File size: 3,550 Bytes
24e35ea
bc12cc5
14d8851
25702ff
14d8851
 
 
 
 
 
 
 
 
 
24e35ea
 
14d8851
 
24e35ea
14d8851
24e35ea
bc12cc5
14d8851
f72fd97
 
 
 
 
 
 
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
24e35ea
14d8851
 
 
 
 
 
 
f72fd97
14d8851
 
 
24e35ea
14d8851
24e35ea
14d8851
 
f72fd97
 
 
 
 
 
 
 
 
 
 
 
24e35ea
 
14d8851
24e35ea
f72fd97
 
 
bc12cc5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: modelsent_test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modelsent_test

This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2379
- Accuracy: 0.9261
- F1: 0.9261
- Precision: 0.9261
- Recall: 0.9261
- Accuracy Label Negative: 0.9242
- Accuracy Label Positive: 0.9278

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----------------------:|:-----------------------:|
| 0.5403        | 0.2442 | 100  | 0.5274          | 0.7611   | 0.7596 | 0.7728    | 0.7611 | 0.8535                  | 0.6746                  |
| 0.2673        | 0.4884 | 200  | 0.2806          | 0.8980   | 0.8980 | 0.8994    | 0.8980 | 0.9230                  | 0.8746                  |
| 0.247         | 0.7326 | 300  | 0.2610          | 0.9029   | 0.9024 | 0.9074    | 0.9029 | 0.8434                  | 0.9586                  |
| 0.2357        | 0.9768 | 400  | 0.2560          | 0.9084   | 0.9084 | 0.9096    | 0.9084 | 0.9318                  | 0.8864                  |
| 0.2094        | 1.2198 | 500  | 0.3127          | 0.9090   | 0.9089 | 0.9123    | 0.9090 | 0.9508                  | 0.8698                  |
| 0.1695        | 1.4640 | 600  | 0.2298          | 0.9188   | 0.9187 | 0.9189    | 0.9188 | 0.9053                  | 0.9314                  |
| 0.2024        | 1.7082 | 700  | 0.2218          | 0.9206   | 0.9206 | 0.9214    | 0.9206 | 0.9394                  | 0.9030                  |
| 0.1155        | 1.9524 | 800  | 0.2061          | 0.9236   | 0.9236 | 0.9236    | 0.9236 | 0.9192                  | 0.9278                  |
| 0.1361        | 2.1954 | 900  | 0.2299          | 0.9218   | 0.9218 | 0.9226    | 0.9218 | 0.9407                  | 0.9041                  |
| 0.1235        | 2.4396 | 1000 | 0.2668          | 0.9212   | 0.9212 | 0.9246    | 0.9212 | 0.9634                  | 0.8817                  |
| 0.084         | 2.6838 | 1100 | 0.2733          | 0.9218   | 0.9218 | 0.9240    | 0.9218 | 0.9545                  | 0.8911                  |
| 0.1326        | 2.9280 | 1200 | 0.2395          | 0.9249   | 0.9249 | 0.9249    | 0.9249 | 0.9192                  | 0.9302                  |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0