|
--- |
|
language: |
|
- multilingual |
|
- ar |
|
- zh |
|
- cs |
|
- da |
|
- nl |
|
- en |
|
- fi |
|
- fr |
|
- de |
|
- he |
|
- hu |
|
- it |
|
- ja |
|
- ko |
|
- 'no' |
|
- pl |
|
- pt |
|
- ru |
|
- es |
|
- sv |
|
- th |
|
- tr |
|
- uk |
|
license: mit |
|
license_link: https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE |
|
pipeline_tag: text-generation |
|
tags: |
|
- nlp |
|
- code |
|
base_model: microsoft/Phi-4-mini-instruct |
|
base_model_relation: quantized |
|
|
|
--- |
|
# Phi-4-mini-instruct-int4-ov |
|
* Model creator: [Microsoft](https://huggingface.co/microsoft) |
|
* Original model: [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) |
|
|
|
## Description |
|
|
|
This is [Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). |
|
|
|
With the following pyproject.yoml |
|
```yaml |
|
[project] |
|
name = "export" |
|
version = "0.1.0" |
|
description = "Export models" |
|
readme = "README.md" |
|
requires-python = "==3.12.*" |
|
dependencies = [ |
|
"openvino==2025.2.0", |
|
"optimum[openvino]", |
|
"optimum-intel", |
|
"openvino-genai", |
|
"huggingface-hub==0.33.0", |
|
"tokenizers==0.21.1" |
|
] |
|
``` |
|
|
|
Then run the export |
|
```bash |
|
uv sync |
|
uv run optimum-cli export openvino --model microsoft/phi-4-mini-instruct --task text-generation-with-past --weight-format int4 --group-size -1 --ratio 1.0 --sym --trust-remote-code phi-4-mini-instruct/INT4-NPU_compressed_weights |
|
``` |
|
|
|
## Compatibility |
|
The provided OpenVINO™ IR model is compatible with: |
|
* OpenVINO version 2025.2.0 and higher |
|
* Optimum Intel 1.23.0 and higher |
|
|
|
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) |
|
|
|
1. Install packages required for using OpenVINO GenAI. |
|
``` |
|
pip install -U openvino openvino-tokenizers openvino-genai |
|
pip install huggingface_hub |
|
``` |
|
|
|
2. Download model from HuggingFace Hub |
|
|
|
``` |
|
import huggingface_hub as hf_hub |
|
model_id = "bweng/phi-4-mini-instruct-int4-ov-npu" |
|
model_path = "phi-4-mini-instruct-int4-ov" |
|
hf_hub.snapshot_download(model_id, local_dir=model_path) |
|
``` |
|
|
|
3. Run model inference: |
|
``` |
|
import openvino_genai as ov_genai |
|
device = "NPU" |
|
pipe = ov_genai.LLMPipeline(model_path, "NPU", MAX_PROMPT_LEN=4096, CACHE_DIR="./cache") |
|
|
|
# Create a proper GenerationConfig object |
|
gen_config = GenerationConfig(apply_chat_template=True, max_new_tokens=1024) |
|
|
|
# Now call generate with the correct config object |
|
output = pipe.generate("How are you doing?", generation_config=gen_config) |
|
print(output) |
|
|
|
``` |
|
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) |
|
|
|
You can find more detaild usage examples in OpenVINO Notebooks: |
|
|
|
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) |
|
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) |
|
|
|
## Limitations |
|
Check the original model card for [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct) for limitations. |
|
|
|
## Legal information |
|
The original model is distributed under [mit](https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE) license. More details can be found in [original model card](ttps://huggingface.co/microsoft/Phi-4-mini-instruct). |
|
|
|
## Disclaimer |
|
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. |