|
|
|
|
|
import transformers |
|
|
import datasets |
|
|
from datasets import load_dataset |
|
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments |
|
|
|
|
|
|
|
|
|
|
|
ds_chatgpt_prompts = load_dataset("fka/awesome-chatgpt-prompts") |
|
|
ds_open_thoughts = load_dataset("open-thoughts/OpenThoughts-114k") |
|
|
ds_bangla_math = load_dataset("hamim-87/Ashrafur_bangla_math") |
|
|
ds_deepseek_prover = load_dataset("deepseek-ai/DeepSeek-Prover-V1") |
|
|
ds = load_dataset("facebook/natural_reasoning") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1", trust_remote_code=True) |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": "Who are you?"} |
|
|
] |
|
|
|
|
|
|
|
|
generated_response = pipe(messages) |
|
|
print("Generación de texto:", generated_response) |
|
|
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True) |
|
|
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True) |
|
|
|
|
|
|
|
|
input_text = "What is the capital of France?" |
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
|
|
|
|
|
generated_outputs = model.generate(inputs['input_ids'], max_length=50) |
|
|
generated_text = tokenizer.decode(generated_outputs[0], skip_special_tokens=True) |
|
|
print("Generación con el modelo cargado:", generated_text) |
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
|
output_dir='./results', |
|
|
evaluation_strategy="epoch", |
|
|
learning_rate=2e-5, |
|
|
per_device_train_batch_size=8, |
|
|
per_device_eval_batch_size=16, |
|
|
num_train_epochs=3, |
|
|
weight_decay=0.01, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_dataset = ds_chatgpt_prompts['train'] |
|
|
eval_dataset = ds_chatgpt_prompts['test'] |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
) |
|
|
|
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
trainer.save_model('./my_trained_model') |
|
|
|
|
|
|
|
|
results = trainer.evaluate() |
|
|
print("Evaluación del modelo:", results) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
translation_pipe = pipeline("translation", model="akhooli/mbart-large-cc25-ar-en", trust_remote_code=True) |
|
|
translation_input = "Hello, how are you?" |
|
|
translated_output = translation_pipe(translation_input) |
|
|
print("Traducción:", translated_output) |
|
|
|
|
|
|
|
|
gte_pipe = pipeline("text-classification", model="Alibaba-NLP/gte-multilingual-reranker-base", trust_remote_code=True) |
|
|
gte_input = "What are the benefits of AI?" |
|
|
gte_output = gte_pipe(gte_input) |
|
|
print("Clasificación GTE:", gte_output) |
|
|
|
|
|
|
|
|
|