Update README.md
Browse files
README.md
CHANGED
@@ -1,135 +1,135 @@
|
|
1 |
-
---
|
2 |
-
datasets:
|
3 |
-
- starfishdata/playground_endocronology_notes_1500
|
4 |
-
metrics:
|
5 |
-
- bertscore
|
6 |
-
- bleurt
|
7 |
-
- rouge
|
8 |
-
library_name: transformers
|
9 |
-
base_model:
|
10 |
-
-
|
11 |
-
license: apache-2.0
|
12 |
-
language:
|
13 |
-
- en
|
14 |
-
---
|
15 |
-
|
16 |
-
## Model Details
|
17 |
-
* **Base Model:** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
18 |
-
* **Fine-tuning Method:** PEFT (Parameter-Efficient Fine-Tuning) using LoRA.
|
19 |
-
* **Training Framework:** Unsloth library for accelerated fine-tuning and merging.
|
20 |
-
* **Task:** Text Generation (specifically, generating structured SOAP notes).
|
21 |
-
|
22 |
-
## Paper
|
23 |
-
https://arxiv.org/abs/2507.03033
|
24 |
-
|
25 |
-
https://www.medrxiv.org/content/10.1101/2025.07.01.25330679v1
|
26 |
-
|
27 |
-
## Intended Use
|
28 |
-
Input: Free-text medical transcripts (doctor-patient conversations or dictated notes).
|
29 |
-
|
30 |
-
Output: Structured medical notes with clearly defined sections (Demographics, Presenting Illness, History, etc.).
|
31 |
-
|
32 |
-
|
33 |
-
```python
|
34 |
-
|
35 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
-
|
37 |
-
model_name = "
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
40 |
-
|
41 |
-
|
42 |
-
SYSTEM_PROMPT = """Convert the following medical transcript to a structured medical note.
|
43 |
-
|
44 |
-
Use these sections in this order:
|
45 |
-
|
46 |
-
1. Demographics
|
47 |
-
- Name, Age, Sex, DOB
|
48 |
-
|
49 |
-
2. Presenting Illness
|
50 |
-
- Bullet point statements of the main problem and duration.
|
51 |
-
|
52 |
-
3. History of Presenting Illness
|
53 |
-
- Chronological narrative: symptom onset, progression, modifiers, associated factors.
|
54 |
-
|
55 |
-
4. Past Medical History
|
56 |
-
- List chronic illnesses and past medical diagnoses mentioned in the transcript. Do not include surgeries.
|
57 |
-
|
58 |
-
5. Surgical History
|
59 |
-
- List prior surgeries with year if known, as mentioned in the transcript.
|
60 |
-
|
61 |
-
6. Family History
|
62 |
-
- Relevant family history mentioned in the transcript.
|
63 |
-
|
64 |
-
7. Social History
|
65 |
-
- Occupation, tobacco/alcohol/drug use, exercise, living situation if mentioned in the transcript.
|
66 |
-
|
67 |
-
8. Allergy History
|
68 |
-
- Drug, food, or environmental allergies and reactions, if mentioned in the transcript.
|
69 |
-
|
70 |
-
9. Medication History
|
71 |
-
- List medications the patient is already taking. Do not include any new or proposed drugs in this section.
|
72 |
-
|
73 |
-
10. Dietary History
|
74 |
-
- If unrelated, write “Not applicable”; otherwise, summarize the diet pattern.
|
75 |
-
|
76 |
-
11. Review of Systems
|
77 |
-
- Head-to-toe, alphabetically ordered bullet points; include both positives and pertinent negatives as mentioned in the transcript.
|
78 |
-
|
79 |
-
12. Physical Exam Findings
|
80 |
-
- Vital Signs (BP, HR, RR, Temp, SpO₂, HT, WT, BMI) if mentioned in the transcript.
|
81 |
-
- Structured by system: General, HEENT, Cardiovascular, Respiratory, Abdomen, Neurological, Musculoskeletal, Skin, Psychiatric—as mentioned in the transcript.
|
82 |
-
|
83 |
-
13. Labs and Imaging
|
84 |
-
- Summarize labs and imaging results.
|
85 |
-
|
86 |
-
14. ASSESSMENT
|
87 |
-
- Provide a brief summary of the clinical assessment or diagnosis based on the information in the transcript.
|
88 |
-
|
89 |
-
15. PLAN
|
90 |
-
- Outline the proposed management plan, including treatments, medications, follow-up, and patient instructions as discussed.
|
91 |
-
|
92 |
-
Please use only the information present in the transcript. If an information is not mentioned or not applicable, state “Not applicable.” Format each section clearly with its heading.
|
93 |
-
"""
|
94 |
-
|
95 |
-
def generate_structured_note(transcript):
|
96 |
-
message = [
|
97 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
98 |
-
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
99 |
-
]
|
100 |
-
|
101 |
-
inputs = tokenizer.apply_chat_template(
|
102 |
-
message,
|
103 |
-
tokenize=True,
|
104 |
-
add_generation_prompt=True,
|
105 |
-
return_tensors="pt",
|
106 |
-
).to(model.device)
|
107 |
-
|
108 |
-
outputs = model.generate(
|
109 |
-
input_ids=inputs,
|
110 |
-
max_new_tokens=2048,
|
111 |
-
temperature=0.2,
|
112 |
-
top_p=0.85,
|
113 |
-
min_p=0.1,
|
114 |
-
top_k=20,
|
115 |
-
do_sample=True,
|
116 |
-
eos_token_id=tokenizer.eos_token_id,
|
117 |
-
use_cache=True,
|
118 |
-
)
|
119 |
-
|
120 |
-
input_token_len = len(inputs[0])
|
121 |
-
generated_tokens = outputs[:, input_token_len:]
|
122 |
-
note = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
123 |
-
if "<START_NOTES>" in note:
|
124 |
-
note = note.split("<START_NOTES>")[-1].strip()
|
125 |
-
if "<END_NOTES>" in note:
|
126 |
-
note = note.split("<END_NOTES>")[0].strip()
|
127 |
-
return note
|
128 |
-
|
129 |
-
# Example usage
|
130 |
-
transcript = "Patient is a 45-year-old male presenting with..."
|
131 |
-
note = generate_structured_note(transcript)
|
132 |
-
print("\n--- Generated Response ---")
|
133 |
-
print(note)
|
134 |
-
print("---------------------------")
|
135 |
```
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- starfishdata/playground_endocronology_notes_1500
|
4 |
+
metrics:
|
5 |
+
- bertscore
|
6 |
+
- bleurt
|
7 |
+
- rouge
|
8 |
+
library_name: transformers
|
9 |
+
base_model:
|
10 |
+
- meta-llama/Llama-3.2-1B-Instruct
|
11 |
+
license: apache-2.0
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
---
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
* **Base Model:** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
18 |
+
* **Fine-tuning Method:** PEFT (Parameter-Efficient Fine-Tuning) using LoRA.
|
19 |
+
* **Training Framework:** Unsloth library for accelerated fine-tuning and merging.
|
20 |
+
* **Task:** Text Generation (specifically, generating structured SOAP notes).
|
21 |
+
|
22 |
+
## Paper
|
23 |
+
https://arxiv.org/abs/2507.03033
|
24 |
+
|
25 |
+
https://www.medrxiv.org/content/10.1101/2025.07.01.25330679v1
|
26 |
+
|
27 |
+
## Intended Use
|
28 |
+
Input: Free-text medical transcripts (doctor-patient conversations or dictated notes).
|
29 |
+
|
30 |
+
Output: Structured medical notes with clearly defined sections (Demographics, Presenting Illness, History, etc.).
|
31 |
+
|
32 |
+
|
33 |
+
```python
|
34 |
+
|
35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
+
|
37 |
+
model_name = "GetSoloTech/Llama3.2-Medical-Notes-1B"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
40 |
+
|
41 |
+
|
42 |
+
SYSTEM_PROMPT = """Convert the following medical transcript to a structured medical note.
|
43 |
+
|
44 |
+
Use these sections in this order:
|
45 |
+
|
46 |
+
1. Demographics
|
47 |
+
- Name, Age, Sex, DOB
|
48 |
+
|
49 |
+
2. Presenting Illness
|
50 |
+
- Bullet point statements of the main problem and duration.
|
51 |
+
|
52 |
+
3. History of Presenting Illness
|
53 |
+
- Chronological narrative: symptom onset, progression, modifiers, associated factors.
|
54 |
+
|
55 |
+
4. Past Medical History
|
56 |
+
- List chronic illnesses and past medical diagnoses mentioned in the transcript. Do not include surgeries.
|
57 |
+
|
58 |
+
5. Surgical History
|
59 |
+
- List prior surgeries with year if known, as mentioned in the transcript.
|
60 |
+
|
61 |
+
6. Family History
|
62 |
+
- Relevant family history mentioned in the transcript.
|
63 |
+
|
64 |
+
7. Social History
|
65 |
+
- Occupation, tobacco/alcohol/drug use, exercise, living situation if mentioned in the transcript.
|
66 |
+
|
67 |
+
8. Allergy History
|
68 |
+
- Drug, food, or environmental allergies and reactions, if mentioned in the transcript.
|
69 |
+
|
70 |
+
9. Medication History
|
71 |
+
- List medications the patient is already taking. Do not include any new or proposed drugs in this section.
|
72 |
+
|
73 |
+
10. Dietary History
|
74 |
+
- If unrelated, write “Not applicable”; otherwise, summarize the diet pattern.
|
75 |
+
|
76 |
+
11. Review of Systems
|
77 |
+
- Head-to-toe, alphabetically ordered bullet points; include both positives and pertinent negatives as mentioned in the transcript.
|
78 |
+
|
79 |
+
12. Physical Exam Findings
|
80 |
+
- Vital Signs (BP, HR, RR, Temp, SpO₂, HT, WT, BMI) if mentioned in the transcript.
|
81 |
+
- Structured by system: General, HEENT, Cardiovascular, Respiratory, Abdomen, Neurological, Musculoskeletal, Skin, Psychiatric—as mentioned in the transcript.
|
82 |
+
|
83 |
+
13. Labs and Imaging
|
84 |
+
- Summarize labs and imaging results.
|
85 |
+
|
86 |
+
14. ASSESSMENT
|
87 |
+
- Provide a brief summary of the clinical assessment or diagnosis based on the information in the transcript.
|
88 |
+
|
89 |
+
15. PLAN
|
90 |
+
- Outline the proposed management plan, including treatments, medications, follow-up, and patient instructions as discussed.
|
91 |
+
|
92 |
+
Please use only the information present in the transcript. If an information is not mentioned or not applicable, state “Not applicable.” Format each section clearly with its heading.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def generate_structured_note(transcript):
|
96 |
+
message = [
|
97 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
98 |
+
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
99 |
+
]
|
100 |
+
|
101 |
+
inputs = tokenizer.apply_chat_template(
|
102 |
+
message,
|
103 |
+
tokenize=True,
|
104 |
+
add_generation_prompt=True,
|
105 |
+
return_tensors="pt",
|
106 |
+
).to(model.device)
|
107 |
+
|
108 |
+
outputs = model.generate(
|
109 |
+
input_ids=inputs,
|
110 |
+
max_new_tokens=2048,
|
111 |
+
temperature=0.2,
|
112 |
+
top_p=0.85,
|
113 |
+
min_p=0.1,
|
114 |
+
top_k=20,
|
115 |
+
do_sample=True,
|
116 |
+
eos_token_id=tokenizer.eos_token_id,
|
117 |
+
use_cache=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
input_token_len = len(inputs[0])
|
121 |
+
generated_tokens = outputs[:, input_token_len:]
|
122 |
+
note = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
123 |
+
if "<START_NOTES>" in note:
|
124 |
+
note = note.split("<START_NOTES>")[-1].strip()
|
125 |
+
if "<END_NOTES>" in note:
|
126 |
+
note = note.split("<END_NOTES>")[0].strip()
|
127 |
+
return note
|
128 |
+
|
129 |
+
# Example usage
|
130 |
+
transcript = "Patient is a 45-year-old male presenting with..."
|
131 |
+
note = generate_structured_note(transcript)
|
132 |
+
print("\n--- Generated Response ---")
|
133 |
+
print(note)
|
134 |
+
print("---------------------------")
|
135 |
```
|