Guilherme34 commited on
Commit
93a1ebb
·
verified ·
1 Parent(s): 75aad8a

Upload utils.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. utils.py +203 -0
utils.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 The OpenBMB Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import logging
17
+ import re
18
+
19
+ import librosa
20
+ import numpy as np
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ def is_silent(data):
26
+ if np.abs(data).max() < 3e-3:
27
+ return True
28
+ else:
29
+ return False
30
+
31
+
32
+ def sentence_end(txt):
33
+ for c in [".", "。", "!", "?", "!", "?"]:
34
+ if c in txt:
35
+ if c == ".": # check not number before it like 1.
36
+ idx = txt.find(c)
37
+ if idx > 0:
38
+ if txt[idx - 1].isdigit():
39
+ continue
40
+ return c
41
+ return ""
42
+
43
+
44
+ class NumberToTextConverter:
45
+ r"""
46
+ A helper class to ensure text-to-speech (TTS) systems read numeric digits
47
+ in the desired language (Chinese or English) digit-by-digit. It forcibly
48
+ replaces all numeric substrings in text with their language-specific
49
+ textual representations, thereby reducing the likelihood of TTS mistakes
50
+ on numbers.
51
+ Note: MiniCPM-o 2.6 only use this in streaming mode.
52
+
53
+ Attributes:
54
+ num_to_chinese (dict):
55
+ Mapping from digit (str) to its Chinese textual form (str).
56
+ num_to_english (dict):
57
+ Mapping from digit (str) to its English textual form (str).
58
+
59
+ Example:
60
+ >>> converter = NumberToTextConverter()
61
+ >>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
62
+ '我有两个苹果'
63
+ >>> converter.replace_numbers_with_text("I have 23 books", language="english")
64
+ 'I have two three books'
65
+ """
66
+
67
+ def __init__(self):
68
+ self.num_to_chinese = {
69
+ "0": "零",
70
+ "1": "一",
71
+ "2": "二",
72
+ "3": "三",
73
+ "4": "四",
74
+ "5": "五",
75
+ "6": "六",
76
+ "7": "七",
77
+ "8": "八",
78
+ "9": "九",
79
+ }
80
+ self.num_to_english = {
81
+ "0": "zero",
82
+ "1": "one",
83
+ "2": "two",
84
+ "3": "three",
85
+ "4": "four",
86
+ "5": "five",
87
+ "6": "six",
88
+ "7": "seven",
89
+ "8": "eight",
90
+ "9": "nine",
91
+ }
92
+
93
+ def number_to_chinese_digit_by_digit(self, num_str):
94
+ result = ""
95
+ for char in num_str:
96
+ if char in self.num_to_chinese:
97
+ result += self.num_to_chinese[char]
98
+ return result
99
+
100
+ def number_to_english_digit_by_digit(self, num_str):
101
+ result = []
102
+ for char in num_str:
103
+ if char in self.num_to_english:
104
+ result.append(self.num_to_english[char])
105
+ return " ".join(result)
106
+
107
+ def detect_language(self, text):
108
+ chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
109
+ english_count = len(re.findall(r"[a-zA-Z]", text))
110
+ return "chinese" if chinese_count >= english_count else "english"
111
+
112
+ def replace_numbers_with_text(self, text, language=None):
113
+ if language is None:
114
+ language = self.detect_language(text)
115
+ numbers = re.findall(r"\d+", text)
116
+
117
+ for num in numbers:
118
+ if language == "chinese":
119
+ replacement = self.number_to_chinese_digit_by_digit(num)
120
+ else:
121
+ replacement = self.number_to_english_digit_by_digit(num)
122
+ text = text.replace(num, replacement, 1)
123
+
124
+ return text
125
+
126
+
127
+ class VoiceChecker:
128
+ r"""
129
+ A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
130
+ the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
131
+ to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
132
+
133
+ Attributes:
134
+ previous_mel (`np.ndarray` or `None`):
135
+ Holds the previously observed mel-spectrogram in decibel scale. Used to compute
136
+ the next distance; reset via :meth:`reset`.
137
+ consecutive_zeros (`int`):
138
+ The number of consecutive chunks that were detected as silent (distance = 0).
139
+ consecutive_low_distance (`int`):
140
+ The number of consecutive chunks whose distance was below the threshold.
141
+
142
+ Example:
143
+ >>> checker = VoiceChecker()
144
+ >>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
145
+ >>> # We split them into chunks and call checker.is_bad(...)
146
+ >>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
147
+ >>> if is_audio_bad:
148
+ ... print("Audio deemed bad!")
149
+ >>> # Reset states if needed
150
+ >>> checker.reset()
151
+ """
152
+
153
+ def __init__(self):
154
+ self.previous_mel = None
155
+ self.consecutive_zeros = 0
156
+ self.consecutive_low_distance = 0
157
+
158
+ def compute_distance(self, audio_chunk, mel_spec):
159
+ if is_silent(audio_chunk):
160
+ return 0.0 # 检查是否为空白片段
161
+
162
+ mel_db = librosa.power_to_db(mel_spec)
163
+ if self.previous_mel is None:
164
+ self.previous_mel = mel_db
165
+ return -1.0
166
+
167
+ distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
168
+ self.previous_mel = mel_db
169
+ return distance
170
+
171
+ def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
172
+ num_chunks = len(audio_wav) // chunk_size
173
+ mel_chunk_size = mel_spec.shape[-1] // num_chunks
174
+ for i in range(num_chunks):
175
+ audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
176
+ mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
177
+
178
+ distance = self.compute_distance(audio_chunk, mel_spec_chunk)
179
+ logger.warning(
180
+ f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
181
+ )
182
+ if distance == 0:
183
+ self.consecutive_low_distance = 0 # reset
184
+ self.consecutive_zeros += 1
185
+ if self.consecutive_zeros >= 12:
186
+ logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
187
+ return True
188
+ elif distance < thresh:
189
+ self.consecutive_zeros = 0
190
+ self.consecutive_low_distance += 1
191
+ if self.consecutive_low_distance >= 5:
192
+ logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
193
+ return True
194
+ else:
195
+ self.consecutive_low_distance = 0
196
+ self.consecutive_zeros = 0
197
+
198
+ return False
199
+
200
+ def reset(self):
201
+ self.previous_mel = None
202
+ self.consecutive_zeros = 0
203
+ self.consecutive_low_distance = 0