update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- summarization
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- rouge
|
| 8 |
+
model-index:
|
| 9 |
+
- name: bart-base-cnn-xsum-wiki-swe
|
| 10 |
+
results: []
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 14 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 15 |
+
|
| 16 |
+
# bart-base-cnn-xsum-wiki-swe
|
| 17 |
+
|
| 18 |
+
This model is a fine-tuned version of [Gabriel/bart-base-cnn-xsum-swe](https://huggingface.co/Gabriel/bart-base-cnn-xsum-swe) on the None dataset.
|
| 19 |
+
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 2.3884
|
| 21 |
+
- Rouge1: 26.8917
|
| 22 |
+
- Rouge2: 11.8254
|
| 23 |
+
- Rougel: 22.6089
|
| 24 |
+
- Rougelsum: 26.1492
|
| 25 |
+
- Gen Len: 19.3468
|
| 26 |
+
|
| 27 |
+
## Model description
|
| 28 |
+
|
| 29 |
+
More information needed
|
| 30 |
+
|
| 31 |
+
## Intended uses & limitations
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training and evaluation data
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Training procedure
|
| 40 |
+
|
| 41 |
+
### Training hyperparameters
|
| 42 |
+
|
| 43 |
+
The following hyperparameters were used during training:
|
| 44 |
+
- learning_rate: 5e-05
|
| 45 |
+
- train_batch_size: 16
|
| 46 |
+
- eval_batch_size: 16
|
| 47 |
+
- seed: 42
|
| 48 |
+
- gradient_accumulation_steps: 2
|
| 49 |
+
- total_train_batch_size: 32
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 51 |
+
- lr_scheduler_type: linear
|
| 52 |
+
- lr_scheduler_warmup_steps: 500
|
| 53 |
+
- num_epochs: 9
|
| 54 |
+
- mixed_precision_training: Native AMP
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
| 59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
| 60 |
+
| 2.4993 | 1.0 | 2985 | 2.3834 | 25.8959 | 10.9373 | 21.8329 | 25.2002 | 19.1416 |
|
| 61 |
+
| 2.2397 | 2.0 | 5970 | 2.2939 | 26.1166 | 11.4087 | 22.2444 | 25.4752 | 19.2351 |
|
| 62 |
+
| 2.0318 | 3.0 | 8955 | 2.2687 | 26.5222 | 11.6512 | 22.567 | 25.851 | 19.2384 |
|
| 63 |
+
| 1.879 | 4.0 | 11940 | 2.2750 | 26.7637 | 11.7676 | 22.6674 | 26.0753 | 19.2622 |
|
| 64 |
+
| 1.7532 | 5.0 | 14925 | 2.2923 | 26.8104 | 11.8724 | 22.6794 | 26.0907 | 19.3063 |
|
| 65 |
+
| 1.6315 | 6.0 | 17910 | 2.3190 | 26.7758 | 11.7989 | 22.5925 | 26.032 | 19.3136 |
|
| 66 |
+
| 1.5409 | 7.0 | 20895 | 2.3517 | 26.8762 | 11.8552 | 22.6694 | 26.1329 | 19.3275 |
|
| 67 |
+
| 1.4711 | 8.0 | 23880 | 2.3679 | 26.899 | 11.9185 | 22.6764 | 26.1574 | 19.2994 |
|
| 68 |
+
| 1.4105 | 9.0 | 26865 | 2.3884 | 26.8917 | 11.8254 | 22.6089 | 26.1492 | 19.3468 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
### Framework versions
|
| 72 |
+
|
| 73 |
+
- Transformers 4.22.2
|
| 74 |
+
- Pytorch 1.12.1+cu113
|
| 75 |
+
- Datasets 2.5.1
|
| 76 |
+
- Tokenizers 0.12.1
|