File size: 3,550 Bytes
24e35ea bc12cc5 14d8851 25702ff 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea bc12cc5 14d8851 f72fd97 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 24e35ea 14d8851 f72fd97 14d8851 24e35ea 14d8851 24e35ea 14d8851 f72fd97 24e35ea 14d8851 24e35ea f72fd97 bc12cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: modelsent_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# modelsent_test
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2379
- Accuracy: 0.9261
- F1: 0.9261
- Precision: 0.9261
- Recall: 0.9261
- Accuracy Label Negative: 0.9242
- Accuracy Label Positive: 0.9278
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------:|:-----------------------:|
| 0.5403 | 0.2442 | 100 | 0.5274 | 0.7611 | 0.7596 | 0.7728 | 0.7611 | 0.8535 | 0.6746 |
| 0.2673 | 0.4884 | 200 | 0.2806 | 0.8980 | 0.8980 | 0.8994 | 0.8980 | 0.9230 | 0.8746 |
| 0.247 | 0.7326 | 300 | 0.2610 | 0.9029 | 0.9024 | 0.9074 | 0.9029 | 0.8434 | 0.9586 |
| 0.2357 | 0.9768 | 400 | 0.2560 | 0.9084 | 0.9084 | 0.9096 | 0.9084 | 0.9318 | 0.8864 |
| 0.2094 | 1.2198 | 500 | 0.3127 | 0.9090 | 0.9089 | 0.9123 | 0.9090 | 0.9508 | 0.8698 |
| 0.1695 | 1.4640 | 600 | 0.2298 | 0.9188 | 0.9187 | 0.9189 | 0.9188 | 0.9053 | 0.9314 |
| 0.2024 | 1.7082 | 700 | 0.2218 | 0.9206 | 0.9206 | 0.9214 | 0.9206 | 0.9394 | 0.9030 |
| 0.1155 | 1.9524 | 800 | 0.2061 | 0.9236 | 0.9236 | 0.9236 | 0.9236 | 0.9192 | 0.9278 |
| 0.1361 | 2.1954 | 900 | 0.2299 | 0.9218 | 0.9218 | 0.9226 | 0.9218 | 0.9407 | 0.9041 |
| 0.1235 | 2.4396 | 1000 | 0.2668 | 0.9212 | 0.9212 | 0.9246 | 0.9212 | 0.9634 | 0.8817 |
| 0.084 | 2.6838 | 1100 | 0.2733 | 0.9218 | 0.9218 | 0.9240 | 0.9218 | 0.9545 | 0.8911 |
| 0.1326 | 2.9280 | 1200 | 0.2395 | 0.9249 | 0.9249 | 0.9249 | 0.9249 | 0.9192 | 0.9302 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|