Update README.md
Browse files
README.md
CHANGED
@@ -13,4 +13,190 @@ tags:
|
|
13 |
- medical
|
14 |
- summary
|
15 |
- endocronology
|
16 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- medical
|
14 |
- summary
|
15 |
- endocronology
|
16 |
+
---
|
17 |
+
|
18 |
+
# Llama3.2-Medical-Notes-1B-ONNX
|
19 |
+
|
20 |
+
This is the ONNX quantized version of the [Llama3.2-Medical-Notes-1B](https://huggingface.co/GetSoloTech/Llama3.2-Medical-Notes-1B) model, optimized for efficient inference and deployment.
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
- **Base Model:** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
25 |
+
- **Fine-tuning Method:** PEFT (Parameter-Efficient Fine-Tuning) using LoRA
|
26 |
+
- **Training Framework:** Unsloth library for accelerated fine-tuning and merging
|
27 |
+
- **Quantization:** ONNX format for optimized inference
|
28 |
+
- **Task:** Text Generation (specifically, generating structured SOAP notes)
|
29 |
+
|
30 |
+
## Paper
|
31 |
+
|
32 |
+
- [arXiv: 2507.03033](https://arxiv.org/abs/2507.03033)
|
33 |
+
- [medRxiv: 10.1101/2025.07.01.25330679v1](https://www.medrxiv.org/content/10.1101/2025.07.01.25330679v1)
|
34 |
+
|
35 |
+
## Intended Use
|
36 |
+
|
37 |
+
**Input:** Free-text medical transcripts (doctor-patient conversations or dictated notes).
|
38 |
+
|
39 |
+
**Output:** Structured medical notes with clearly defined sections (Demographics, Presenting Illness, History, etc.).
|
40 |
+
|
41 |
+
## Usage with ONNX Runtime
|
42 |
+
|
43 |
+
```python
|
44 |
+
import onnxruntime as ort
|
45 |
+
from transformers import AutoTokenizer
|
46 |
+
import numpy as np
|
47 |
+
|
48 |
+
# Load the ONNX model
|
49 |
+
model_name = "GetSoloTech/Llama3.2-Medical-Notes-1B-ONNX"
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("GetSoloTech/Llama3.2-Medical-Notes-1B")
|
51 |
+
|
52 |
+
# Initialize ONNX Runtime session
|
53 |
+
session = ort.InferenceSession(onnx_file_path)
|
54 |
+
|
55 |
+
SYSTEM_PROMPT = """Convert the following medical transcript to a structured medical note.
|
56 |
+
|
57 |
+
Use these sections in this order:
|
58 |
+
|
59 |
+
1. Demographics
|
60 |
+
- Name, Age, Sex, DOB
|
61 |
+
|
62 |
+
2. Presenting Illness
|
63 |
+
- Bullet point statements of the main problem and duration.
|
64 |
+
|
65 |
+
3. History of Presenting Illness
|
66 |
+
- Chronological narrative: symptom onset, progression, modifiers, associated factors.
|
67 |
+
|
68 |
+
4. Past Medical History
|
69 |
+
- List chronic illnesses and past medical diagnoses mentioned in the transcript. Do not include surgeries.
|
70 |
+
|
71 |
+
5. Surgical History
|
72 |
+
- List prior surgeries with year if known, as mentioned in the transcript.
|
73 |
+
|
74 |
+
6. Family History
|
75 |
+
- Relevant family history mentioned in the transcript.
|
76 |
+
|
77 |
+
7. Social History
|
78 |
+
- Occupation, tobacco/alcohol/drug use, exercise, living situation if mentioned in the transcript.
|
79 |
+
|
80 |
+
8. Allergy History
|
81 |
+
- Drug, food, or environmental allergies and reactions, if mentioned in the transcript.
|
82 |
+
|
83 |
+
9. Medication History
|
84 |
+
- List medications the patient is already taking. Do not include any new or proposed drugs in this section.
|
85 |
+
|
86 |
+
10. Dietary History
|
87 |
+
- If unrelated, write "Not applicable"; otherwise, summarize the diet pattern.
|
88 |
+
|
89 |
+
11. Review of Systems
|
90 |
+
- Head-to-toe, alphabetically ordered bullet points; include both positives and pertinent negatives as mentioned in the transcript.
|
91 |
+
|
92 |
+
12. Physical Exam Findings
|
93 |
+
- Vital Signs (BP, HR, RR, Temp, SpO₂, HT, WT, BMI) if mentioned in the transcript.
|
94 |
+
- Structured by system: General, HEENT, Cardiovascular, Respiratory, Abdomen, Neurological, Musculoskeletal, Skin, Psychiatric—as mentioned in the transcript.
|
95 |
+
|
96 |
+
13. Labs and Imaging
|
97 |
+
- Summarize labs and imaging results.
|
98 |
+
|
99 |
+
14. ASSESSMENT
|
100 |
+
- Provide a brief summary of the clinical assessment or diagnosis based on the information in the transcript.
|
101 |
+
|
102 |
+
15. PLAN
|
103 |
+
- Outline the proposed management plan, including treatments, medications, follow-up, and patient instructions as discussed.
|
104 |
+
|
105 |
+
Please use only the information present in the transcript. If an information is not mentioned or not applicable, state "Not applicable." Format each section clearly with its heading.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def generate_structured_note_onnx(transcript):
|
109 |
+
message = [
|
110 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
111 |
+
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
112 |
+
]
|
113 |
+
|
114 |
+
# Apply chat template
|
115 |
+
inputs = tokenizer.apply_chat_template(
|
116 |
+
message,
|
117 |
+
tokenize=True,
|
118 |
+
add_generation_prompt=True,
|
119 |
+
return_tensors="pt",
|
120 |
+
)
|
121 |
+
|
122 |
+
# Convert to numpy for ONNX inference
|
123 |
+
input_ids = inputs.numpy()
|
124 |
+
|
125 |
+
# Run inference with ONNX Runtime
|
126 |
+
outputs = session.run(
|
127 |
+
None,
|
128 |
+
{"input_ids": input_ids}
|
129 |
+
)
|
130 |
+
|
131 |
+
# Process outputs and generate text
|
132 |
+
# Note: This is a simplified example. You may need to implement proper text generation logic
|
133 |
+
|
134 |
+
return "Generated structured medical note..."
|
135 |
+
|
136 |
+
# Example usage
|
137 |
+
transcript = "Patient is a 45-year-old male presenting with chest pain for the past 2 days..."
|
138 |
+
note = generate_structured_note_onnx(transcript)
|
139 |
+
print("\n--- Generated Response ---")
|
140 |
+
print(note)
|
141 |
+
print("---------------------------")
|
142 |
+
```
|
143 |
+
|
144 |
+
## Alternative Usage with Transformers (Original Model)
|
145 |
+
|
146 |
+
If you prefer to use the original model instead of the ONNX version:
|
147 |
+
|
148 |
+
```python
|
149 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
150 |
+
|
151 |
+
model_name = "GetSoloTech/Llama3.2-Medical-Notes-1B"
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
153 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
154 |
+
|
155 |
+
def generate_structured_note(transcript):
|
156 |
+
message = [
|
157 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
158 |
+
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
159 |
+
]
|
160 |
+
|
161 |
+
inputs = tokenizer.apply_chat_template(
|
162 |
+
message,
|
163 |
+
tokenize=True,
|
164 |
+
add_generation_prompt=True,
|
165 |
+
return_tensors="pt",
|
166 |
+
).to(model.device)
|
167 |
+
|
168 |
+
outputs = model.generate(
|
169 |
+
input_ids=inputs,
|
170 |
+
max_new_tokens=2048,
|
171 |
+
temperature=0.2,
|
172 |
+
top_p=0.85,
|
173 |
+
min_p=0.1,
|
174 |
+
top_k=20,
|
175 |
+
do_sample=True,
|
176 |
+
eos_token_id=tokenizer.eos_token_id,
|
177 |
+
use_cache=True,
|
178 |
+
)
|
179 |
+
|
180 |
+
input_token_len = len(inputs[0])
|
181 |
+
generated_tokens = outputs[:, input_token_len:]
|
182 |
+
note = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
183 |
+
if "<START_NOTES>" in note:
|
184 |
+
note = note.split("<START_NOTES>")[-1].strip()
|
185 |
+
if "<END_NOTES>" in note:
|
186 |
+
note = note.split("<END_NOTES>")[0].strip()
|
187 |
+
return note
|
188 |
+
```
|
189 |
+
|
190 |
+
## Performance Benefits
|
191 |
+
|
192 |
+
The ONNX version provides:
|
193 |
+
- **Faster inference** through optimized runtime
|
194 |
+
- **Reduced memory footprint** through quantization
|
195 |
+
- **Cross-platform compatibility** for deployment
|
196 |
+
- **Production-ready** inference capabilities
|
197 |
+
|
198 |
+
## Requirements
|
199 |
+
|
200 |
+
- `onnxruntime` for ONNX inference
|
201 |
+
- `transformers` for tokenization
|
202 |
+
- `numpy` for array operations
|