),
900
+ dtype=torch.bool,
901
+ device=pixel_values.device,
902
+ )
903
+
904
+ hidden_states = self.embeddings(
905
+ pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes
906
+ )
907
+
908
+ patch_attention_mask = patch_attention_mask.view(batch_size, -1)
909
+ # The call to `_upad_input` in `_flash_attention_forward` is expensive
910
+ # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
911
+ # avoiding passing the attention_mask, which is equivalent to attending to the full sequence
912
+ if not torch.any(~patch_attention_mask):
913
+ attention_mask = None
914
+ else:
915
+ attention_mask = (
916
+ _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
917
+ if not self._use_flash_attention_2
918
+ else patch_attention_mask
919
+ )
920
+
921
+ encoder_outputs = self.encoder(
922
+ inputs_embeds=hidden_states,
923
+ attention_mask=attention_mask,
924
+ output_attentions=output_attentions,
925
+ output_hidden_states=output_hidden_states,
926
+ return_dict=return_dict,
927
+ )
928
+
929
+ last_hidden_state = encoder_outputs[0]
930
+ last_hidden_state = self.post_layernorm(last_hidden_state)
931
+
932
+ if not return_dict:
933
+ return (last_hidden_state, None) + encoder_outputs[1:]
934
+
935
+ return BaseModelOutputWithPooling(
936
+ last_hidden_state=last_hidden_state,
937
+ pooler_output=None,
938
+ hidden_states=encoder_outputs.hidden_states,
939
+ attentions=encoder_outputs.attentions,
940
+ )