--- base_model: - deepseek-ai/Janus-Pro-7B datasets: - FreedomIntelligence/ShareGPT-4o-Image language: - en library_name: transformers license: mit license_name: deepseek license_link: LICENSE pipeline_tag: any-to-any tags: - text-to-image - text-and-image-to-image - multimodal - unified-model ---

Janus-4o-7B

🧰GitHub | 📃Paper | 📚ShareGPT-4o-Image
## 1. Introduction Janus-4o is a multimodal large language model (MLLM) capable of both **text-to-image** and **text-and-image-to-image** generation. It is fine-tuned from [Janus-Pro-7B](https://huggingface.co/deepseek-ai/Janus-Pro-7B) using the [ShareGPT-4o-Image](https://huggingface.co/datasets/FreedomIntelligence/ShareGPT-4o-Image) dataset to align Janus-Pro with GPT-4o image generation capabilities. Compared to Janus-Pro, Janus-4o newly supports text-and-image-to-image generation capabilities, along with notable improvements in text-to-image tasks. > ⚠️ **Statement**: **ShareGPT-4o-Image** is a distilled dataset from GPT-4o-Image, offering 4o-level data quality (_referring to data, not model capability_). **Janus-4o** is a fine-tuned version of Janus-Pro on this dataset, with added image editing support. Fine-tuning brings noticeable gains in image generation, but **Janus-4o still lags behind GPT-4o-Image in overall performance**. ## 2. Quick Start ### Step 1: Install the [Janus](https://github.com/deepseek-ai/Janus) Library ```Bash git clone https://github.com/deepseek-ai/Janus.git cd Janus pip install -e . ``` ### Step 2: Inference - **Text-to-Image Generation** ```Python import os import PIL.Image import torch import numpy as np from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor # Load model and processor model_path = "FreedomIntelligence/Janus-4o-7B" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True,torch_dtype=torch.bfloat16 ) vl_gpt = vl_gpt.cuda().eval() # Define text-to-image generation function def text_to_image_generate(input_prompt, output_path, vl_chat_processor, vl_gpt, temperature = 1.0, parallel_size = 2, cfg_weight = 5): torch.cuda.empty_cache() conversation = [ { "role": "<|User|>", "content": input_prompt, }, {"role": "<|Assistant|>", "content": ""}, ] sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) prompt = sft_format + vl_chat_processor.image_start_tag mmgpt = vl_gpt image_token_num_per_image = 576 img_size = 384 patch_size = 16 with torch.inference_mode(): input_ids = vl_chat_processor.tokenizer.encode(prompt) input_ids = torch.LongTensor(input_ids) tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() for i in range(parallel_size*2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = vl_chat_processor.pad_id inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() for i in range(image_token_num_per_image): outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) hidden_states = outputs.last_hidden_state logits = mmgpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = mmgpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) visual_img[:, :, :] = dec os.makedirs(output_path, exist_ok=True) output_images = [] for i in range(parallel_size): save_path = output_path.replace('.png','') + f'_{i}.png' PIL.Image.fromarray(visual_img[i]).save(save_path) output_images.append(save_path) return output_images # Run prompt = "A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair" image_output_path = "./test.png" text_to_image_generate(prompt, image_output_path, vl_chat_processor, vl_gpt, parallel_size = 2) ``` - **2. Text-and-Image-to-Image Generation** ```Python import os import PIL.Image import torch import numpy as np from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from dataclasses import dataclass @dataclass class VLChatProcessorOutput(): sft_format: str input_ids: torch.Tensor pixel_values: torch.Tensor num_image_tokens: torch.IntTensor def __len__(self): return len(self.input_ids) def process_image(image_paths,vl_chat_processor): images = [PIL.Image.open(image_path).convert("RGB") for image_path in image_paths] images_outputs = vl_chat_processor.image_processor(images, return_tensors="pt") return images_outputs['pixel_values'] # Load model and processor model_path = "FreedomIntelligence/Janus-4o-7B" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True,torch_dtype=torch.bfloat16 ) vl_gpt = vl_gpt.cuda().eval() # Define text+image-to-image generation function def text_and_image_to_image_generate(input_prompt, input_image_path, output_path, vl_chat_processor, vl_gpt, temperature = 1.0, parallel_size = 2, cfg_weight = 5, cfg_weight2 = 5): torch.cuda.empty_cache() input_img_tokens = vl_chat_processor.image_start_tag + vl_chat_processor.image_tag*vl_chat_processor.num_image_tokens +vl_chat_processor.image_end_tag + vl_chat_processor.image_start_tag + vl_chat_processor.pad_tag*vl_chat_processor.num_image_tokens +vl_chat_processor.image_end_tag output_img_tokens = vl_chat_processor.image_start_tag pre_data = [] input_images = [input_image_path] img_len = len(input_images) prompts = input_img_tokens * img_len + input_prompt conversation = [ {"role": "<|User|>","content": prompts}, {"role": "<|Assistant|>", "content": ""} ] sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) sft_format = sft_format + output_img_tokens mmgpt = vl_gpt image_token_num_per_image = 576 img_size = 384 patch_size = 16 with torch.inference_mode(): input_image_pixel_values = process_image(input_images,vl_chat_processor).to(torch.bfloat16).cuda() quant_input, emb_loss_input, info_input = mmgpt.gen_vision_model.encode(input_image_pixel_values) image_tokens_input = info_input[2].detach().reshape(input_image_pixel_values.shape[0], -1) image_embeds_input = mmgpt.prepare_gen_img_embeds(image_tokens_input) input_ids = torch.LongTensor(vl_chat_processor.tokenizer.encode(sft_format)) encoder_pixel_values = process_image(input_images,vl_chat_processor).cuda() tokens = torch.zeros((parallel_size*3, len(input_ids)), dtype=torch.long) for i in range(parallel_size*3): tokens[i, :] = input_ids if i % 3 == 2: tokens[i, 1:-1] = vl_chat_processor.pad_id pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-2], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len)) pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=encoder_pixel_values, input_ids=tokens[i-1], num_image_tokens=[vl_chat_processor.num_image_tokens] * img_len)) pre_data.append(VLChatProcessorOutput(sft_format=sft_format, pixel_values=None, input_ids=tokens[i], num_image_tokens=[])) prepare_inputs = vl_chat_processor.batchify(pre_data) inputs_embeds = mmgpt.prepare_inputs_embeds( input_ids=tokens.cuda(), pixel_values=prepare_inputs['pixel_values'].to(torch.bfloat16).cuda(), images_emb_mask=prepare_inputs['images_emb_mask'].cuda(), images_seq_mask=prepare_inputs['images_seq_mask'].cuda() ) image_gen_indices = (tokens == vl_chat_processor.image_end_id).nonzero() for ii, ind in enumerate(image_gen_indices): if ii % 4 == 0: offset = ind[1] + 2 inputs_embeds[ind[0],offset: offset+image_embeds_input.shape[1],:] = image_embeds_input[(ii // 2) % img_len] generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() for i in range(image_token_num_per_image): outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) hidden_states = outputs.last_hidden_state logits = mmgpt.gen_head(hidden_states[:, -1, :]) logit_cond_full = logits[0::3, :] logit_cond_part = logits[1::3, :] logit_uncond = logits[2::3, :] logit_cond = (logit_cond_full + cfg_weight2 * (logit_cond_part)) / (1 + cfg_weight2) logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = mmgpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) visual_img[:, :, :] = dec output_images = [] for i in range(parallel_size): save_path = output_path.replace('.png','') + f'_{i}.png' PIL.Image.fromarray(visual_img[i]).save(save_path) output_images.append(save_path) return output_images # Run prompt = "Turn the image into a nighttime scene." input_image_path = "./test_input.png" image_output_path = "./test_output.png" text_and_image_to_image_generate(prompt, input_image_path, image_output_path, vl_chat_processor, vl_gpt, parallel_size = 2) ``` ## Citation If you find our dataset helpful, please consider citing our work: ``` @misc{chen2025sharegpt4oimagealigningmultimodalmodels, title={ShareGPT-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image Generation}, author={Junying Chen and Zhenyang Cai and Pengcheng Chen and Shunian Chen and Ke Ji and Xidong Wang and Yunjin Yang and Benyou Wang}, year={2025}, eprint={2506.18095}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.18095}, } ```