rjurney commited on
Commit
e659e59
·
unverified ·
1 Parent(s): 2187172

Latest training run, just 4 epochs, optimizations all pulled except for FP16, save and eval at epochs to avoid over-fitting

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 1_Pooling/config.json +10 -0
  2. checkpoint-1386/1_Pooling/config.json +10 -0
  3. checkpoint-1386/README.md +460 -0
  4. checkpoint-1386/config.json +25 -0
  5. checkpoint-1386/config_sentence_transformers.json +10 -0
  6. checkpoint-1386/model.safetensors +3 -0
  7. checkpoint-1386/modules.json +14 -0
  8. checkpoint-1386/optimizer.pt +3 -0
  9. checkpoint-1386/rng_state.pth +3 -0
  10. checkpoint-1386/scaler.pt +3 -0
  11. checkpoint-1386/scheduler.pt +3 -0
  12. checkpoint-1386/sentence_bert_config.json +4 -0
  13. checkpoint-1386/special_tokens_map.json +51 -0
  14. checkpoint-1386/tokenizer.json +3 -0
  15. checkpoint-1386/tokenizer_config.json +65 -0
  16. checkpoint-1386/trainer_state.json +89 -0
  17. checkpoint-1386/training_args.bin +3 -0
  18. checkpoint-1386/unigram.json +3 -0
  19. checkpoint-2079/1_Pooling/config.json +10 -0
  20. checkpoint-2079/README.md +463 -0
  21. checkpoint-2079/config.json +25 -0
  22. checkpoint-2079/config_sentence_transformers.json +10 -0
  23. checkpoint-2079/model.safetensors +3 -0
  24. checkpoint-2079/modules.json +14 -0
  25. checkpoint-2079/optimizer.pt +3 -0
  26. checkpoint-2079/rng_state.pth +3 -0
  27. checkpoint-2079/scaler.pt +3 -0
  28. checkpoint-2079/scheduler.pt +3 -0
  29. checkpoint-2079/sentence_bert_config.json +4 -0
  30. checkpoint-2079/special_tokens_map.json +51 -0
  31. checkpoint-2079/tokenizer.json +3 -0
  32. checkpoint-2079/tokenizer_config.json +65 -0
  33. checkpoint-2079/trainer_state.json +119 -0
  34. checkpoint-2079/training_args.bin +3 -0
  35. checkpoint-2079/unigram.json +3 -0
  36. checkpoint-2772/1_Pooling/config.json +10 -0
  37. checkpoint-2772/README.md +465 -0
  38. checkpoint-2772/config.json +25 -0
  39. checkpoint-2772/config_sentence_transformers.json +10 -0
  40. checkpoint-2772/model.safetensors +3 -0
  41. checkpoint-2772/modules.json +14 -0
  42. checkpoint-2772/optimizer.pt +3 -0
  43. checkpoint-2772/rng_state.pth +3 -0
  44. checkpoint-2772/scaler.pt +3 -0
  45. checkpoint-2772/scheduler.pt +3 -0
  46. checkpoint-2772/sentence_bert_config.json +4 -0
  47. checkpoint-2772/special_tokens_map.json +51 -0
  48. checkpoint-2772/tokenizer.json +3 -0
  49. checkpoint-2772/tokenizer_config.json +65 -0
  50. checkpoint-2772/trainer_state.json +142 -0
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1386/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1386/README.md ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2130621
11
+ - loss:ContrastiveLoss
12
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
13
+ widget:
14
+ - source_sentence: Kim Chol-sam
15
+ sentences:
16
+ - Stankevich Sergey Nikolayevich
17
+ - Kim Chin-So’k
18
+ - Julen Lopetegui Agote
19
+ - source_sentence: دينا بنت عبد الحميد
20
+ sentences:
21
+ - Alexia van Amsberg
22
+ - Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
23
+ - Dina bint Abdul-Hamíd
24
+ - source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
25
+ sentences:
26
+ - Karpov Anatoly Evgenyevich
27
+ - GNPower Mariveles Coal Plant [former]
28
+ - Muhammed bin Nayef bin Abdul Aziz Al Saud
29
+ - source_sentence: Edward Gnehm
30
+ sentences:
31
+ - Шауэрте, Хартмут
32
+ - Ханзада Филипп, Эдинбург герцогі
33
+ - AFX
34
+ - source_sentence: Schori i Lidingö
35
+ sentences:
36
+ - Yordan Canev
37
+ - ကားပေါ့ အန်နာတိုလီ
38
+ - BYSTROV, Mikhail Ivanovich
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - cosine_accuracy
43
+ - cosine_accuracy_threshold
44
+ - cosine_f1
45
+ - cosine_f1_threshold
46
+ - cosine_precision
47
+ - cosine_recall
48
+ - cosine_ap
49
+ - cosine_mcc
50
+ model-index:
51
+ - name: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
52
+ results:
53
+ - task:
54
+ type: binary-classification
55
+ name: Binary Classification
56
+ dataset:
57
+ name: sentence transformers paraphrase multilingual MiniLM L12 v2
58
+ type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9846242227629088
62
+ name: Cosine Accuracy
63
+ - type: cosine_accuracy_threshold
64
+ value: 0.6801187992095947
65
+ name: Cosine Accuracy Threshold
66
+ - type: cosine_f1
67
+ value: 0.9765449140552956
68
+ name: Cosine F1
69
+ - type: cosine_f1_threshold
70
+ value: 0.6780189275741577
71
+ name: Cosine F1 Threshold
72
+ - type: cosine_precision
73
+ value: 0.9721848413657824
74
+ name: Cosine Precision
75
+ - type: cosine_recall
76
+ value: 0.9809442711989229
77
+ name: Cosine Recall
78
+ - type: cosine_ap
79
+ value: 0.9955904030209028
80
+ name: Cosine Ap
81
+ - type: cosine_mcc
82
+ value: 0.9651303277408154
83
+ name: Cosine Mcc
84
+ ---
85
+
86
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
95
+ - **Maximum Sequence Length:** 128 tokens
96
+ - **Output Dimensionality:** 384 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ <!-- - **Training Dataset:** Unknown -->
99
+ - **Language:** en
100
+ - **License:** apache-2.0
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ )
115
+ ```
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import SentenceTransformer
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SentenceTransformer("sentence_transformers_model_id")
133
+ # Run inference
134
+ sentences = [
135
+ 'Schori i Lidingö',
136
+ 'Yordan Canev',
137
+ 'ကားပေါ့ အန်နာတိုလီ',
138
+ ]
139
+ embeddings = model.encode(sentences)
140
+ print(embeddings.shape)
141
+ # [3, 384]
142
+
143
+ # Get the similarity scores for the embeddings
144
+ similarities = model.similarity(embeddings, embeddings)
145
+ print(similarities.shape)
146
+ # [3, 3]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Binary Classification
178
+
179
+ * Dataset: `sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2`
180
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
181
+
182
+ | Metric | Value |
183
+ |:--------------------------|:-----------|
184
+ | cosine_accuracy | 0.9846 |
185
+ | cosine_accuracy_threshold | 0.6801 |
186
+ | cosine_f1 | 0.9765 |
187
+ | cosine_f1_threshold | 0.678 |
188
+ | cosine_precision | 0.9722 |
189
+ | cosine_recall | 0.9809 |
190
+ | **cosine_ap** | **0.9956** |
191
+ | cosine_mcc | 0.9651 |
192
+
193
+ <!--
194
+ ## Bias, Risks and Limitations
195
+
196
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
197
+ -->
198
+
199
+ <!--
200
+ ### Recommendations
201
+
202
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
203
+ -->
204
+
205
+ ## Training Details
206
+
207
+ ### Training Dataset
208
+
209
+ #### Unnamed Dataset
210
+
211
+ * Size: 2,130,621 training samples
212
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
213
+ * Approximate statistics based on the first 1000 samples:
214
+ | | sentence1 | sentence2 | label |
215
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
216
+ | type | string | string | float |
217
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.32 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.16 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> |
218
+ * Samples:
219
+ | sentence1 | sentence2 | label |
220
+ |:----------------------------------|:------------------------------------|:-----------------|
221
+ | <code>캐스린 설리번</code> | <code>Kathryn D. Sullivanová</code> | <code>1.0</code> |
222
+ | <code>ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ</code> | <code>Aleksander Lubocki</code> | <code>0.0</code> |
223
+ | <code>Пырванов, Георги</code> | <code>アナトーリー・セルジュコフ</code> | <code>0.0</code> |
224
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
225
+ ```json
226
+ {
227
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
228
+ "margin": 0.5,
229
+ "size_average": true
230
+ }
231
+ ```
232
+
233
+ ### Evaluation Dataset
234
+
235
+ #### Unnamed Dataset
236
+
237
+ * Size: 2,663,276 evaluation samples
238
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | sentence1 | sentence2 | label |
241
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
242
+ | type | string | string | float |
243
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.34 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.11 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
244
+ * Samples:
245
+ | sentence1 | sentence2 | label |
246
+ |:--------------------------------------|:---------------------------------------|:-----------------|
247
+ | <code>Ева Херман</code> | <code>I Xuan Karlos</code> | <code>0.0</code> |
248
+ | <code>Кличков Андрій Євгенович</code> | <code>Андрэй Яўгенавіч Клычкоў</code> | <code>1.0</code> |
249
+ | <code>Кинах А.</code> | <code>Senator John Hickenlooper</code> | <code>0.0</code> |
250
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
251
+ ```json
252
+ {
253
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
254
+ "margin": 0.5,
255
+ "size_average": true
256
+ }
257
+ ```
258
+
259
+ ### Training Hyperparameters
260
+ #### Non-Default Hyperparameters
261
+
262
+ - `eval_strategy`: epoch
263
+ - `per_device_train_batch_size`: 768
264
+ - `per_device_eval_batch_size`: 768
265
+ - `gradient_accumulation_steps`: 4
266
+ - `learning_rate`: 3e-05
267
+ - `weight_decay`: 0.01
268
+ - `num_train_epochs`: 4
269
+ - `warmup_ratio`: 0.1
270
+ - `fp16`: True
271
+ - `load_best_model_at_end`: True
272
+ - `optim`: adafactor
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: epoch
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 768
282
+ - `per_device_eval_batch_size`: 768
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 4
286
+ - `eval_accumulation_steps`: None
287
+ - `torch_empty_cache_steps`: None
288
+ - `learning_rate`: 3e-05
289
+ - `weight_decay`: 0.01
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 1.0
294
+ - `num_train_epochs`: 4
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: linear
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.1
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: True
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: True
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `tp_size`: 0
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adafactor
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `use_liger_kernel`: False
386
+ - `eval_use_gather_object`: False
387
+ - `average_tokens_across_devices`: False
388
+ - `prompts`: None
389
+ - `batch_sampler`: batch_sampler
390
+ - `multi_dataset_batch_sampler`: proportional
391
+
392
+ </details>
393
+
394
+ ### Training Logs
395
+ | Epoch | Step | Training Loss | Validation Loss | sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap |
396
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------------------------------------------------:|
397
+ | -1 | -1 | - | - | 0.7140 |
398
+ | 0.7207 | 500 | 0.038 | - | - |
399
+ | 0.9989 | 693 | - | 0.0028 | 0.9911 |
400
+ | 1.4425 | 1000 | 0.0128 | - | - |
401
+ | 1.9989 | 1386 | - | 0.0021 | 0.9956 |
402
+
403
+
404
+ ### Framework Versions
405
+ - Python: 3.12.9
406
+ - Sentence Transformers: 3.4.1
407
+ - Transformers: 4.51.3
408
+ - PyTorch: 2.7.0+cu126
409
+ - Accelerate: 1.6.0
410
+ - Datasets: 3.6.0
411
+ - Tokenizers: 0.21.1
412
+
413
+ ## Citation
414
+
415
+ ### BibTeX
416
+
417
+ #### Sentence Transformers
418
+ ```bibtex
419
+ @inproceedings{reimers-2019-sentence-bert,
420
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
421
+ author = "Reimers, Nils and Gurevych, Iryna",
422
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
423
+ month = "11",
424
+ year = "2019",
425
+ publisher = "Association for Computational Linguistics",
426
+ url = "https://arxiv.org/abs/1908.10084",
427
+ }
428
+ ```
429
+
430
+ #### ContrastiveLoss
431
+ ```bibtex
432
+ @inproceedings{hadsell2006dimensionality,
433
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
434
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
435
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
436
+ year={2006},
437
+ volume={2},
438
+ number={},
439
+ pages={1735-1742},
440
+ doi={10.1109/CVPR.2006.100}
441
+ }
442
+ ```
443
+
444
+ <!--
445
+ ## Glossary
446
+
447
+ *Clearly define terms in order to be accessible across audiences.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Authors
452
+
453
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
454
+ -->
455
+
456
+ <!--
457
+ ## Model Card Contact
458
+
459
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
460
+ -->
checkpoint-1386/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-1386/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1386/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e63c4102bbc807f6f65e6dfc340ebdf81b6d809419616e5c686dc0ae4ee24c69
3
+ size 470637416
checkpoint-1386/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-1386/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23860257dbcfd9b5b597ed0f71ec9d1d0888d586ddccbe366e3c4cea28a49c54
3
+ size 1715019
checkpoint-1386/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cafafda98c3eee33da2fc3dc512fb690207c63cd6c23669bf103b6115333673f
3
+ size 14645
checkpoint-1386/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80cf4f866900877d5a70b5a4212850bd6349868cb41fa3deed374b2e1ff32fd1
3
+ size 1383
checkpoint-1386/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0f4146f2cb078d3608133188b68bec6910432c8f56446c257e96b3d46d2b17
3
+ size 1465
checkpoint-1386/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-1386/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-1386/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-1386/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-1386/trainer_state.json ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 1386,
3
+ "best_metric": 0.002118302509188652,
4
+ "best_model_checkpoint": "data/fine-tuned-sbert-sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-original-adafactor/checkpoint-1386",
5
+ "epoch": 1.998918918918919,
6
+ "eval_steps": 100,
7
+ "global_step": 1386,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.7207207207207207,
14
+ "grad_norm": 0.15965162217617035,
15
+ "learning_rate": 2.7341619887730554e-05,
16
+ "loss": 0.038,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 0.9989189189189189,
21
+ "eval_loss": 0.002777691464871168,
22
+ "eval_runtime": 792.7494,
23
+ "eval_samples_per_second": 3359.543,
24
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.975327415818089,
25
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7701693773269653,
26
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9911172257655966,
27
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9624723810391563,
28
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7597355842590332,
29
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9441287064717891,
30
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9527175567355498,
31
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9724290300680068,
32
+ "eval_steps_per_second": 4.375,
33
+ "step": 693
34
+ },
35
+ {
36
+ "epoch": 1.4425225225225224,
37
+ "grad_norm": 0.11966603249311447,
38
+ "learning_rate": 2.1327185244587008e-05,
39
+ "loss": 0.0128,
40
+ "step": 1000
41
+ },
42
+ {
43
+ "epoch": 1.998918918918919,
44
+ "eval_loss": 0.002118302509188652,
45
+ "eval_runtime": 789.0568,
46
+ "eval_samples_per_second": 3375.265,
47
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9846242227629088,
48
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.6801187992095947,
49
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9955904030209028,
50
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9765449140552956,
51
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.6780189275741577,
52
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9651303277408154,
53
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9721848413657824,
54
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9809442711989229,
55
+ "eval_steps_per_second": 4.395,
56
+ "step": 1386
57
+ }
58
+ ],
59
+ "logging_steps": 500,
60
+ "max_steps": 2772,
61
+ "num_input_tokens_seen": 0,
62
+ "num_train_epochs": 4,
63
+ "save_steps": 100,
64
+ "stateful_callbacks": {
65
+ "EarlyStoppingCallback": {
66
+ "args": {
67
+ "early_stopping_patience": 1,
68
+ "early_stopping_threshold": 0.0
69
+ },
70
+ "attributes": {
71
+ "early_stopping_patience_counter": 0
72
+ }
73
+ },
74
+ "TrainerControl": {
75
+ "args": {
76
+ "should_epoch_stop": false,
77
+ "should_evaluate": false,
78
+ "should_log": false,
79
+ "should_save": true,
80
+ "should_training_stop": false
81
+ },
82
+ "attributes": {}
83
+ }
84
+ },
85
+ "total_flos": 0.0,
86
+ "train_batch_size": 768,
87
+ "trial_name": null,
88
+ "trial_params": null
89
+ }
checkpoint-1386/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee490aac80277022fdde76dd6763dbabee88802149f3f246e7d0572b504fcdaf
3
+ size 6097
checkpoint-1386/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260
checkpoint-2079/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2079/README.md ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2130621
11
+ - loss:ContrastiveLoss
12
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
13
+ widget:
14
+ - source_sentence: Kim Chol-sam
15
+ sentences:
16
+ - Stankevich Sergey Nikolayevich
17
+ - Kim Chin-So’k
18
+ - Julen Lopetegui Agote
19
+ - source_sentence: دينا بنت عبد الحميد
20
+ sentences:
21
+ - Alexia van Amsberg
22
+ - Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
23
+ - Dina bint Abdul-Hamíd
24
+ - source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
25
+ sentences:
26
+ - Karpov Anatoly Evgenyevich
27
+ - GNPower Mariveles Coal Plant [former]
28
+ - Muhammed bin Nayef bin Abdul Aziz Al Saud
29
+ - source_sentence: Edward Gnehm
30
+ sentences:
31
+ - Шауэрте, Хартмут
32
+ - Ханзада Филипп, Эдинбург герцогі
33
+ - AFX
34
+ - source_sentence: Schori i Lidingö
35
+ sentences:
36
+ - Yordan Canev
37
+ - ကားပေါ့ အန်နာတိုလီ
38
+ - BYSTROV, Mikhail Ivanovich
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - cosine_accuracy
43
+ - cosine_accuracy_threshold
44
+ - cosine_f1
45
+ - cosine_f1_threshold
46
+ - cosine_precision
47
+ - cosine_recall
48
+ - cosine_ap
49
+ - cosine_mcc
50
+ model-index:
51
+ - name: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
52
+ results:
53
+ - task:
54
+ type: binary-classification
55
+ name: Binary Classification
56
+ dataset:
57
+ name: sentence transformers paraphrase multilingual MiniLM L12 v2
58
+ type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9879171547865789
62
+ name: Cosine Accuracy
63
+ - type: cosine_accuracy_threshold
64
+ value: 0.7181636691093445
65
+ name: Cosine Accuracy Threshold
66
+ - type: cosine_f1
67
+ value: 0.9815604299892273
68
+ name: Cosine F1
69
+ - type: cosine_f1_threshold
70
+ value: 0.7181636691093445
71
+ name: Cosine F1 Threshold
72
+ - type: cosine_precision
73
+ value: 0.9775832353646149
74
+ name: Cosine Precision
75
+ - type: cosine_recall
76
+ value: 0.98557011840788
77
+ name: Cosine Recall
78
+ - type: cosine_ap
79
+ value: 0.996840725826042
80
+ name: Cosine Ap
81
+ - type: cosine_mcc
82
+ value: 0.9725931427811844
83
+ name: Cosine Mcc
84
+ ---
85
+
86
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
95
+ - **Maximum Sequence Length:** 128 tokens
96
+ - **Output Dimensionality:** 384 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ <!-- - **Training Dataset:** Unknown -->
99
+ - **Language:** en
100
+ - **License:** apache-2.0
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ )
115
+ ```
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import SentenceTransformer
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SentenceTransformer("sentence_transformers_model_id")
133
+ # Run inference
134
+ sentences = [
135
+ 'Schori i Lidingö',
136
+ 'Yordan Canev',
137
+ 'ကားပေါ့ အန်နာတိုလီ',
138
+ ]
139
+ embeddings = model.encode(sentences)
140
+ print(embeddings.shape)
141
+ # [3, 384]
142
+
143
+ # Get the similarity scores for the embeddings
144
+ similarities = model.similarity(embeddings, embeddings)
145
+ print(similarities.shape)
146
+ # [3, 3]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Binary Classification
178
+
179
+ * Dataset: `sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2`
180
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
181
+
182
+ | Metric | Value |
183
+ |:--------------------------|:-----------|
184
+ | cosine_accuracy | 0.9879 |
185
+ | cosine_accuracy_threshold | 0.7182 |
186
+ | cosine_f1 | 0.9816 |
187
+ | cosine_f1_threshold | 0.7182 |
188
+ | cosine_precision | 0.9776 |
189
+ | cosine_recall | 0.9856 |
190
+ | **cosine_ap** | **0.9968** |
191
+ | cosine_mcc | 0.9726 |
192
+
193
+ <!--
194
+ ## Bias, Risks and Limitations
195
+
196
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
197
+ -->
198
+
199
+ <!--
200
+ ### Recommendations
201
+
202
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
203
+ -->
204
+
205
+ ## Training Details
206
+
207
+ ### Training Dataset
208
+
209
+ #### Unnamed Dataset
210
+
211
+ * Size: 2,130,621 training samples
212
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
213
+ * Approximate statistics based on the first 1000 samples:
214
+ | | sentence1 | sentence2 | label |
215
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
216
+ | type | string | string | float |
217
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.32 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.16 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> |
218
+ * Samples:
219
+ | sentence1 | sentence2 | label |
220
+ |:----------------------------------|:------------------------------------|:-----------------|
221
+ | <code>캐스린 설리번</code> | <code>Kathryn D. Sullivanová</code> | <code>1.0</code> |
222
+ | <code>ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ</code> | <code>Aleksander Lubocki</code> | <code>0.0</code> |
223
+ | <code>Пырванов, Георги</code> | <code>アナトーリー・セルジュコフ</code> | <code>0.0</code> |
224
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
225
+ ```json
226
+ {
227
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
228
+ "margin": 0.5,
229
+ "size_average": true
230
+ }
231
+ ```
232
+
233
+ ### Evaluation Dataset
234
+
235
+ #### Unnamed Dataset
236
+
237
+ * Size: 2,663,276 evaluation samples
238
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | sentence1 | sentence2 | label |
241
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
242
+ | type | string | string | float |
243
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.34 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.11 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
244
+ * Samples:
245
+ | sentence1 | sentence2 | label |
246
+ |:--------------------------------------|:---------------------------------------|:-----------------|
247
+ | <code>Ева Херман</code> | <code>I Xuan Karlos</code> | <code>0.0</code> |
248
+ | <code>Кличков Андрій Євгенович</code> | <code>Андрэй Яўгенавіч Клычкоў</code> | <code>1.0</code> |
249
+ | <code>Кинах А.</code> | <code>Senator John Hickenlooper</code> | <code>0.0</code> |
250
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
251
+ ```json
252
+ {
253
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
254
+ "margin": 0.5,
255
+ "size_average": true
256
+ }
257
+ ```
258
+
259
+ ### Training Hyperparameters
260
+ #### Non-Default Hyperparameters
261
+
262
+ - `eval_strategy`: epoch
263
+ - `per_device_train_batch_size`: 768
264
+ - `per_device_eval_batch_size`: 768
265
+ - `gradient_accumulation_steps`: 4
266
+ - `learning_rate`: 3e-05
267
+ - `weight_decay`: 0.01
268
+ - `num_train_epochs`: 4
269
+ - `warmup_ratio`: 0.1
270
+ - `fp16`: True
271
+ - `load_best_model_at_end`: True
272
+ - `optim`: adafactor
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: epoch
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 768
282
+ - `per_device_eval_batch_size`: 768
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 4
286
+ - `eval_accumulation_steps`: None
287
+ - `torch_empty_cache_steps`: None
288
+ - `learning_rate`: 3e-05
289
+ - `weight_decay`: 0.01
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 1.0
294
+ - `num_train_epochs`: 4
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: linear
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.1
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: True
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: True
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `tp_size`: 0
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adafactor
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `use_liger_kernel`: False
386
+ - `eval_use_gather_object`: False
387
+ - `average_tokens_across_devices`: False
388
+ - `prompts`: None
389
+ - `batch_sampler`: batch_sampler
390
+ - `multi_dataset_batch_sampler`: proportional
391
+
392
+ </details>
393
+
394
+ ### Training Logs
395
+ | Epoch | Step | Training Loss | Validation Loss | sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap |
396
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------------------------------------------------:|
397
+ | -1 | -1 | - | - | 0.7140 |
398
+ | 0.7207 | 500 | 0.038 | - | - |
399
+ | 0.9989 | 693 | - | 0.0028 | 0.9911 |
400
+ | 1.4425 | 1000 | 0.0128 | - | - |
401
+ | 1.9989 | 1386 | - | 0.0021 | 0.9956 |
402
+ | 2.1643 | 1500 | 0.0084 | - | - |
403
+ | 2.8850 | 2000 | 0.0065 | - | - |
404
+ | 2.9989 | 2079 | - | 0.0015 | 0.9968 |
405
+
406
+
407
+ ### Framework Versions
408
+ - Python: 3.12.9
409
+ - Sentence Transformers: 3.4.1
410
+ - Transformers: 4.51.3
411
+ - PyTorch: 2.7.0+cu126
412
+ - Accelerate: 1.6.0
413
+ - Datasets: 3.6.0
414
+ - Tokenizers: 0.21.1
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ #### ContrastiveLoss
434
+ ```bibtex
435
+ @inproceedings{hadsell2006dimensionality,
436
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
437
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
438
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
439
+ year={2006},
440
+ volume={2},
441
+ number={},
442
+ pages={1735-1742},
443
+ doi={10.1109/CVPR.2006.100}
444
+ }
445
+ ```
446
+
447
+ <!--
448
+ ## Glossary
449
+
450
+ *Clearly define terms in order to be accessible across audiences.*
451
+ -->
452
+
453
+ <!--
454
+ ## Model Card Authors
455
+
456
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
457
+ -->
458
+
459
+ <!--
460
+ ## Model Card Contact
461
+
462
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
463
+ -->
checkpoint-2079/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-2079/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2079/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be4aae24e60c6b621f1ba97cb0d24aabcab5321c4240d46d5edb7e80659934ee
3
+ size 470637416
checkpoint-2079/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-2079/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e098921ba43359be5ed80e5ba27c5533b3a15897c5d1e31312ca9a0532d345
3
+ size 1715019
checkpoint-2079/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77bc5024a787692a4d7f38816d8d4cebfac75844ad0e708d5509da8b49d34e47
3
+ size 14645
checkpoint-2079/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f10354d1d65a8ea0cab60b6880392a6fdef91bdc8d2eafbb18ca1599d3a27f7d
3
+ size 1383
checkpoint-2079/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f50b78397a5b4f9a0d3308e8b1ad396b4267f9f2fa04a1619312b44f7b2ef77
3
+ size 1465
checkpoint-2079/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-2079/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-2079/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-2079/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-2079/trainer_state.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 2079,
3
+ "best_metric": 0.0014588695485144854,
4
+ "best_model_checkpoint": "data/fine-tuned-sbert-sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-original-adafactor/checkpoint-2079",
5
+ "epoch": 2.998918918918919,
6
+ "eval_steps": 100,
7
+ "global_step": 2079,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.7207207207207207,
14
+ "grad_norm": 0.15965162217617035,
15
+ "learning_rate": 2.7341619887730554e-05,
16
+ "loss": 0.038,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 0.9989189189189189,
21
+ "eval_loss": 0.002777691464871168,
22
+ "eval_runtime": 792.7494,
23
+ "eval_samples_per_second": 3359.543,
24
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.975327415818089,
25
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7701693773269653,
26
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9911172257655966,
27
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9624723810391563,
28
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7597355842590332,
29
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9441287064717891,
30
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9527175567355498,
31
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9724290300680068,
32
+ "eval_steps_per_second": 4.375,
33
+ "step": 693
34
+ },
35
+ {
36
+ "epoch": 1.4425225225225224,
37
+ "grad_norm": 0.11966603249311447,
38
+ "learning_rate": 2.1327185244587008e-05,
39
+ "loss": 0.0128,
40
+ "step": 1000
41
+ },
42
+ {
43
+ "epoch": 1.998918918918919,
44
+ "eval_loss": 0.002118302509188652,
45
+ "eval_runtime": 789.0568,
46
+ "eval_samples_per_second": 3375.265,
47
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9846242227629088,
48
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.6801187992095947,
49
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9955904030209028,
50
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9765449140552956,
51
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.6780189275741577,
52
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9651303277408154,
53
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9721848413657824,
54
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9809442711989229,
55
+ "eval_steps_per_second": 4.395,
56
+ "step": 1386
57
+ },
58
+ {
59
+ "epoch": 2.1643243243243244,
60
+ "grad_norm": 0.04637068510055542,
61
+ "learning_rate": 1.5312750601443466e-05,
62
+ "loss": 0.0084,
63
+ "step": 1500
64
+ },
65
+ {
66
+ "epoch": 2.885045045045045,
67
+ "grad_norm": 0.07652924209833145,
68
+ "learning_rate": 9.29831595829992e-06,
69
+ "loss": 0.0065,
70
+ "step": 2000
71
+ },
72
+ {
73
+ "epoch": 2.998918918918919,
74
+ "eval_loss": 0.0014588695485144854,
75
+ "eval_runtime": 782.4422,
76
+ "eval_samples_per_second": 3403.799,
77
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9879171547865789,
78
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7181636691093445,
79
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.996840725826042,
80
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9815604299892273,
81
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7181636691093445,
82
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9725931427811844,
83
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9775832353646149,
84
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.98557011840788,
85
+ "eval_steps_per_second": 4.432,
86
+ "step": 2079
87
+ }
88
+ ],
89
+ "logging_steps": 500,
90
+ "max_steps": 2772,
91
+ "num_input_tokens_seen": 0,
92
+ "num_train_epochs": 4,
93
+ "save_steps": 100,
94
+ "stateful_callbacks": {
95
+ "EarlyStoppingCallback": {
96
+ "args": {
97
+ "early_stopping_patience": 1,
98
+ "early_stopping_threshold": 0.0
99
+ },
100
+ "attributes": {
101
+ "early_stopping_patience_counter": 0
102
+ }
103
+ },
104
+ "TrainerControl": {
105
+ "args": {
106
+ "should_epoch_stop": false,
107
+ "should_evaluate": false,
108
+ "should_log": false,
109
+ "should_save": true,
110
+ "should_training_stop": false
111
+ },
112
+ "attributes": {}
113
+ }
114
+ },
115
+ "total_flos": 0.0,
116
+ "train_batch_size": 768,
117
+ "trial_name": null,
118
+ "trial_params": null
119
+ }
checkpoint-2079/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee490aac80277022fdde76dd6763dbabee88802149f3f246e7d0572b504fcdaf
3
+ size 6097
checkpoint-2079/unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260
checkpoint-2772/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2772/README.md ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:2130621
11
+ - loss:ContrastiveLoss
12
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
13
+ widget:
14
+ - source_sentence: Kim Chol-sam
15
+ sentences:
16
+ - Stankevich Sergey Nikolayevich
17
+ - Kim Chin-So’k
18
+ - Julen Lopetegui Agote
19
+ - source_sentence: دينا بنت عبد الحميد
20
+ sentences:
21
+ - Alexia van Amsberg
22
+ - Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
23
+ - Dina bint Abdul-Hamíd
24
+ - source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
25
+ sentences:
26
+ - Karpov Anatoly Evgenyevich
27
+ - GNPower Mariveles Coal Plant [former]
28
+ - Muhammed bin Nayef bin Abdul Aziz Al Saud
29
+ - source_sentence: Edward Gnehm
30
+ sentences:
31
+ - Шауэрте, Хартмут
32
+ - Ханзада Филипп, Эдинбург герцогі
33
+ - AFX
34
+ - source_sentence: Schori i Lidingö
35
+ sentences:
36
+ - Yordan Canev
37
+ - ကားပေါ့ အန်နာတိုလီ
38
+ - BYSTROV, Mikhail Ivanovich
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ metrics:
42
+ - cosine_accuracy
43
+ - cosine_accuracy_threshold
44
+ - cosine_f1
45
+ - cosine_f1_threshold
46
+ - cosine_precision
47
+ - cosine_recall
48
+ - cosine_ap
49
+ - cosine_mcc
50
+ model-index:
51
+ - name: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
52
+ results:
53
+ - task:
54
+ type: binary-classification
55
+ name: Binary Classification
56
+ dataset:
57
+ name: sentence transformers paraphrase multilingual MiniLM L12 v2
58
+ type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.9885216725241056
62
+ name: Cosine Accuracy
63
+ - type: cosine_accuracy_threshold
64
+ value: 0.7183246612548828
65
+ name: Cosine Accuracy Threshold
66
+ - type: cosine_f1
67
+ value: 0.9824706124974221
68
+ name: Cosine F1
69
+ - type: cosine_f1_threshold
70
+ value: 0.7085607051849365
71
+ name: Cosine F1 Threshold
72
+ - type: cosine_precision
73
+ value: 0.9782229269572558
74
+ name: Cosine Precision
75
+ - type: cosine_recall
76
+ value: 0.9867553479166427
77
+ name: Cosine Recall
78
+ - type: cosine_ap
79
+ value: 0.9971022799526896
80
+ name: Cosine Ap
81
+ - type: cosine_mcc
82
+ value: 0.9739458779668466
83
+ name: Cosine Mcc
84
+ ---
85
+
86
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-name-matcher-original
87
+
88
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
89
+
90
+ ## Model Details
91
+
92
+ ### Model Description
93
+ - **Model Type:** Sentence Transformer
94
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
95
+ - **Maximum Sequence Length:** 128 tokens
96
+ - **Output Dimensionality:** 384 dimensions
97
+ - **Similarity Function:** Cosine Similarity
98
+ <!-- - **Training Dataset:** Unknown -->
99
+ - **Language:** en
100
+ - **License:** apache-2.0
101
+
102
+ ### Model Sources
103
+
104
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
105
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
106
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
107
+
108
+ ### Full Model Architecture
109
+
110
+ ```
111
+ SentenceTransformer(
112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
114
+ )
115
+ ```
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import SentenceTransformer
130
+
131
+ # Download from the 🤗 Hub
132
+ model = SentenceTransformer("sentence_transformers_model_id")
133
+ # Run inference
134
+ sentences = [
135
+ 'Schori i Lidingö',
136
+ 'Yordan Canev',
137
+ 'ကားပေါ့ အန်နာတိုလီ',
138
+ ]
139
+ embeddings = model.encode(sentences)
140
+ print(embeddings.shape)
141
+ # [3, 384]
142
+
143
+ # Get the similarity scores for the embeddings
144
+ similarities = model.similarity(embeddings, embeddings)
145
+ print(similarities.shape)
146
+ # [3, 3]
147
+ ```
148
+
149
+ <!--
150
+ ### Direct Usage (Transformers)
151
+
152
+ <details><summary>Click to see the direct usage in Transformers</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Downstream Usage (Sentence Transformers)
159
+
160
+ You can finetune this model on your own dataset.
161
+
162
+ <details><summary>Click to expand</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Out-of-Scope Use
169
+
170
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
171
+ -->
172
+
173
+ ## Evaluation
174
+
175
+ ### Metrics
176
+
177
+ #### Binary Classification
178
+
179
+ * Dataset: `sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2`
180
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
181
+
182
+ | Metric | Value |
183
+ |:--------------------------|:-----------|
184
+ | cosine_accuracy | 0.9885 |
185
+ | cosine_accuracy_threshold | 0.7183 |
186
+ | cosine_f1 | 0.9825 |
187
+ | cosine_f1_threshold | 0.7086 |
188
+ | cosine_precision | 0.9782 |
189
+ | cosine_recall | 0.9868 |
190
+ | **cosine_ap** | **0.9971** |
191
+ | cosine_mcc | 0.9739 |
192
+
193
+ <!--
194
+ ## Bias, Risks and Limitations
195
+
196
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
197
+ -->
198
+
199
+ <!--
200
+ ### Recommendations
201
+
202
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
203
+ -->
204
+
205
+ ## Training Details
206
+
207
+ ### Training Dataset
208
+
209
+ #### Unnamed Dataset
210
+
211
+ * Size: 2,130,621 training samples
212
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
213
+ * Approximate statistics based on the first 1000 samples:
214
+ | | sentence1 | sentence2 | label |
215
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
216
+ | type | string | string | float |
217
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.32 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.16 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> |
218
+ * Samples:
219
+ | sentence1 | sentence2 | label |
220
+ |:----------------------------------|:------------------------------------|:-----------------|
221
+ | <code>캐스린 설리번</code> | <code>Kathryn D. Sullivanová</code> | <code>1.0</code> |
222
+ | <code>ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ</code> | <code>Aleksander Lubocki</code> | <code>0.0</code> |
223
+ | <code>Пырванов, Георги</code> | <code>アナトーリー・セルジュコフ</code> | <code>0.0</code> |
224
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
225
+ ```json
226
+ {
227
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
228
+ "margin": 0.5,
229
+ "size_average": true
230
+ }
231
+ ```
232
+
233
+ ### Evaluation Dataset
234
+
235
+ #### Unnamed Dataset
236
+
237
+ * Size: 2,663,276 evaluation samples
238
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | sentence1 | sentence2 | label |
241
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
242
+ | type | string | string | float |
243
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.34 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.11 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
244
+ * Samples:
245
+ | sentence1 | sentence2 | label |
246
+ |:--------------------------------------|:---------------------------------------|:-----------------|
247
+ | <code>Ева Херман</code> | <code>I Xuan Karlos</code> | <code>0.0</code> |
248
+ | <code>Кличков Андрій Євгенович</code> | <code>Андрэй Яўгенавіч Клычкоў</code> | <code>1.0</code> |
249
+ | <code>Кинах А.</code> | <code>Senator John Hickenlooper</code> | <code>0.0</code> |
250
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
251
+ ```json
252
+ {
253
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
254
+ "margin": 0.5,
255
+ "size_average": true
256
+ }
257
+ ```
258
+
259
+ ### Training Hyperparameters
260
+ #### Non-Default Hyperparameters
261
+
262
+ - `eval_strategy`: epoch
263
+ - `per_device_train_batch_size`: 768
264
+ - `per_device_eval_batch_size`: 768
265
+ - `gradient_accumulation_steps`: 4
266
+ - `learning_rate`: 3e-05
267
+ - `weight_decay`: 0.01
268
+ - `num_train_epochs`: 4
269
+ - `warmup_ratio`: 0.1
270
+ - `fp16`: True
271
+ - `load_best_model_at_end`: True
272
+ - `optim`: adafactor
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: epoch
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 768
282
+ - `per_device_eval_batch_size`: 768
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 4
286
+ - `eval_accumulation_steps`: None
287
+ - `torch_empty_cache_steps`: None
288
+ - `learning_rate`: 3e-05
289
+ - `weight_decay`: 0.01
290
+ - `adam_beta1`: 0.9
291
+ - `adam_beta2`: 0.999
292
+ - `adam_epsilon`: 1e-08
293
+ - `max_grad_norm`: 1.0
294
+ - `num_train_epochs`: 4
295
+ - `max_steps`: -1
296
+ - `lr_scheduler_type`: linear
297
+ - `lr_scheduler_kwargs`: {}
298
+ - `warmup_ratio`: 0.1
299
+ - `warmup_steps`: 0
300
+ - `log_level`: passive
301
+ - `log_level_replica`: warning
302
+ - `log_on_each_node`: True
303
+ - `logging_nan_inf_filter`: True
304
+ - `save_safetensors`: True
305
+ - `save_on_each_node`: False
306
+ - `save_only_model`: False
307
+ - `restore_callback_states_from_checkpoint`: False
308
+ - `no_cuda`: False
309
+ - `use_cpu`: False
310
+ - `use_mps_device`: False
311
+ - `seed`: 42
312
+ - `data_seed`: None
313
+ - `jit_mode_eval`: False
314
+ - `use_ipex`: False
315
+ - `bf16`: False
316
+ - `fp16`: True
317
+ - `fp16_opt_level`: O1
318
+ - `half_precision_backend`: auto
319
+ - `bf16_full_eval`: False
320
+ - `fp16_full_eval`: False
321
+ - `tf32`: None
322
+ - `local_rank`: 0
323
+ - `ddp_backend`: None
324
+ - `tpu_num_cores`: None
325
+ - `tpu_metrics_debug`: False
326
+ - `debug`: []
327
+ - `dataloader_drop_last`: False
328
+ - `dataloader_num_workers`: 0
329
+ - `dataloader_prefetch_factor`: None
330
+ - `past_index`: -1
331
+ - `disable_tqdm`: False
332
+ - `remove_unused_columns`: True
333
+ - `label_names`: None
334
+ - `load_best_model_at_end`: True
335
+ - `ignore_data_skip`: False
336
+ - `fsdp`: []
337
+ - `fsdp_min_num_params`: 0
338
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
339
+ - `tp_size`: 0
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adafactor
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `use_liger_kernel`: False
386
+ - `eval_use_gather_object`: False
387
+ - `average_tokens_across_devices`: False
388
+ - `prompts`: None
389
+ - `batch_sampler`: batch_sampler
390
+ - `multi_dataset_batch_sampler`: proportional
391
+
392
+ </details>
393
+
394
+ ### Training Logs
395
+ | Epoch | Step | Training Loss | Validation Loss | sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap |
396
+ |:------:|:----:|:-------------:|:---------------:|:---------------------------------------------------------------------:|
397
+ | -1 | -1 | - | - | 0.7140 |
398
+ | 0.7207 | 500 | 0.038 | - | - |
399
+ | 0.9989 | 693 | - | 0.0028 | 0.9911 |
400
+ | 1.4425 | 1000 | 0.0128 | - | - |
401
+ | 1.9989 | 1386 | - | 0.0021 | 0.9956 |
402
+ | 2.1643 | 1500 | 0.0084 | - | - |
403
+ | 2.8850 | 2000 | 0.0065 | - | - |
404
+ | 2.9989 | 2079 | - | 0.0015 | 0.9968 |
405
+ | 3.6068 | 2500 | 0.0056 | - | - |
406
+ | 3.9989 | 2772 | - | 0.0014 | 0.9971 |
407
+
408
+
409
+ ### Framework Versions
410
+ - Python: 3.12.9
411
+ - Sentence Transformers: 3.4.1
412
+ - Transformers: 4.51.3
413
+ - PyTorch: 2.7.0+cu126
414
+ - Accelerate: 1.6.0
415
+ - Datasets: 3.6.0
416
+ - Tokenizers: 0.21.1
417
+
418
+ ## Citation
419
+
420
+ ### BibTeX
421
+
422
+ #### Sentence Transformers
423
+ ```bibtex
424
+ @inproceedings{reimers-2019-sentence-bert,
425
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
426
+ author = "Reimers, Nils and Gurevych, Iryna",
427
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
428
+ month = "11",
429
+ year = "2019",
430
+ publisher = "Association for Computational Linguistics",
431
+ url = "https://arxiv.org/abs/1908.10084",
432
+ }
433
+ ```
434
+
435
+ #### ContrastiveLoss
436
+ ```bibtex
437
+ @inproceedings{hadsell2006dimensionality,
438
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
439
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
440
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
441
+ year={2006},
442
+ volume={2},
443
+ number={},
444
+ pages={1735-1742},
445
+ doi={10.1109/CVPR.2006.100}
446
+ }
447
+ ```
448
+
449
+ <!--
450
+ ## Glossary
451
+
452
+ *Clearly define terms in order to be accessible across audiences.*
453
+ -->
454
+
455
+ <!--
456
+ ## Model Card Authors
457
+
458
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
459
+ -->
460
+
461
+ <!--
462
+ ## Model Card Contact
463
+
464
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
465
+ -->
checkpoint-2772/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 250037
25
+ }
checkpoint-2772/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2772/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86cbcc5809568045ff4d80ea5eff6ddee83cd424541447967273a7023c7e187e
3
+ size 470637416
checkpoint-2772/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
checkpoint-2772/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3e5f9bb09ee4343f28e1fd561f33a38c1f23ae8dae410e77420c9278ae6ac8
3
+ size 1715019
checkpoint-2772/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd92514717bc3cb44100d9bb038875d49cd30e2d1925b33a6ddd1f8bbba8e940
3
+ size 14645
checkpoint-2772/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01d00f48ebab6e58e9ae555bb7a1dc0eb436c3b5115601ee219420aae460b550
3
+ size 1383
checkpoint-2772/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c76e070cc219bc8a3b3a9bbab555445f78c28c96a21cc55f454628bf0d5ef07
3
+ size 1465
checkpoint-2772/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
checkpoint-2772/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-2772/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
checkpoint-2772/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 128,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
checkpoint-2772/trainer_state.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 2772,
3
+ "best_metric": 0.001379696768708527,
4
+ "best_model_checkpoint": "data/fine-tuned-sbert-sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-original-adafactor/checkpoint-2772",
5
+ "epoch": 3.998918918918919,
6
+ "eval_steps": 100,
7
+ "global_step": 2772,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.7207207207207207,
14
+ "grad_norm": 0.15965162217617035,
15
+ "learning_rate": 2.7341619887730554e-05,
16
+ "loss": 0.038,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 0.9989189189189189,
21
+ "eval_loss": 0.002777691464871168,
22
+ "eval_runtime": 792.7494,
23
+ "eval_samples_per_second": 3359.543,
24
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.975327415818089,
25
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7701693773269653,
26
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9911172257655966,
27
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9624723810391563,
28
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7597355842590332,
29
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9441287064717891,
30
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9527175567355498,
31
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9724290300680068,
32
+ "eval_steps_per_second": 4.375,
33
+ "step": 693
34
+ },
35
+ {
36
+ "epoch": 1.4425225225225224,
37
+ "grad_norm": 0.11966603249311447,
38
+ "learning_rate": 2.1327185244587008e-05,
39
+ "loss": 0.0128,
40
+ "step": 1000
41
+ },
42
+ {
43
+ "epoch": 1.998918918918919,
44
+ "eval_loss": 0.002118302509188652,
45
+ "eval_runtime": 789.0568,
46
+ "eval_samples_per_second": 3375.265,
47
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9846242227629088,
48
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.6801187992095947,
49
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9955904030209028,
50
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9765449140552956,
51
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.6780189275741577,
52
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9651303277408154,
53
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9721848413657824,
54
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9809442711989229,
55
+ "eval_steps_per_second": 4.395,
56
+ "step": 1386
57
+ },
58
+ {
59
+ "epoch": 2.1643243243243244,
60
+ "grad_norm": 0.04637068510055542,
61
+ "learning_rate": 1.5312750601443466e-05,
62
+ "loss": 0.0084,
63
+ "step": 1500
64
+ },
65
+ {
66
+ "epoch": 2.885045045045045,
67
+ "grad_norm": 0.07652924209833145,
68
+ "learning_rate": 9.29831595829992e-06,
69
+ "loss": 0.0065,
70
+ "step": 2000
71
+ },
72
+ {
73
+ "epoch": 2.998918918918919,
74
+ "eval_loss": 0.0014588695485144854,
75
+ "eval_runtime": 782.4422,
76
+ "eval_samples_per_second": 3403.799,
77
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9879171547865789,
78
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7181636691093445,
79
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.996840725826042,
80
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9815604299892273,
81
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7181636691093445,
82
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9725931427811844,
83
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9775832353646149,
84
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.98557011840788,
85
+ "eval_steps_per_second": 4.432,
86
+ "step": 2079
87
+ },
88
+ {
89
+ "epoch": 3.606846846846847,
90
+ "grad_norm": 0.04797244444489479,
91
+ "learning_rate": 3.2838813151563755e-06,
92
+ "loss": 0.0056,
93
+ "step": 2500
94
+ },
95
+ {
96
+ "epoch": 3.998918918918919,
97
+ "eval_loss": 0.001379696768708527,
98
+ "eval_runtime": 780.7313,
99
+ "eval_samples_per_second": 3411.258,
100
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy": 0.9885216725241056,
101
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_accuracy_threshold": 0.7183246612548828,
102
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap": 0.9971022799526896,
103
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1": 0.9824706124974221,
104
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_f1_threshold": 0.7085607051849365,
105
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_mcc": 0.9739458779668466,
106
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_precision": 0.9782229269572558,
107
+ "eval_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_recall": 0.9867553479166427,
108
+ "eval_steps_per_second": 4.442,
109
+ "step": 2772
110
+ }
111
+ ],
112
+ "logging_steps": 500,
113
+ "max_steps": 2772,
114
+ "num_input_tokens_seen": 0,
115
+ "num_train_epochs": 4,
116
+ "save_steps": 100,
117
+ "stateful_callbacks": {
118
+ "EarlyStoppingCallback": {
119
+ "args": {
120
+ "early_stopping_patience": 1,
121
+ "early_stopping_threshold": 0.0
122
+ },
123
+ "attributes": {
124
+ "early_stopping_patience_counter": 0
125
+ }
126
+ },
127
+ "TrainerControl": {
128
+ "args": {
129
+ "should_epoch_stop": false,
130
+ "should_evaluate": false,
131
+ "should_log": false,
132
+ "should_save": true,
133
+ "should_training_stop": true
134
+ },
135
+ "attributes": {}
136
+ }
137
+ },
138
+ "total_flos": 0.0,
139
+ "train_batch_size": 768,
140
+ "trial_name": null,
141
+ "trial_params": null
142
+ }