diff --git "a/ParakeetEncoder.mlmodelc/model.mil" "b/ParakeetEncoder.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/ParakeetEncoder.mlmodelc/model.mil" @@ -0,0 +1,3330 @@ +program(1.0) +[buildInfo = dict, tensor>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}, {"coremltools-component-torch", "2.4.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})] +{ + func main(tensor audio_signal, tensor length) { + tensor var_5 = const()[name = tensor("op_5"), val = tensor(1024)]; + tensor var_22 = const()[name = tensor("op_22"), val = tensor(256)]; + tensor var_25 = const()[name = tensor("op_25"), val = tensor(-1)]; + tensor var_27 = const()[name = tensor("op_27"), val = tensor(1)]; + tensor x_1_perm_0 = const()[name = tensor("x_1_perm_0"), val = tensor([0, 2, 1])]; + tensor audio_signal_to_fp16_dtype_0 = const()[name = tensor("audio_signal_to_fp16_dtype_0"), val = tensor("fp16")]; + tensor var_81_to_fp16_dtype_0 = const()[name = tensor("op_81_to_fp16_dtype_0"), val = tensor("fp16")]; + tensor var_82_promoted_to_fp16 = const()[name = tensor("op_82_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor cast_229 = cast(dtype = var_81_to_fp16_dtype_0, x = length)[name = tensor("cast_229")]; + tensor var_83_cast_fp16 = add(x = cast_229, y = var_82_promoted_to_fp16)[name = tensor("op_83_cast_fp16")]; + tensor _inversed_85_y_0_to_fp16 = const()[name = tensor("_inversed_85_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_85_cast_fp16 = mul(x = var_83_cast_fp16, y = _inversed_85_y_0_to_fp16)[name = tensor("_inversed_85_cast_fp16")]; + tensor var_86_to_fp16 = const()[name = tensor("op_86_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_1_cast_fp16 = add(x = _inversed_85_cast_fp16, y = var_86_to_fp16)[name = tensor("lengths_1_cast_fp16")]; + tensor lengths_3_cast_fp16 = floor(x = lengths_1_cast_fp16)[name = tensor("lengths_3_cast_fp16")]; + tensor var_90_promoted_to_fp16 = const()[name = tensor("op_90_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor var_91_cast_fp16 = add(x = lengths_3_cast_fp16, y = var_90_promoted_to_fp16)[name = tensor("op_91_cast_fp16")]; + tensor _inversed_93_y_0_to_fp16 = const()[name = tensor("_inversed_93_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_93_cast_fp16 = mul(x = var_91_cast_fp16, y = _inversed_93_y_0_to_fp16)[name = tensor("_inversed_93_cast_fp16")]; + tensor var_94_to_fp16 = const()[name = tensor("op_94_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_7_cast_fp16 = add(x = _inversed_93_cast_fp16, y = var_94_to_fp16)[name = tensor("lengths_7_cast_fp16")]; + tensor lengths_9_cast_fp16 = floor(x = lengths_7_cast_fp16)[name = tensor("lengths_9_cast_fp16")]; + tensor var_98_promoted_to_fp16 = const()[name = tensor("op_98_promoted_to_fp16"), val = tensor(-0x1p+0)]; + tensor var_99_cast_fp16 = add(x = lengths_9_cast_fp16, y = var_98_promoted_to_fp16)[name = tensor("op_99_cast_fp16")]; + tensor _inversed_101_y_0_to_fp16 = const()[name = tensor("_inversed_101_y_0_to_fp16"), val = tensor(0x1p-1)]; + tensor _inversed_101_cast_fp16 = mul(x = var_99_cast_fp16, y = _inversed_101_y_0_to_fp16)[name = tensor("_inversed_101_cast_fp16")]; + tensor var_102_to_fp16 = const()[name = tensor("op_102_to_fp16"), val = tensor(0x1p+0)]; + tensor lengths_13_cast_fp16 = add(x = _inversed_101_cast_fp16, y = var_102_to_fp16)[name = tensor("lengths_13_cast_fp16")]; + tensor lengths_cast_fp16 = floor(x = lengths_13_cast_fp16)[name = tensor("lengths_cast_fp16")]; + tensor input_1_axes_0 = const()[name = tensor("input_1_axes_0"), val = tensor([1])]; + tensor cast_230 = cast(dtype = audio_signal_to_fp16_dtype_0, x = audio_signal)[name = tensor("cast_230")]; + tensor transpose_291 = transpose(perm = x_1_perm_0, x = cast_230)[name = tensor("transpose_291")]; + tensor input_1_cast_fp16 = expand_dims(axes = input_1_axes_0, x = transpose_291)[name = tensor("input_1_cast_fp16")]; + tensor var_114 = const()[name = tensor("op_114"), val = tensor([2, 2])]; + tensor var_116 = const()[name = tensor("op_116"), val = tensor([1, 1])]; + tensor input_3_pad_type_0 = const()[name = tensor("input_3_pad_type_0"), val = tensor("custom")]; + tensor input_3_pad_0 = const()[name = tensor("input_3_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor model_pre_encode_conv_0_weight_to_fp16 = const()[name = tensor("model_pre_encode_conv_0_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; + tensor model_pre_encode_conv_0_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4736)))]; + tensor input_3_cast_fp16 = conv(bias = model_pre_encode_conv_0_bias_to_fp16, dilations = var_116, groups = var_27, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_114, weight = model_pre_encode_conv_0_weight_to_fp16, x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; + tensor input_5_cast_fp16 = relu(x = input_3_cast_fp16)[name = tensor("input_5_cast_fp16")]; + tensor var_122 = const()[name = tensor("op_122"), val = tensor([2, 2])]; + tensor var_124 = const()[name = tensor("op_124"), val = tensor([1, 1])]; + tensor input_7_pad_type_0 = const()[name = tensor("input_7_pad_type_0"), val = tensor("custom")]; + tensor input_7_pad_0 = const()[name = tensor("input_7_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor model_pre_encode_conv_2_weight_to_fp16 = const()[name = tensor("model_pre_encode_conv_2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5312)))]; + tensor model_pre_encode_conv_2_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9984)))]; + tensor input_7_cast_fp16 = conv(bias = model_pre_encode_conv_2_bias_to_fp16, dilations = var_124, groups = var_22, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_122, weight = model_pre_encode_conv_2_weight_to_fp16, x = input_5_cast_fp16)[name = tensor("input_7_cast_fp16")]; + tensor var_129 = const()[name = tensor("op_129"), val = tensor([1, 1])]; + tensor var_131 = const()[name = tensor("op_131"), val = tensor([1, 1])]; + tensor input_9_pad_type_0 = const()[name = tensor("input_9_pad_type_0"), val = tensor("custom")]; + tensor input_9_pad_0 = const()[name = tensor("input_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor model_pre_encode_conv_3_weight_to_fp16 = const()[name = tensor("model_pre_encode_conv_3_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(10560)))]; + tensor model_pre_encode_conv_3_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_3_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(141696)))]; + tensor input_9_cast_fp16 = conv(bias = model_pre_encode_conv_3_bias_to_fp16, dilations = var_131, groups = var_27, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = var_129, weight = model_pre_encode_conv_3_weight_to_fp16, x = input_7_cast_fp16)[name = tensor("input_9_cast_fp16")]; + tensor input_11_cast_fp16 = relu(x = input_9_cast_fp16)[name = tensor("input_11_cast_fp16")]; + tensor var_137 = const()[name = tensor("op_137"), val = tensor([2, 2])]; + tensor var_139 = const()[name = tensor("op_139"), val = tensor([1, 1])]; + tensor input_13_pad_type_0 = const()[name = tensor("input_13_pad_type_0"), val = tensor("custom")]; + tensor input_13_pad_0 = const()[name = tensor("input_13_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor model_pre_encode_conv_5_weight_to_fp16 = const()[name = tensor("model_pre_encode_conv_5_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142272)))]; + tensor model_pre_encode_conv_5_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_5_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(146944)))]; + tensor input_13_cast_fp16 = conv(bias = model_pre_encode_conv_5_bias_to_fp16, dilations = var_139, groups = var_22, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = var_137, weight = model_pre_encode_conv_5_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("input_13_cast_fp16")]; + tensor var_144 = const()[name = tensor("op_144"), val = tensor([1, 1])]; + tensor var_146 = const()[name = tensor("op_146"), val = tensor([1, 1])]; + tensor input_15_pad_type_0 = const()[name = tensor("input_15_pad_type_0"), val = tensor("custom")]; + tensor input_15_pad_0 = const()[name = tensor("input_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor model_pre_encode_conv_6_weight_to_fp16 = const()[name = tensor("model_pre_encode_conv_6_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(147520)))]; + tensor model_pre_encode_conv_6_bias_to_fp16 = const()[name = tensor("model_pre_encode_conv_6_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278656)))]; + tensor input_15_cast_fp16 = conv(bias = model_pre_encode_conv_6_bias_to_fp16, dilations = var_146, groups = var_27, pad = input_15_pad_0, pad_type = input_15_pad_type_0, strides = var_144, weight = model_pre_encode_conv_6_weight_to_fp16, x = input_13_cast_fp16)[name = tensor("input_15_cast_fp16")]; + tensor x_3_cast_fp16 = relu(x = input_15_cast_fp16)[name = tensor("x_3_cast_fp16")]; + tensor var_152_perm_0 = const()[name = tensor("op_152_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_153 = const()[name = tensor("op_153"), val = tensor([1, 126, -1])]; + tensor transpose_290 = transpose(perm = var_152_perm_0, x = x_3_cast_fp16)[name = tensor("transpose_290")]; + tensor input_17_cast_fp16 = reshape(shape = var_153, x = transpose_290)[name = tensor("input_17_cast_fp16")]; + tensor model_pre_encode_out_weight_to_fp16 = const()[name = tensor("model_pre_encode_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(279232)))]; + tensor model_pre_encode_out_bias_to_fp16 = const()[name = tensor("model_pre_encode_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8667904)))]; + tensor linear_0_cast_fp16 = linear(bias = model_pre_encode_out_bias_to_fp16, weight = model_pre_encode_out_weight_to_fp16, x = input_17_cast_fp16)[name = tensor("linear_0_cast_fp16")]; + tensor padding_length_dtype_0 = const()[name = tensor("padding_length_dtype_0"), val = tensor("int32")]; + tensor expand_dims_0 = const()[name = tensor("expand_dims_0"), val = tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125]])]; + tensor var_191_axes_0 = const()[name = tensor("op_191_axes_0"), val = tensor([-1])]; + tensor encoder_output_length = cast(dtype = padding_length_dtype_0, x = lengths_cast_fp16)[name = tensor("cast_228")]; + tensor var_191 = expand_dims(axes = var_191_axes_0, x = encoder_output_length)[name = tensor("op_191")]; + tensor pad_mask_1 = less(x = expand_dims_0, y = var_191)[name = tensor("pad_mask_1")]; + tensor var_193_axes_0 = const()[name = tensor("op_193_axes_0"), val = tensor([1])]; + tensor var_193 = expand_dims(axes = var_193_axes_0, x = pad_mask_1)[name = tensor("op_193")]; + tensor var_194 = const()[name = tensor("op_194"), val = tensor([1, 126, 1])]; + tensor pad_mask_for_att_mask_1 = tile(reps = var_194, x = var_193)[name = tensor("pad_mask_for_att_mask_1")]; + tensor var_196_perm_0 = const()[name = tensor("op_196_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_289 = transpose(perm = var_196_perm_0, x = pad_mask_for_att_mask_1)[name = tensor("transpose_289")]; + tensor pad_mask_for_att_mask = logical_and(x = pad_mask_for_att_mask_1, y = transpose_289)[name = tensor("pad_mask_for_att_mask")]; + tensor att_mask_5 = const()[name = tensor("att_mask_5"), val = tensor([[[true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true], [true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true]]])]; + tensor att_mask = logical_and(x = pad_mask_for_att_mask, y = att_mask_5)[name = tensor("att_mask")]; + tensor mask_1 = logical_not(x = att_mask)[name = tensor("mask_1")]; + tensor pad_mask = logical_not(x = pad_mask_1)[name = tensor("pad_mask")]; + tensor input_21_axes_0 = const()[name = tensor("input_21_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8670016)))]; + tensor model_layers_0_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8672128)))]; + tensor var_4_to_fp16 = const()[name = tensor("op_4_to_fp16"), val = tensor(0x1.5p-17)]; + tensor input_21_cast_fp16 = layer_norm(axes = input_21_axes_0, beta = model_layers_0_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_feed_forward1_weight_to_fp16, x = linear_0_cast_fp16)[name = tensor("input_21_cast_fp16")]; + tensor model_layers_0_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_0_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8674240)))]; + tensor linear_1_bias_0_to_fp16 = const()[name = tensor("linear_1_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17062912)))]; + tensor linear_1_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_0_feed_forward1_linear1_weight_to_fp16, x = input_21_cast_fp16)[name = tensor("linear_1_cast_fp16")]; + tensor input_25_cast_fp16 = silu(x = linear_1_cast_fp16)[name = tensor("input_25_cast_fp16")]; + tensor model_layers_0_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_0_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(17071168)))]; + tensor linear_2_bias_0_to_fp16 = const()[name = tensor("linear_2_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25459840)))]; + tensor linear_2_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_feed_forward1_linear2_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("linear_2_cast_fp16")]; + tensor var_227_to_fp16 = const()[name = tensor("op_227_to_fp16"), val = tensor(0x1p-1)]; + tensor var_228_cast_fp16 = mul(x = linear_2_cast_fp16, y = var_227_to_fp16)[name = tensor("op_228_cast_fp16")]; + tensor input_31_cast_fp16 = add(x = linear_0_cast_fp16, y = var_228_cast_fp16)[name = tensor("input_31_cast_fp16")]; + tensor query_1_axes_0 = const()[name = tensor("query_1_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25461952)))]; + tensor model_layers_0_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25464064)))]; + tensor query_1_cast_fp16 = layer_norm(axes = query_1_axes_0, beta = model_layers_0_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_self_att_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("query_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_0_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25466176)))]; + tensor linear_3_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_q_weight_to_fp16, x = query_1_cast_fp16)[name = tensor("linear_3_cast_fp16")]; + tensor var_244 = const()[name = tensor("op_244"), val = tensor([1, -1, 8, 128])]; + tensor q_1_cast_fp16 = reshape(shape = var_244, x = linear_3_cast_fp16)[name = tensor("q_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_0_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(27563392)))]; + tensor linear_4_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_k_weight_to_fp16, x = query_1_cast_fp16)[name = tensor("linear_4_cast_fp16")]; + tensor var_248 = const()[name = tensor("op_248"), val = tensor([1, -1, 8, 128])]; + tensor k_1_cast_fp16 = reshape(shape = var_248, x = linear_4_cast_fp16)[name = tensor("k_1_cast_fp16")]; + tensor model_layers_0_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_0_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(29660608)))]; + tensor linear_5_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_v_weight_to_fp16, x = query_1_cast_fp16)[name = tensor("linear_5_cast_fp16")]; + tensor var_252 = const()[name = tensor("op_252"), val = tensor([1, -1, 8, 128])]; + tensor v_1_cast_fp16 = reshape(shape = var_252, x = linear_5_cast_fp16)[name = tensor("v_1_cast_fp16")]; + tensor value_1_perm_0 = const()[name = tensor("value_1_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_0_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_0_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(31757824)))]; + tensor var_264_cast_fp16 = add(x = q_1_cast_fp16, y = model_layers_0_self_attn_pos_bias_u_to_fp16)[name = tensor("op_264_cast_fp16")]; + tensor model_layers_0_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_0_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(31759936)))]; + tensor var_266_cast_fp16 = add(x = q_1_cast_fp16, y = model_layers_0_self_attn_pos_bias_v_to_fp16)[name = tensor("op_266_cast_fp16")]; + tensor q_with_bias_v_1_perm_0 = const()[name = tensor("q_with_bias_v_1_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_7_transpose_x_0 = const()[name = tensor("x_7_transpose_x_0"), val = tensor(false)]; + tensor x_7_transpose_y_0 = const()[name = tensor("x_7_transpose_y_0"), val = tensor(false)]; + tensor var_268_to_fp16 = const()[name = tensor("op_268_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(31762048)))]; + tensor transpose_287 = transpose(perm = q_with_bias_v_1_perm_0, x = var_266_cast_fp16)[name = tensor("transpose_287")]; + tensor x_7_cast_fp16 = matmul(transpose_x = x_7_transpose_x_0, transpose_y = x_7_transpose_y_0, x = transpose_287, y = var_268_to_fp16)[name = tensor("x_7_cast_fp16")]; + tensor x_9_pad_0 = const()[name = tensor("x_9_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_9_mode_0 = const()[name = tensor("x_9_mode_0"), val = tensor("constant")]; + tensor const_13_to_fp16 = const()[name = tensor("const_13_to_fp16"), val = tensor(0x0p+0)]; + tensor x_9_cast_fp16 = pad(constant_val = const_13_to_fp16, mode = x_9_mode_0, pad = x_9_pad_0, x = x_7_cast_fp16)[name = tensor("x_9_cast_fp16")]; + tensor var_276 = const()[name = tensor("op_276"), val = tensor([1, 8, -1, 126])]; + tensor x_11_cast_fp16 = reshape(shape = var_276, x = x_9_cast_fp16)[name = tensor("x_11_cast_fp16")]; + tensor var_280_begin_0 = const()[name = tensor("op_280_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_280_end_0 = const()[name = tensor("op_280_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_280_end_mask_0 = const()[name = tensor("op_280_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_280_cast_fp16 = slice_by_index(begin = var_280_begin_0, end = var_280_end_0, end_mask = var_280_end_mask_0, x = x_11_cast_fp16)[name = tensor("op_280_cast_fp16")]; + tensor var_281 = const()[name = tensor("op_281"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_1_cast_fp16 = reshape(shape = var_281, x = var_280_cast_fp16)[name = tensor("matrix_bd_1_cast_fp16")]; + tensor matrix_ac_1_transpose_x_0 = const()[name = tensor("matrix_ac_1_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_1_transpose_y_0 = const()[name = tensor("matrix_ac_1_transpose_y_0"), val = tensor(false)]; + tensor transpose_72_perm_0 = const()[name = tensor("transpose_72_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_73_perm_0 = const()[name = tensor("transpose_73_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_285 = transpose(perm = transpose_73_perm_0, x = k_1_cast_fp16)[name = tensor("transpose_285")]; + tensor transpose_286 = transpose(perm = transpose_72_perm_0, x = var_264_cast_fp16)[name = tensor("transpose_286")]; + tensor matrix_ac_1_cast_fp16 = matmul(transpose_x = matrix_ac_1_transpose_x_0, transpose_y = matrix_ac_1_transpose_y_0, x = transpose_286, y = transpose_285)[name = tensor("matrix_ac_1_cast_fp16")]; + tensor matrix_bd_3_begin_0 = const()[name = tensor("matrix_bd_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_3_end_0 = const()[name = tensor("matrix_bd_3_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_3_end_mask_0 = const()[name = tensor("matrix_bd_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_3_cast_fp16 = slice_by_index(begin = matrix_bd_3_begin_0, end = matrix_bd_3_end_0, end_mask = matrix_bd_3_end_mask_0, x = matrix_bd_1_cast_fp16)[name = tensor("matrix_bd_3_cast_fp16")]; + tensor var_290_cast_fp16 = add(x = matrix_ac_1_cast_fp16, y = matrix_bd_3_cast_fp16)[name = tensor("op_290_cast_fp16")]; + tensor _inversed_scores_1_y_0_to_fp16 = const()[name = tensor("_inversed_scores_1_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_1_cast_fp16 = mul(x = var_290_cast_fp16, y = _inversed_scores_1_y_0_to_fp16)[name = tensor("_inversed_scores_1_cast_fp16")]; + tensor mask_3_axes_0 = const()[name = tensor("mask_3_axes_0"), val = tensor([1])]; + tensor mask_3 = expand_dims(axes = mask_3_axes_0, x = mask_1)[name = tensor("mask_3")]; + tensor var_7_to_fp16 = const()[name = tensor("op_7_to_fp16"), val = tensor(-0x1.388p+13)]; + tensor scores_3_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_1_cast_fp16, cond = mask_3)[name = tensor("scores_3_cast_fp16")]; + tensor var_296_cast_fp16 = softmax(axis = var_25, x = scores_3_cast_fp16)[name = tensor("op_296_cast_fp16")]; + tensor var_6_to_fp16 = const()[name = tensor("op_6_to_fp16"), val = tensor(0x0p+0)]; + tensor input_33_cast_fp16 = select(a = var_6_to_fp16, b = var_296_cast_fp16, cond = mask_3)[name = tensor("input_33_cast_fp16")]; + tensor x_13_transpose_x_0 = const()[name = tensor("x_13_transpose_x_0"), val = tensor(false)]; + tensor x_13_transpose_y_0 = const()[name = tensor("x_13_transpose_y_0"), val = tensor(false)]; + tensor transpose_288 = transpose(perm = value_1_perm_0, x = v_1_cast_fp16)[name = tensor("transpose_288")]; + tensor x_13_cast_fp16 = matmul(transpose_x = x_13_transpose_x_0, transpose_y = x_13_transpose_y_0, x = input_33_cast_fp16, y = transpose_288)[name = tensor("x_13_cast_fp16")]; + tensor var_300_perm_0 = const()[name = tensor("op_300_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_301 = const()[name = tensor("op_301"), val = tensor([1, -1, 1024])]; + tensor transpose_284 = transpose(perm = var_300_perm_0, x = x_13_cast_fp16)[name = tensor("transpose_284")]; + tensor input_35_cast_fp16 = reshape(shape = var_301, x = transpose_284)[name = tensor("input_35_cast_fp16")]; + tensor model_layers_0_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_0_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(32276160)))]; + tensor linear_7_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_self_attn_linear_out_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("linear_7_cast_fp16")]; + tensor input_39_cast_fp16 = add(x = input_31_cast_fp16, y = linear_7_cast_fp16)[name = tensor("input_39_cast_fp16")]; + tensor x_17_axes_0 = const()[name = tensor("x_17_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(34373376)))]; + tensor model_layers_0_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(34375488)))]; + tensor x_17_cast_fp16 = layer_norm(axes = x_17_axes_0, beta = model_layers_0_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_conv_weight_to_fp16, x = input_39_cast_fp16)[name = tensor("x_17_cast_fp16")]; + tensor input_41_perm_0 = const()[name = tensor("input_41_perm_0"), val = tensor([0, 2, 1])]; + tensor var_317 = const()[name = tensor("op_317"), val = tensor([1])]; + tensor var_319 = const()[name = tensor("op_319"), val = tensor([1])]; + tensor input_43_pad_type_0 = const()[name = tensor("input_43_pad_type_0"), val = tensor("custom")]; + tensor input_43_pad_0 = const()[name = tensor("input_43_pad_0"), val = tensor([0, 0])]; + tensor model_layers_0_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_0_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(34377600)))]; + tensor transpose_283 = transpose(perm = input_41_perm_0, x = x_17_cast_fp16)[name = tensor("transpose_283")]; + tensor input_43_cast_fp16 = conv(dilations = var_319, groups = var_27, pad = input_43_pad_0, pad_type = input_43_pad_type_0, strides = var_317, weight = model_layers_0_conv_pointwise_conv1_weight_to_fp16, x = transpose_283)[name = tensor("input_43_cast_fp16")]; + tensor x_19_split_num_splits_0 = const()[name = tensor("x_19_split_num_splits_0"), val = tensor(2)]; + tensor x_19_split_axis_0 = const()[name = tensor("x_19_split_axis_0"), val = tensor(1)]; + tensor x_19_split_cast_fp16_0, tensor x_19_split_cast_fp16_1 = split(axis = x_19_split_axis_0, num_splits = x_19_split_num_splits_0, x = input_43_cast_fp16)[name = tensor("x_19_split_cast_fp16")]; + tensor x_19_split_1_sigmoid_cast_fp16 = sigmoid(x = x_19_split_cast_fp16_1)[name = tensor("x_19_split_1_sigmoid_cast_fp16")]; + tensor x_19_cast_fp16 = mul(x = x_19_split_cast_fp16_0, y = x_19_split_1_sigmoid_cast_fp16)[name = tensor("x_19_cast_fp16")]; + tensor var_323_axes_0 = const()[name = tensor("op_323_axes_0"), val = tensor([1])]; + tensor var_323 = expand_dims(axes = var_323_axes_0, x = pad_mask)[name = tensor("op_323")]; + tensor input_45_cast_fp16 = select(a = var_6_to_fp16, b = x_19_cast_fp16, cond = var_323)[name = tensor("input_45_cast_fp16")]; + tensor input_47_pad_0 = const()[name = tensor("input_47_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_47_mode_0 = const()[name = tensor("input_47_mode_0"), val = tensor("constant")]; + tensor const_16_to_fp16 = const()[name = tensor("const_16_to_fp16"), val = tensor(0x0p+0)]; + tensor input_47_cast_fp16 = pad(constant_val = const_16_to_fp16, mode = input_47_mode_0, pad = input_47_pad_0, x = input_45_cast_fp16)[name = tensor("input_47_cast_fp16")]; + tensor var_328 = const()[name = tensor("op_328"), val = tensor([1])]; + tensor var_330 = const()[name = tensor("op_330"), val = tensor([1])]; + tensor input_49_pad_type_0 = const()[name = tensor("input_49_pad_type_0"), val = tensor("custom")]; + tensor input_49_pad_0 = const()[name = tensor("input_49_pad_0"), val = tensor([0, 0])]; + tensor input_51_weight_0_to_fp16 = const()[name = tensor("input_51_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38571968)))]; + tensor input_51_bias_0_to_fp16 = const()[name = tensor("input_51_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38590464)))]; + tensor input_51_cast_fp16 = conv(bias = input_51_bias_0_to_fp16, dilations = var_330, groups = var_5, pad = input_49_pad_0, pad_type = input_49_pad_type_0, strides = var_328, weight = input_51_weight_0_to_fp16, x = input_47_cast_fp16)[name = tensor("input_51_cast_fp16")]; + tensor input_53_cast_fp16 = silu(x = input_51_cast_fp16)[name = tensor("input_53_cast_fp16")]; + tensor var_340 = const()[name = tensor("op_340"), val = tensor([1])]; + tensor var_342 = const()[name = tensor("op_342"), val = tensor([1])]; + tensor x_21_pad_type_0 = const()[name = tensor("x_21_pad_type_0"), val = tensor("custom")]; + tensor x_21_pad_0 = const()[name = tensor("x_21_pad_0"), val = tensor([0, 0])]; + tensor model_layers_0_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_0_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38592576)))]; + tensor x_21_cast_fp16 = conv(dilations = var_342, groups = var_27, pad = x_21_pad_0, pad_type = x_21_pad_type_0, strides = var_340, weight = model_layers_0_conv_pointwise_conv2_weight_to_fp16, x = input_53_cast_fp16)[name = tensor("x_21_cast_fp16")]; + tensor input_55_perm_0 = const()[name = tensor("input_55_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_282 = transpose(perm = input_55_perm_0, x = x_21_cast_fp16)[name = tensor("transpose_282")]; + tensor input_57_cast_fp16 = add(x = input_39_cast_fp16, y = transpose_282)[name = tensor("input_57_cast_fp16")]; + tensor input_59_axes_0 = const()[name = tensor("input_59_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40689792)))]; + tensor model_layers_0_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40691904)))]; + tensor input_59_cast_fp16 = layer_norm(axes = input_59_axes_0, beta = model_layers_0_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_feed_forward2_weight_to_fp16, x = input_57_cast_fp16)[name = tensor("input_59_cast_fp16")]; + tensor model_layers_0_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_0_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40694016)))]; + tensor linear_8_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_0_feed_forward2_linear1_weight_to_fp16, x = input_59_cast_fp16)[name = tensor("linear_8_cast_fp16")]; + tensor input_63_cast_fp16 = silu(x = linear_8_cast_fp16)[name = tensor("input_63_cast_fp16")]; + tensor model_layers_0_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_0_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49082688)))]; + tensor linear_9_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_0_feed_forward2_linear2_weight_to_fp16, x = input_63_cast_fp16)[name = tensor("linear_9_cast_fp16")]; + tensor var_361_to_fp16 = const()[name = tensor("op_361_to_fp16"), val = tensor(0x1p-1)]; + tensor var_362_cast_fp16 = mul(x = linear_9_cast_fp16, y = var_361_to_fp16)[name = tensor("op_362_cast_fp16")]; + tensor input_69_cast_fp16 = add(x = input_57_cast_fp16, y = var_362_cast_fp16)[name = tensor("input_69_cast_fp16")]; + tensor input_71_axes_0 = const()[name = tensor("input_71_axes_0"), val = tensor([-1])]; + tensor model_layers_0_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_0_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57471360)))]; + tensor model_layers_0_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_0_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57473472)))]; + tensor input_71_cast_fp16 = layer_norm(axes = input_71_axes_0, beta = model_layers_0_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_0_norm_out_weight_to_fp16, x = input_69_cast_fp16)[name = tensor("input_71_cast_fp16")]; + tensor input_73_axes_0 = const()[name = tensor("input_73_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57475584)))]; + tensor model_layers_1_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57477696)))]; + tensor input_73_cast_fp16 = layer_norm(axes = input_73_axes_0, beta = model_layers_1_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_feed_forward1_weight_to_fp16, x = input_71_cast_fp16)[name = tensor("input_73_cast_fp16")]; + tensor model_layers_1_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_1_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57479808)))]; + tensor linear_10_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_1_feed_forward1_linear1_weight_to_fp16, x = input_73_cast_fp16)[name = tensor("linear_10_cast_fp16")]; + tensor input_77_cast_fp16 = silu(x = linear_10_cast_fp16)[name = tensor("input_77_cast_fp16")]; + tensor model_layers_1_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_1_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(65868480)))]; + tensor linear_11_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_feed_forward1_linear2_weight_to_fp16, x = input_77_cast_fp16)[name = tensor("linear_11_cast_fp16")]; + tensor var_390_to_fp16 = const()[name = tensor("op_390_to_fp16"), val = tensor(0x1p-1)]; + tensor var_391_cast_fp16 = mul(x = linear_11_cast_fp16, y = var_390_to_fp16)[name = tensor("op_391_cast_fp16")]; + tensor input_83_cast_fp16 = add(x = input_71_cast_fp16, y = var_391_cast_fp16)[name = tensor("input_83_cast_fp16")]; + tensor query_3_axes_0 = const()[name = tensor("query_3_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(74257152)))]; + tensor model_layers_1_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(74259264)))]; + tensor query_3_cast_fp16 = layer_norm(axes = query_3_axes_0, beta = model_layers_1_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_self_att_weight_to_fp16, x = input_83_cast_fp16)[name = tensor("query_3_cast_fp16")]; + tensor model_layers_1_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_1_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(74261376)))]; + tensor linear_12_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_q_weight_to_fp16, x = query_3_cast_fp16)[name = tensor("linear_12_cast_fp16")]; + tensor var_407 = const()[name = tensor("op_407"), val = tensor([1, -1, 8, 128])]; + tensor q_7_cast_fp16 = reshape(shape = var_407, x = linear_12_cast_fp16)[name = tensor("q_7_cast_fp16")]; + tensor model_layers_1_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_1_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(76358592)))]; + tensor linear_13_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_k_weight_to_fp16, x = query_3_cast_fp16)[name = tensor("linear_13_cast_fp16")]; + tensor var_411 = const()[name = tensor("op_411"), val = tensor([1, -1, 8, 128])]; + tensor k_5_cast_fp16 = reshape(shape = var_411, x = linear_13_cast_fp16)[name = tensor("k_5_cast_fp16")]; + tensor model_layers_1_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_1_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(78455808)))]; + tensor linear_14_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_v_weight_to_fp16, x = query_3_cast_fp16)[name = tensor("linear_14_cast_fp16")]; + tensor var_415 = const()[name = tensor("op_415"), val = tensor([1, -1, 8, 128])]; + tensor v_3_cast_fp16 = reshape(shape = var_415, x = linear_14_cast_fp16)[name = tensor("v_3_cast_fp16")]; + tensor value_3_perm_0 = const()[name = tensor("value_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_1_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_1_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(80553024)))]; + tensor var_427_cast_fp16 = add(x = q_7_cast_fp16, y = model_layers_1_self_attn_pos_bias_u_to_fp16)[name = tensor("op_427_cast_fp16")]; + tensor model_layers_1_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_1_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(80555136)))]; + tensor var_429_cast_fp16 = add(x = q_7_cast_fp16, y = model_layers_1_self_attn_pos_bias_v_to_fp16)[name = tensor("op_429_cast_fp16")]; + tensor q_with_bias_v_3_perm_0 = const()[name = tensor("q_with_bias_v_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_29_transpose_x_0 = const()[name = tensor("x_29_transpose_x_0"), val = tensor(false)]; + tensor x_29_transpose_y_0 = const()[name = tensor("x_29_transpose_y_0"), val = tensor(false)]; + tensor var_431_to_fp16 = const()[name = tensor("op_431_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(80557248)))]; + tensor transpose_280 = transpose(perm = q_with_bias_v_3_perm_0, x = var_429_cast_fp16)[name = tensor("transpose_280")]; + tensor x_29_cast_fp16 = matmul(transpose_x = x_29_transpose_x_0, transpose_y = x_29_transpose_y_0, x = transpose_280, y = var_431_to_fp16)[name = tensor("x_29_cast_fp16")]; + tensor x_31_pad_0 = const()[name = tensor("x_31_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_31_mode_0 = const()[name = tensor("x_31_mode_0"), val = tensor("constant")]; + tensor const_23_to_fp16 = const()[name = tensor("const_23_to_fp16"), val = tensor(0x0p+0)]; + tensor x_31_cast_fp16 = pad(constant_val = const_23_to_fp16, mode = x_31_mode_0, pad = x_31_pad_0, x = x_29_cast_fp16)[name = tensor("x_31_cast_fp16")]; + tensor var_439 = const()[name = tensor("op_439"), val = tensor([1, 8, -1, 126])]; + tensor x_33_cast_fp16 = reshape(shape = var_439, x = x_31_cast_fp16)[name = tensor("x_33_cast_fp16")]; + tensor var_443_begin_0 = const()[name = tensor("op_443_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_443_end_0 = const()[name = tensor("op_443_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_443_end_mask_0 = const()[name = tensor("op_443_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_443_cast_fp16 = slice_by_index(begin = var_443_begin_0, end = var_443_end_0, end_mask = var_443_end_mask_0, x = x_33_cast_fp16)[name = tensor("op_443_cast_fp16")]; + tensor var_444 = const()[name = tensor("op_444"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_5_cast_fp16 = reshape(shape = var_444, x = var_443_cast_fp16)[name = tensor("matrix_bd_5_cast_fp16")]; + tensor matrix_ac_3_transpose_x_0 = const()[name = tensor("matrix_ac_3_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_3_transpose_y_0 = const()[name = tensor("matrix_ac_3_transpose_y_0"), val = tensor(false)]; + tensor transpose_74_perm_0 = const()[name = tensor("transpose_74_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_75_perm_0 = const()[name = tensor("transpose_75_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_278 = transpose(perm = transpose_75_perm_0, x = k_5_cast_fp16)[name = tensor("transpose_278")]; + tensor transpose_279 = transpose(perm = transpose_74_perm_0, x = var_427_cast_fp16)[name = tensor("transpose_279")]; + tensor matrix_ac_3_cast_fp16 = matmul(transpose_x = matrix_ac_3_transpose_x_0, transpose_y = matrix_ac_3_transpose_y_0, x = transpose_279, y = transpose_278)[name = tensor("matrix_ac_3_cast_fp16")]; + tensor matrix_bd_7_begin_0 = const()[name = tensor("matrix_bd_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_7_end_0 = const()[name = tensor("matrix_bd_7_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_7_end_mask_0 = const()[name = tensor("matrix_bd_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_7_cast_fp16 = slice_by_index(begin = matrix_bd_7_begin_0, end = matrix_bd_7_end_0, end_mask = matrix_bd_7_end_mask_0, x = matrix_bd_5_cast_fp16)[name = tensor("matrix_bd_7_cast_fp16")]; + tensor var_453_cast_fp16 = add(x = matrix_ac_3_cast_fp16, y = matrix_bd_7_cast_fp16)[name = tensor("op_453_cast_fp16")]; + tensor _inversed_scores_5_y_0_to_fp16 = const()[name = tensor("_inversed_scores_5_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_5_cast_fp16 = mul(x = var_453_cast_fp16, y = _inversed_scores_5_y_0_to_fp16)[name = tensor("_inversed_scores_5_cast_fp16")]; + tensor scores_7_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_5_cast_fp16, cond = mask_3)[name = tensor("scores_7_cast_fp16")]; + tensor var_459_cast_fp16 = softmax(axis = var_25, x = scores_7_cast_fp16)[name = tensor("op_459_cast_fp16")]; + tensor input_85_cast_fp16 = select(a = var_6_to_fp16, b = var_459_cast_fp16, cond = mask_3)[name = tensor("input_85_cast_fp16")]; + tensor x_35_transpose_x_0 = const()[name = tensor("x_35_transpose_x_0"), val = tensor(false)]; + tensor x_35_transpose_y_0 = const()[name = tensor("x_35_transpose_y_0"), val = tensor(false)]; + tensor transpose_281 = transpose(perm = value_3_perm_0, x = v_3_cast_fp16)[name = tensor("transpose_281")]; + tensor x_35_cast_fp16 = matmul(transpose_x = x_35_transpose_x_0, transpose_y = x_35_transpose_y_0, x = input_85_cast_fp16, y = transpose_281)[name = tensor("x_35_cast_fp16")]; + tensor var_463_perm_0 = const()[name = tensor("op_463_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_464 = const()[name = tensor("op_464"), val = tensor([1, -1, 1024])]; + tensor transpose_277 = transpose(perm = var_463_perm_0, x = x_35_cast_fp16)[name = tensor("transpose_277")]; + tensor input_87_cast_fp16 = reshape(shape = var_464, x = transpose_277)[name = tensor("input_87_cast_fp16")]; + tensor model_layers_1_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_1_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(81071360)))]; + tensor linear_16_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_self_attn_linear_out_weight_to_fp16, x = input_87_cast_fp16)[name = tensor("linear_16_cast_fp16")]; + tensor input_91_cast_fp16 = add(x = input_83_cast_fp16, y = linear_16_cast_fp16)[name = tensor("input_91_cast_fp16")]; + tensor x_39_axes_0 = const()[name = tensor("x_39_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(83168576)))]; + tensor model_layers_1_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(83170688)))]; + tensor x_39_cast_fp16 = layer_norm(axes = x_39_axes_0, beta = model_layers_1_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_conv_weight_to_fp16, x = input_91_cast_fp16)[name = tensor("x_39_cast_fp16")]; + tensor input_93_perm_0 = const()[name = tensor("input_93_perm_0"), val = tensor([0, 2, 1])]; + tensor var_480 = const()[name = tensor("op_480"), val = tensor([1])]; + tensor var_482 = const()[name = tensor("op_482"), val = tensor([1])]; + tensor input_95_pad_type_0 = const()[name = tensor("input_95_pad_type_0"), val = tensor("custom")]; + tensor input_95_pad_0 = const()[name = tensor("input_95_pad_0"), val = tensor([0, 0])]; + tensor model_layers_1_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_1_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(83172800)))]; + tensor transpose_276 = transpose(perm = input_93_perm_0, x = x_39_cast_fp16)[name = tensor("transpose_276")]; + tensor input_95_cast_fp16 = conv(dilations = var_482, groups = var_27, pad = input_95_pad_0, pad_type = input_95_pad_type_0, strides = var_480, weight = model_layers_1_conv_pointwise_conv1_weight_to_fp16, x = transpose_276)[name = tensor("input_95_cast_fp16")]; + tensor x_41_split_num_splits_0 = const()[name = tensor("x_41_split_num_splits_0"), val = tensor(2)]; + tensor x_41_split_axis_0 = const()[name = tensor("x_41_split_axis_0"), val = tensor(1)]; + tensor x_41_split_cast_fp16_0, tensor x_41_split_cast_fp16_1 = split(axis = x_41_split_axis_0, num_splits = x_41_split_num_splits_0, x = input_95_cast_fp16)[name = tensor("x_41_split_cast_fp16")]; + tensor x_41_split_1_sigmoid_cast_fp16 = sigmoid(x = x_41_split_cast_fp16_1)[name = tensor("x_41_split_1_sigmoid_cast_fp16")]; + tensor x_41_cast_fp16 = mul(x = x_41_split_cast_fp16_0, y = x_41_split_1_sigmoid_cast_fp16)[name = tensor("x_41_cast_fp16")]; + tensor input_97_cast_fp16 = select(a = var_6_to_fp16, b = x_41_cast_fp16, cond = var_323)[name = tensor("input_97_cast_fp16")]; + tensor input_99_pad_0 = const()[name = tensor("input_99_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_99_mode_0 = const()[name = tensor("input_99_mode_0"), val = tensor("constant")]; + tensor const_26_to_fp16 = const()[name = tensor("const_26_to_fp16"), val = tensor(0x0p+0)]; + tensor input_99_cast_fp16 = pad(constant_val = const_26_to_fp16, mode = input_99_mode_0, pad = input_99_pad_0, x = input_97_cast_fp16)[name = tensor("input_99_cast_fp16")]; + tensor var_491 = const()[name = tensor("op_491"), val = tensor([1])]; + tensor var_493 = const()[name = tensor("op_493"), val = tensor([1])]; + tensor input_101_pad_type_0 = const()[name = tensor("input_101_pad_type_0"), val = tensor("custom")]; + tensor input_101_pad_0 = const()[name = tensor("input_101_pad_0"), val = tensor([0, 0])]; + tensor input_103_weight_0_to_fp16 = const()[name = tensor("input_103_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87367168)))]; + tensor input_103_bias_0_to_fp16 = const()[name = tensor("input_103_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87385664)))]; + tensor input_103_cast_fp16 = conv(bias = input_103_bias_0_to_fp16, dilations = var_493, groups = var_5, pad = input_101_pad_0, pad_type = input_101_pad_type_0, strides = var_491, weight = input_103_weight_0_to_fp16, x = input_99_cast_fp16)[name = tensor("input_103_cast_fp16")]; + tensor input_105_cast_fp16 = silu(x = input_103_cast_fp16)[name = tensor("input_105_cast_fp16")]; + tensor var_503 = const()[name = tensor("op_503"), val = tensor([1])]; + tensor var_505 = const()[name = tensor("op_505"), val = tensor([1])]; + tensor x_43_pad_type_0 = const()[name = tensor("x_43_pad_type_0"), val = tensor("custom")]; + tensor x_43_pad_0 = const()[name = tensor("x_43_pad_0"), val = tensor([0, 0])]; + tensor model_layers_1_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_1_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87387776)))]; + tensor x_43_cast_fp16 = conv(dilations = var_505, groups = var_27, pad = x_43_pad_0, pad_type = x_43_pad_type_0, strides = var_503, weight = model_layers_1_conv_pointwise_conv2_weight_to_fp16, x = input_105_cast_fp16)[name = tensor("x_43_cast_fp16")]; + tensor input_107_perm_0 = const()[name = tensor("input_107_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_275 = transpose(perm = input_107_perm_0, x = x_43_cast_fp16)[name = tensor("transpose_275")]; + tensor input_109_cast_fp16 = add(x = input_91_cast_fp16, y = transpose_275)[name = tensor("input_109_cast_fp16")]; + tensor input_111_axes_0 = const()[name = tensor("input_111_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89484992)))]; + tensor model_layers_1_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89487104)))]; + tensor input_111_cast_fp16 = layer_norm(axes = input_111_axes_0, beta = model_layers_1_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_feed_forward2_weight_to_fp16, x = input_109_cast_fp16)[name = tensor("input_111_cast_fp16")]; + tensor model_layers_1_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_1_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89489216)))]; + tensor linear_17_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_1_feed_forward2_linear1_weight_to_fp16, x = input_111_cast_fp16)[name = tensor("linear_17_cast_fp16")]; + tensor input_115_cast_fp16 = silu(x = linear_17_cast_fp16)[name = tensor("input_115_cast_fp16")]; + tensor model_layers_1_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_1_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97877888)))]; + tensor linear_18_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_1_feed_forward2_linear2_weight_to_fp16, x = input_115_cast_fp16)[name = tensor("linear_18_cast_fp16")]; + tensor var_524_to_fp16 = const()[name = tensor("op_524_to_fp16"), val = tensor(0x1p-1)]; + tensor var_525_cast_fp16 = mul(x = linear_18_cast_fp16, y = var_524_to_fp16)[name = tensor("op_525_cast_fp16")]; + tensor input_121_cast_fp16 = add(x = input_109_cast_fp16, y = var_525_cast_fp16)[name = tensor("input_121_cast_fp16")]; + tensor input_123_axes_0 = const()[name = tensor("input_123_axes_0"), val = tensor([-1])]; + tensor model_layers_1_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_1_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106266560)))]; + tensor model_layers_1_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_1_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106268672)))]; + tensor input_123_cast_fp16 = layer_norm(axes = input_123_axes_0, beta = model_layers_1_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_1_norm_out_weight_to_fp16, x = input_121_cast_fp16)[name = tensor("input_123_cast_fp16")]; + tensor input_125_axes_0 = const()[name = tensor("input_125_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106270784)))]; + tensor model_layers_2_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106272896)))]; + tensor input_125_cast_fp16 = layer_norm(axes = input_125_axes_0, beta = model_layers_2_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_feed_forward1_weight_to_fp16, x = input_123_cast_fp16)[name = tensor("input_125_cast_fp16")]; + tensor model_layers_2_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_2_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(106275008)))]; + tensor linear_19_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_2_feed_forward1_linear1_weight_to_fp16, x = input_125_cast_fp16)[name = tensor("linear_19_cast_fp16")]; + tensor input_129_cast_fp16 = silu(x = linear_19_cast_fp16)[name = tensor("input_129_cast_fp16")]; + tensor model_layers_2_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_2_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(114663680)))]; + tensor linear_20_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_feed_forward1_linear2_weight_to_fp16, x = input_129_cast_fp16)[name = tensor("linear_20_cast_fp16")]; + tensor var_553_to_fp16 = const()[name = tensor("op_553_to_fp16"), val = tensor(0x1p-1)]; + tensor var_554_cast_fp16 = mul(x = linear_20_cast_fp16, y = var_553_to_fp16)[name = tensor("op_554_cast_fp16")]; + tensor input_135_cast_fp16 = add(x = input_123_cast_fp16, y = var_554_cast_fp16)[name = tensor("input_135_cast_fp16")]; + tensor query_5_axes_0 = const()[name = tensor("query_5_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(123052352)))]; + tensor model_layers_2_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(123054464)))]; + tensor query_5_cast_fp16 = layer_norm(axes = query_5_axes_0, beta = model_layers_2_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_self_att_weight_to_fp16, x = input_135_cast_fp16)[name = tensor("query_5_cast_fp16")]; + tensor model_layers_2_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_2_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(123056576)))]; + tensor linear_21_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_q_weight_to_fp16, x = query_5_cast_fp16)[name = tensor("linear_21_cast_fp16")]; + tensor var_570 = const()[name = tensor("op_570"), val = tensor([1, -1, 8, 128])]; + tensor q_13_cast_fp16 = reshape(shape = var_570, x = linear_21_cast_fp16)[name = tensor("q_13_cast_fp16")]; + tensor model_layers_2_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_2_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(125153792)))]; + tensor linear_22_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_k_weight_to_fp16, x = query_5_cast_fp16)[name = tensor("linear_22_cast_fp16")]; + tensor var_574 = const()[name = tensor("op_574"), val = tensor([1, -1, 8, 128])]; + tensor k_9_cast_fp16 = reshape(shape = var_574, x = linear_22_cast_fp16)[name = tensor("k_9_cast_fp16")]; + tensor model_layers_2_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_2_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(127251008)))]; + tensor linear_23_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_v_weight_to_fp16, x = query_5_cast_fp16)[name = tensor("linear_23_cast_fp16")]; + tensor var_578 = const()[name = tensor("op_578"), val = tensor([1, -1, 8, 128])]; + tensor v_5_cast_fp16 = reshape(shape = var_578, x = linear_23_cast_fp16)[name = tensor("v_5_cast_fp16")]; + tensor value_5_perm_0 = const()[name = tensor("value_5_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_2_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_2_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(129348224)))]; + tensor var_590_cast_fp16 = add(x = q_13_cast_fp16, y = model_layers_2_self_attn_pos_bias_u_to_fp16)[name = tensor("op_590_cast_fp16")]; + tensor model_layers_2_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_2_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(129350336)))]; + tensor var_592_cast_fp16 = add(x = q_13_cast_fp16, y = model_layers_2_self_attn_pos_bias_v_to_fp16)[name = tensor("op_592_cast_fp16")]; + tensor q_with_bias_v_5_perm_0 = const()[name = tensor("q_with_bias_v_5_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_51_transpose_x_0 = const()[name = tensor("x_51_transpose_x_0"), val = tensor(false)]; + tensor x_51_transpose_y_0 = const()[name = tensor("x_51_transpose_y_0"), val = tensor(false)]; + tensor var_594_to_fp16 = const()[name = tensor("op_594_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(129352448)))]; + tensor transpose_273 = transpose(perm = q_with_bias_v_5_perm_0, x = var_592_cast_fp16)[name = tensor("transpose_273")]; + tensor x_51_cast_fp16 = matmul(transpose_x = x_51_transpose_x_0, transpose_y = x_51_transpose_y_0, x = transpose_273, y = var_594_to_fp16)[name = tensor("x_51_cast_fp16")]; + tensor x_53_pad_0 = const()[name = tensor("x_53_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_53_mode_0 = const()[name = tensor("x_53_mode_0"), val = tensor("constant")]; + tensor const_33_to_fp16 = const()[name = tensor("const_33_to_fp16"), val = tensor(0x0p+0)]; + tensor x_53_cast_fp16 = pad(constant_val = const_33_to_fp16, mode = x_53_mode_0, pad = x_53_pad_0, x = x_51_cast_fp16)[name = tensor("x_53_cast_fp16")]; + tensor var_602 = const()[name = tensor("op_602"), val = tensor([1, 8, -1, 126])]; + tensor x_55_cast_fp16 = reshape(shape = var_602, x = x_53_cast_fp16)[name = tensor("x_55_cast_fp16")]; + tensor var_606_begin_0 = const()[name = tensor("op_606_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_606_end_0 = const()[name = tensor("op_606_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_606_end_mask_0 = const()[name = tensor("op_606_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_606_cast_fp16 = slice_by_index(begin = var_606_begin_0, end = var_606_end_0, end_mask = var_606_end_mask_0, x = x_55_cast_fp16)[name = tensor("op_606_cast_fp16")]; + tensor var_607 = const()[name = tensor("op_607"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_9_cast_fp16 = reshape(shape = var_607, x = var_606_cast_fp16)[name = tensor("matrix_bd_9_cast_fp16")]; + tensor matrix_ac_5_transpose_x_0 = const()[name = tensor("matrix_ac_5_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_5_transpose_y_0 = const()[name = tensor("matrix_ac_5_transpose_y_0"), val = tensor(false)]; + tensor transpose_76_perm_0 = const()[name = tensor("transpose_76_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_77_perm_0 = const()[name = tensor("transpose_77_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_271 = transpose(perm = transpose_77_perm_0, x = k_9_cast_fp16)[name = tensor("transpose_271")]; + tensor transpose_272 = transpose(perm = transpose_76_perm_0, x = var_590_cast_fp16)[name = tensor("transpose_272")]; + tensor matrix_ac_5_cast_fp16 = matmul(transpose_x = matrix_ac_5_transpose_x_0, transpose_y = matrix_ac_5_transpose_y_0, x = transpose_272, y = transpose_271)[name = tensor("matrix_ac_5_cast_fp16")]; + tensor matrix_bd_11_begin_0 = const()[name = tensor("matrix_bd_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_11_end_0 = const()[name = tensor("matrix_bd_11_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_11_end_mask_0 = const()[name = tensor("matrix_bd_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_11_cast_fp16 = slice_by_index(begin = matrix_bd_11_begin_0, end = matrix_bd_11_end_0, end_mask = matrix_bd_11_end_mask_0, x = matrix_bd_9_cast_fp16)[name = tensor("matrix_bd_11_cast_fp16")]; + tensor var_616_cast_fp16 = add(x = matrix_ac_5_cast_fp16, y = matrix_bd_11_cast_fp16)[name = tensor("op_616_cast_fp16")]; + tensor _inversed_scores_9_y_0_to_fp16 = const()[name = tensor("_inversed_scores_9_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_9_cast_fp16 = mul(x = var_616_cast_fp16, y = _inversed_scores_9_y_0_to_fp16)[name = tensor("_inversed_scores_9_cast_fp16")]; + tensor scores_11_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_9_cast_fp16, cond = mask_3)[name = tensor("scores_11_cast_fp16")]; + tensor var_622_cast_fp16 = softmax(axis = var_25, x = scores_11_cast_fp16)[name = tensor("op_622_cast_fp16")]; + tensor input_137_cast_fp16 = select(a = var_6_to_fp16, b = var_622_cast_fp16, cond = mask_3)[name = tensor("input_137_cast_fp16")]; + tensor x_57_transpose_x_0 = const()[name = tensor("x_57_transpose_x_0"), val = tensor(false)]; + tensor x_57_transpose_y_0 = const()[name = tensor("x_57_transpose_y_0"), val = tensor(false)]; + tensor transpose_274 = transpose(perm = value_5_perm_0, x = v_5_cast_fp16)[name = tensor("transpose_274")]; + tensor x_57_cast_fp16 = matmul(transpose_x = x_57_transpose_x_0, transpose_y = x_57_transpose_y_0, x = input_137_cast_fp16, y = transpose_274)[name = tensor("x_57_cast_fp16")]; + tensor var_626_perm_0 = const()[name = tensor("op_626_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_627 = const()[name = tensor("op_627"), val = tensor([1, -1, 1024])]; + tensor transpose_270 = transpose(perm = var_626_perm_0, x = x_57_cast_fp16)[name = tensor("transpose_270")]; + tensor input_139_cast_fp16 = reshape(shape = var_627, x = transpose_270)[name = tensor("input_139_cast_fp16")]; + tensor model_layers_2_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_2_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(129866560)))]; + tensor linear_25_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_self_attn_linear_out_weight_to_fp16, x = input_139_cast_fp16)[name = tensor("linear_25_cast_fp16")]; + tensor input_143_cast_fp16 = add(x = input_135_cast_fp16, y = linear_25_cast_fp16)[name = tensor("input_143_cast_fp16")]; + tensor x_61_axes_0 = const()[name = tensor("x_61_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(131963776)))]; + tensor model_layers_2_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(131965888)))]; + tensor x_61_cast_fp16 = layer_norm(axes = x_61_axes_0, beta = model_layers_2_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_conv_weight_to_fp16, x = input_143_cast_fp16)[name = tensor("x_61_cast_fp16")]; + tensor input_145_perm_0 = const()[name = tensor("input_145_perm_0"), val = tensor([0, 2, 1])]; + tensor var_643 = const()[name = tensor("op_643"), val = tensor([1])]; + tensor var_645 = const()[name = tensor("op_645"), val = tensor([1])]; + tensor input_147_pad_type_0 = const()[name = tensor("input_147_pad_type_0"), val = tensor("custom")]; + tensor input_147_pad_0 = const()[name = tensor("input_147_pad_0"), val = tensor([0, 0])]; + tensor model_layers_2_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_2_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(131968000)))]; + tensor transpose_269 = transpose(perm = input_145_perm_0, x = x_61_cast_fp16)[name = tensor("transpose_269")]; + tensor input_147_cast_fp16 = conv(dilations = var_645, groups = var_27, pad = input_147_pad_0, pad_type = input_147_pad_type_0, strides = var_643, weight = model_layers_2_conv_pointwise_conv1_weight_to_fp16, x = transpose_269)[name = tensor("input_147_cast_fp16")]; + tensor x_63_split_num_splits_0 = const()[name = tensor("x_63_split_num_splits_0"), val = tensor(2)]; + tensor x_63_split_axis_0 = const()[name = tensor("x_63_split_axis_0"), val = tensor(1)]; + tensor x_63_split_cast_fp16_0, tensor x_63_split_cast_fp16_1 = split(axis = x_63_split_axis_0, num_splits = x_63_split_num_splits_0, x = input_147_cast_fp16)[name = tensor("x_63_split_cast_fp16")]; + tensor x_63_split_1_sigmoid_cast_fp16 = sigmoid(x = x_63_split_cast_fp16_1)[name = tensor("x_63_split_1_sigmoid_cast_fp16")]; + tensor x_63_cast_fp16 = mul(x = x_63_split_cast_fp16_0, y = x_63_split_1_sigmoid_cast_fp16)[name = tensor("x_63_cast_fp16")]; + tensor input_149_cast_fp16 = select(a = var_6_to_fp16, b = x_63_cast_fp16, cond = var_323)[name = tensor("input_149_cast_fp16")]; + tensor input_151_pad_0 = const()[name = tensor("input_151_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_151_mode_0 = const()[name = tensor("input_151_mode_0"), val = tensor("constant")]; + tensor const_36_to_fp16 = const()[name = tensor("const_36_to_fp16"), val = tensor(0x0p+0)]; + tensor input_151_cast_fp16 = pad(constant_val = const_36_to_fp16, mode = input_151_mode_0, pad = input_151_pad_0, x = input_149_cast_fp16)[name = tensor("input_151_cast_fp16")]; + tensor var_654 = const()[name = tensor("op_654"), val = tensor([1])]; + tensor var_656 = const()[name = tensor("op_656"), val = tensor([1])]; + tensor input_153_pad_type_0 = const()[name = tensor("input_153_pad_type_0"), val = tensor("custom")]; + tensor input_153_pad_0 = const()[name = tensor("input_153_pad_0"), val = tensor([0, 0])]; + tensor input_155_weight_0_to_fp16 = const()[name = tensor("input_155_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136162368)))]; + tensor input_155_bias_0_to_fp16 = const()[name = tensor("input_155_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136180864)))]; + tensor input_155_cast_fp16 = conv(bias = input_155_bias_0_to_fp16, dilations = var_656, groups = var_5, pad = input_153_pad_0, pad_type = input_153_pad_type_0, strides = var_654, weight = input_155_weight_0_to_fp16, x = input_151_cast_fp16)[name = tensor("input_155_cast_fp16")]; + tensor input_157_cast_fp16 = silu(x = input_155_cast_fp16)[name = tensor("input_157_cast_fp16")]; + tensor var_666 = const()[name = tensor("op_666"), val = tensor([1])]; + tensor var_668 = const()[name = tensor("op_668"), val = tensor([1])]; + tensor x_65_pad_type_0 = const()[name = tensor("x_65_pad_type_0"), val = tensor("custom")]; + tensor x_65_pad_0 = const()[name = tensor("x_65_pad_0"), val = tensor([0, 0])]; + tensor model_layers_2_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_2_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(136182976)))]; + tensor x_65_cast_fp16 = conv(dilations = var_668, groups = var_27, pad = x_65_pad_0, pad_type = x_65_pad_type_0, strides = var_666, weight = model_layers_2_conv_pointwise_conv2_weight_to_fp16, x = input_157_cast_fp16)[name = tensor("x_65_cast_fp16")]; + tensor input_159_perm_0 = const()[name = tensor("input_159_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_268 = transpose(perm = input_159_perm_0, x = x_65_cast_fp16)[name = tensor("transpose_268")]; + tensor input_161_cast_fp16 = add(x = input_143_cast_fp16, y = transpose_268)[name = tensor("input_161_cast_fp16")]; + tensor input_163_axes_0 = const()[name = tensor("input_163_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138280192)))]; + tensor model_layers_2_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138282304)))]; + tensor input_163_cast_fp16 = layer_norm(axes = input_163_axes_0, beta = model_layers_2_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_feed_forward2_weight_to_fp16, x = input_161_cast_fp16)[name = tensor("input_163_cast_fp16")]; + tensor model_layers_2_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_2_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(138284416)))]; + tensor linear_26_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_2_feed_forward2_linear1_weight_to_fp16, x = input_163_cast_fp16)[name = tensor("linear_26_cast_fp16")]; + tensor input_167_cast_fp16 = silu(x = linear_26_cast_fp16)[name = tensor("input_167_cast_fp16")]; + tensor model_layers_2_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_2_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(146673088)))]; + tensor linear_27_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_2_feed_forward2_linear2_weight_to_fp16, x = input_167_cast_fp16)[name = tensor("linear_27_cast_fp16")]; + tensor var_687_to_fp16 = const()[name = tensor("op_687_to_fp16"), val = tensor(0x1p-1)]; + tensor var_688_cast_fp16 = mul(x = linear_27_cast_fp16, y = var_687_to_fp16)[name = tensor("op_688_cast_fp16")]; + tensor input_173_cast_fp16 = add(x = input_161_cast_fp16, y = var_688_cast_fp16)[name = tensor("input_173_cast_fp16")]; + tensor input_175_axes_0 = const()[name = tensor("input_175_axes_0"), val = tensor([-1])]; + tensor model_layers_2_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_2_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155061760)))]; + tensor model_layers_2_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_2_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155063872)))]; + tensor input_175_cast_fp16 = layer_norm(axes = input_175_axes_0, beta = model_layers_2_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_2_norm_out_weight_to_fp16, x = input_173_cast_fp16)[name = tensor("input_175_cast_fp16")]; + tensor input_177_axes_0 = const()[name = tensor("input_177_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155065984)))]; + tensor model_layers_3_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155068096)))]; + tensor input_177_cast_fp16 = layer_norm(axes = input_177_axes_0, beta = model_layers_3_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_feed_forward1_weight_to_fp16, x = input_175_cast_fp16)[name = tensor("input_177_cast_fp16")]; + tensor model_layers_3_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_3_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(155070208)))]; + tensor linear_28_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_3_feed_forward1_linear1_weight_to_fp16, x = input_177_cast_fp16)[name = tensor("linear_28_cast_fp16")]; + tensor input_181_cast_fp16 = silu(x = linear_28_cast_fp16)[name = tensor("input_181_cast_fp16")]; + tensor model_layers_3_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_3_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163458880)))]; + tensor linear_29_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_feed_forward1_linear2_weight_to_fp16, x = input_181_cast_fp16)[name = tensor("linear_29_cast_fp16")]; + tensor var_716_to_fp16 = const()[name = tensor("op_716_to_fp16"), val = tensor(0x1p-1)]; + tensor var_717_cast_fp16 = mul(x = linear_29_cast_fp16, y = var_716_to_fp16)[name = tensor("op_717_cast_fp16")]; + tensor input_187_cast_fp16 = add(x = input_175_cast_fp16, y = var_717_cast_fp16)[name = tensor("input_187_cast_fp16")]; + tensor query_7_axes_0 = const()[name = tensor("query_7_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(171847552)))]; + tensor model_layers_3_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(171849664)))]; + tensor query_7_cast_fp16 = layer_norm(axes = query_7_axes_0, beta = model_layers_3_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_self_att_weight_to_fp16, x = input_187_cast_fp16)[name = tensor("query_7_cast_fp16")]; + tensor model_layers_3_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_3_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(171851776)))]; + tensor linear_30_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_q_weight_to_fp16, x = query_7_cast_fp16)[name = tensor("linear_30_cast_fp16")]; + tensor var_733 = const()[name = tensor("op_733"), val = tensor([1, -1, 8, 128])]; + tensor q_19_cast_fp16 = reshape(shape = var_733, x = linear_30_cast_fp16)[name = tensor("q_19_cast_fp16")]; + tensor model_layers_3_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_3_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(173948992)))]; + tensor linear_31_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_k_weight_to_fp16, x = query_7_cast_fp16)[name = tensor("linear_31_cast_fp16")]; + tensor var_737 = const()[name = tensor("op_737"), val = tensor([1, -1, 8, 128])]; + tensor k_13_cast_fp16 = reshape(shape = var_737, x = linear_31_cast_fp16)[name = tensor("k_13_cast_fp16")]; + tensor model_layers_3_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_3_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(176046208)))]; + tensor linear_32_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_v_weight_to_fp16, x = query_7_cast_fp16)[name = tensor("linear_32_cast_fp16")]; + tensor var_741 = const()[name = tensor("op_741"), val = tensor([1, -1, 8, 128])]; + tensor v_7_cast_fp16 = reshape(shape = var_741, x = linear_32_cast_fp16)[name = tensor("v_7_cast_fp16")]; + tensor value_7_perm_0 = const()[name = tensor("value_7_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_3_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_3_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(178143424)))]; + tensor var_753_cast_fp16 = add(x = q_19_cast_fp16, y = model_layers_3_self_attn_pos_bias_u_to_fp16)[name = tensor("op_753_cast_fp16")]; + tensor model_layers_3_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_3_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(178145536)))]; + tensor var_755_cast_fp16 = add(x = q_19_cast_fp16, y = model_layers_3_self_attn_pos_bias_v_to_fp16)[name = tensor("op_755_cast_fp16")]; + tensor q_with_bias_v_7_perm_0 = const()[name = tensor("q_with_bias_v_7_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_73_transpose_x_0 = const()[name = tensor("x_73_transpose_x_0"), val = tensor(false)]; + tensor x_73_transpose_y_0 = const()[name = tensor("x_73_transpose_y_0"), val = tensor(false)]; + tensor var_757_to_fp16 = const()[name = tensor("op_757_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(178147648)))]; + tensor transpose_266 = transpose(perm = q_with_bias_v_7_perm_0, x = var_755_cast_fp16)[name = tensor("transpose_266")]; + tensor x_73_cast_fp16 = matmul(transpose_x = x_73_transpose_x_0, transpose_y = x_73_transpose_y_0, x = transpose_266, y = var_757_to_fp16)[name = tensor("x_73_cast_fp16")]; + tensor x_75_pad_0 = const()[name = tensor("x_75_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_75_mode_0 = const()[name = tensor("x_75_mode_0"), val = tensor("constant")]; + tensor const_43_to_fp16 = const()[name = tensor("const_43_to_fp16"), val = tensor(0x0p+0)]; + tensor x_75_cast_fp16 = pad(constant_val = const_43_to_fp16, mode = x_75_mode_0, pad = x_75_pad_0, x = x_73_cast_fp16)[name = tensor("x_75_cast_fp16")]; + tensor var_765 = const()[name = tensor("op_765"), val = tensor([1, 8, -1, 126])]; + tensor x_77_cast_fp16 = reshape(shape = var_765, x = x_75_cast_fp16)[name = tensor("x_77_cast_fp16")]; + tensor var_769_begin_0 = const()[name = tensor("op_769_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_769_end_0 = const()[name = tensor("op_769_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_769_end_mask_0 = const()[name = tensor("op_769_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_769_cast_fp16 = slice_by_index(begin = var_769_begin_0, end = var_769_end_0, end_mask = var_769_end_mask_0, x = x_77_cast_fp16)[name = tensor("op_769_cast_fp16")]; + tensor var_770 = const()[name = tensor("op_770"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_13_cast_fp16 = reshape(shape = var_770, x = var_769_cast_fp16)[name = tensor("matrix_bd_13_cast_fp16")]; + tensor matrix_ac_7_transpose_x_0 = const()[name = tensor("matrix_ac_7_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_7_transpose_y_0 = const()[name = tensor("matrix_ac_7_transpose_y_0"), val = tensor(false)]; + tensor transpose_78_perm_0 = const()[name = tensor("transpose_78_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_79_perm_0 = const()[name = tensor("transpose_79_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_264 = transpose(perm = transpose_79_perm_0, x = k_13_cast_fp16)[name = tensor("transpose_264")]; + tensor transpose_265 = transpose(perm = transpose_78_perm_0, x = var_753_cast_fp16)[name = tensor("transpose_265")]; + tensor matrix_ac_7_cast_fp16 = matmul(transpose_x = matrix_ac_7_transpose_x_0, transpose_y = matrix_ac_7_transpose_y_0, x = transpose_265, y = transpose_264)[name = tensor("matrix_ac_7_cast_fp16")]; + tensor matrix_bd_15_begin_0 = const()[name = tensor("matrix_bd_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_15_end_0 = const()[name = tensor("matrix_bd_15_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_15_end_mask_0 = const()[name = tensor("matrix_bd_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_15_cast_fp16 = slice_by_index(begin = matrix_bd_15_begin_0, end = matrix_bd_15_end_0, end_mask = matrix_bd_15_end_mask_0, x = matrix_bd_13_cast_fp16)[name = tensor("matrix_bd_15_cast_fp16")]; + tensor var_779_cast_fp16 = add(x = matrix_ac_7_cast_fp16, y = matrix_bd_15_cast_fp16)[name = tensor("op_779_cast_fp16")]; + tensor _inversed_scores_13_y_0_to_fp16 = const()[name = tensor("_inversed_scores_13_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_13_cast_fp16 = mul(x = var_779_cast_fp16, y = _inversed_scores_13_y_0_to_fp16)[name = tensor("_inversed_scores_13_cast_fp16")]; + tensor scores_15_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_13_cast_fp16, cond = mask_3)[name = tensor("scores_15_cast_fp16")]; + tensor var_785_cast_fp16 = softmax(axis = var_25, x = scores_15_cast_fp16)[name = tensor("op_785_cast_fp16")]; + tensor input_189_cast_fp16 = select(a = var_6_to_fp16, b = var_785_cast_fp16, cond = mask_3)[name = tensor("input_189_cast_fp16")]; + tensor x_79_transpose_x_0 = const()[name = tensor("x_79_transpose_x_0"), val = tensor(false)]; + tensor x_79_transpose_y_0 = const()[name = tensor("x_79_transpose_y_0"), val = tensor(false)]; + tensor transpose_267 = transpose(perm = value_7_perm_0, x = v_7_cast_fp16)[name = tensor("transpose_267")]; + tensor x_79_cast_fp16 = matmul(transpose_x = x_79_transpose_x_0, transpose_y = x_79_transpose_y_0, x = input_189_cast_fp16, y = transpose_267)[name = tensor("x_79_cast_fp16")]; + tensor var_789_perm_0 = const()[name = tensor("op_789_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_790 = const()[name = tensor("op_790"), val = tensor([1, -1, 1024])]; + tensor transpose_263 = transpose(perm = var_789_perm_0, x = x_79_cast_fp16)[name = tensor("transpose_263")]; + tensor input_191_cast_fp16 = reshape(shape = var_790, x = transpose_263)[name = tensor("input_191_cast_fp16")]; + tensor model_layers_3_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_3_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(178661760)))]; + tensor linear_34_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_self_attn_linear_out_weight_to_fp16, x = input_191_cast_fp16)[name = tensor("linear_34_cast_fp16")]; + tensor input_195_cast_fp16 = add(x = input_187_cast_fp16, y = linear_34_cast_fp16)[name = tensor("input_195_cast_fp16")]; + tensor x_83_axes_0 = const()[name = tensor("x_83_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(180758976)))]; + tensor model_layers_3_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(180761088)))]; + tensor x_83_cast_fp16 = layer_norm(axes = x_83_axes_0, beta = model_layers_3_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_conv_weight_to_fp16, x = input_195_cast_fp16)[name = tensor("x_83_cast_fp16")]; + tensor input_197_perm_0 = const()[name = tensor("input_197_perm_0"), val = tensor([0, 2, 1])]; + tensor var_806 = const()[name = tensor("op_806"), val = tensor([1])]; + tensor var_808 = const()[name = tensor("op_808"), val = tensor([1])]; + tensor input_199_pad_type_0 = const()[name = tensor("input_199_pad_type_0"), val = tensor("custom")]; + tensor input_199_pad_0 = const()[name = tensor("input_199_pad_0"), val = tensor([0, 0])]; + tensor model_layers_3_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_3_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(180763200)))]; + tensor transpose_262 = transpose(perm = input_197_perm_0, x = x_83_cast_fp16)[name = tensor("transpose_262")]; + tensor input_199_cast_fp16 = conv(dilations = var_808, groups = var_27, pad = input_199_pad_0, pad_type = input_199_pad_type_0, strides = var_806, weight = model_layers_3_conv_pointwise_conv1_weight_to_fp16, x = transpose_262)[name = tensor("input_199_cast_fp16")]; + tensor x_85_split_num_splits_0 = const()[name = tensor("x_85_split_num_splits_0"), val = tensor(2)]; + tensor x_85_split_axis_0 = const()[name = tensor("x_85_split_axis_0"), val = tensor(1)]; + tensor x_85_split_cast_fp16_0, tensor x_85_split_cast_fp16_1 = split(axis = x_85_split_axis_0, num_splits = x_85_split_num_splits_0, x = input_199_cast_fp16)[name = tensor("x_85_split_cast_fp16")]; + tensor x_85_split_1_sigmoid_cast_fp16 = sigmoid(x = x_85_split_cast_fp16_1)[name = tensor("x_85_split_1_sigmoid_cast_fp16")]; + tensor x_85_cast_fp16 = mul(x = x_85_split_cast_fp16_0, y = x_85_split_1_sigmoid_cast_fp16)[name = tensor("x_85_cast_fp16")]; + tensor input_201_cast_fp16 = select(a = var_6_to_fp16, b = x_85_cast_fp16, cond = var_323)[name = tensor("input_201_cast_fp16")]; + tensor input_203_pad_0 = const()[name = tensor("input_203_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_203_mode_0 = const()[name = tensor("input_203_mode_0"), val = tensor("constant")]; + tensor const_46_to_fp16 = const()[name = tensor("const_46_to_fp16"), val = tensor(0x0p+0)]; + tensor input_203_cast_fp16 = pad(constant_val = const_46_to_fp16, mode = input_203_mode_0, pad = input_203_pad_0, x = input_201_cast_fp16)[name = tensor("input_203_cast_fp16")]; + tensor var_817 = const()[name = tensor("op_817"), val = tensor([1])]; + tensor var_819 = const()[name = tensor("op_819"), val = tensor([1])]; + tensor input_205_pad_type_0 = const()[name = tensor("input_205_pad_type_0"), val = tensor("custom")]; + tensor input_205_pad_0 = const()[name = tensor("input_205_pad_0"), val = tensor([0, 0])]; + tensor input_207_weight_0_to_fp16 = const()[name = tensor("input_207_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(184957568)))]; + tensor input_207_bias_0_to_fp16 = const()[name = tensor("input_207_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(184976064)))]; + tensor input_207_cast_fp16 = conv(bias = input_207_bias_0_to_fp16, dilations = var_819, groups = var_5, pad = input_205_pad_0, pad_type = input_205_pad_type_0, strides = var_817, weight = input_207_weight_0_to_fp16, x = input_203_cast_fp16)[name = tensor("input_207_cast_fp16")]; + tensor input_209_cast_fp16 = silu(x = input_207_cast_fp16)[name = tensor("input_209_cast_fp16")]; + tensor var_829 = const()[name = tensor("op_829"), val = tensor([1])]; + tensor var_831 = const()[name = tensor("op_831"), val = tensor([1])]; + tensor x_87_pad_type_0 = const()[name = tensor("x_87_pad_type_0"), val = tensor("custom")]; + tensor x_87_pad_0 = const()[name = tensor("x_87_pad_0"), val = tensor([0, 0])]; + tensor model_layers_3_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_3_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(184978176)))]; + tensor x_87_cast_fp16 = conv(dilations = var_831, groups = var_27, pad = x_87_pad_0, pad_type = x_87_pad_type_0, strides = var_829, weight = model_layers_3_conv_pointwise_conv2_weight_to_fp16, x = input_209_cast_fp16)[name = tensor("x_87_cast_fp16")]; + tensor input_211_perm_0 = const()[name = tensor("input_211_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_261 = transpose(perm = input_211_perm_0, x = x_87_cast_fp16)[name = tensor("transpose_261")]; + tensor input_213_cast_fp16 = add(x = input_195_cast_fp16, y = transpose_261)[name = tensor("input_213_cast_fp16")]; + tensor input_215_axes_0 = const()[name = tensor("input_215_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187075392)))]; + tensor model_layers_3_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187077504)))]; + tensor input_215_cast_fp16 = layer_norm(axes = input_215_axes_0, beta = model_layers_3_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_feed_forward2_weight_to_fp16, x = input_213_cast_fp16)[name = tensor("input_215_cast_fp16")]; + tensor model_layers_3_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_3_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(187079616)))]; + tensor linear_35_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_3_feed_forward2_linear1_weight_to_fp16, x = input_215_cast_fp16)[name = tensor("linear_35_cast_fp16")]; + tensor input_219_cast_fp16 = silu(x = linear_35_cast_fp16)[name = tensor("input_219_cast_fp16")]; + tensor model_layers_3_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_3_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(195468288)))]; + tensor linear_36_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_3_feed_forward2_linear2_weight_to_fp16, x = input_219_cast_fp16)[name = tensor("linear_36_cast_fp16")]; + tensor var_850_to_fp16 = const()[name = tensor("op_850_to_fp16"), val = tensor(0x1p-1)]; + tensor var_851_cast_fp16 = mul(x = linear_36_cast_fp16, y = var_850_to_fp16)[name = tensor("op_851_cast_fp16")]; + tensor input_225_cast_fp16 = add(x = input_213_cast_fp16, y = var_851_cast_fp16)[name = tensor("input_225_cast_fp16")]; + tensor input_227_axes_0 = const()[name = tensor("input_227_axes_0"), val = tensor([-1])]; + tensor model_layers_3_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_3_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203856960)))]; + tensor model_layers_3_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_3_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203859072)))]; + tensor input_227_cast_fp16 = layer_norm(axes = input_227_axes_0, beta = model_layers_3_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_3_norm_out_weight_to_fp16, x = input_225_cast_fp16)[name = tensor("input_227_cast_fp16")]; + tensor input_229_axes_0 = const()[name = tensor("input_229_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203861184)))]; + tensor model_layers_4_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203863296)))]; + tensor input_229_cast_fp16 = layer_norm(axes = input_229_axes_0, beta = model_layers_4_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_feed_forward1_weight_to_fp16, x = input_227_cast_fp16)[name = tensor("input_229_cast_fp16")]; + tensor model_layers_4_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_4_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203865408)))]; + tensor linear_37_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_4_feed_forward1_linear1_weight_to_fp16, x = input_229_cast_fp16)[name = tensor("linear_37_cast_fp16")]; + tensor input_233_cast_fp16 = silu(x = linear_37_cast_fp16)[name = tensor("input_233_cast_fp16")]; + tensor model_layers_4_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_4_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(212254080)))]; + tensor linear_38_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_feed_forward1_linear2_weight_to_fp16, x = input_233_cast_fp16)[name = tensor("linear_38_cast_fp16")]; + tensor var_879_to_fp16 = const()[name = tensor("op_879_to_fp16"), val = tensor(0x1p-1)]; + tensor var_880_cast_fp16 = mul(x = linear_38_cast_fp16, y = var_879_to_fp16)[name = tensor("op_880_cast_fp16")]; + tensor input_239_cast_fp16 = add(x = input_227_cast_fp16, y = var_880_cast_fp16)[name = tensor("input_239_cast_fp16")]; + tensor query_9_axes_0 = const()[name = tensor("query_9_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(220642752)))]; + tensor model_layers_4_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(220644864)))]; + tensor query_9_cast_fp16 = layer_norm(axes = query_9_axes_0, beta = model_layers_4_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_self_att_weight_to_fp16, x = input_239_cast_fp16)[name = tensor("query_9_cast_fp16")]; + tensor model_layers_4_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_4_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(220646976)))]; + tensor linear_39_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_q_weight_to_fp16, x = query_9_cast_fp16)[name = tensor("linear_39_cast_fp16")]; + tensor var_896 = const()[name = tensor("op_896"), val = tensor([1, -1, 8, 128])]; + tensor q_25_cast_fp16 = reshape(shape = var_896, x = linear_39_cast_fp16)[name = tensor("q_25_cast_fp16")]; + tensor model_layers_4_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_4_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(222744192)))]; + tensor linear_40_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_k_weight_to_fp16, x = query_9_cast_fp16)[name = tensor("linear_40_cast_fp16")]; + tensor var_900 = const()[name = tensor("op_900"), val = tensor([1, -1, 8, 128])]; + tensor k_17_cast_fp16 = reshape(shape = var_900, x = linear_40_cast_fp16)[name = tensor("k_17_cast_fp16")]; + tensor model_layers_4_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_4_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(224841408)))]; + tensor linear_41_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_v_weight_to_fp16, x = query_9_cast_fp16)[name = tensor("linear_41_cast_fp16")]; + tensor var_904 = const()[name = tensor("op_904"), val = tensor([1, -1, 8, 128])]; + tensor v_9_cast_fp16 = reshape(shape = var_904, x = linear_41_cast_fp16)[name = tensor("v_9_cast_fp16")]; + tensor value_9_perm_0 = const()[name = tensor("value_9_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_4_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_4_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(226938624)))]; + tensor var_916_cast_fp16 = add(x = q_25_cast_fp16, y = model_layers_4_self_attn_pos_bias_u_to_fp16)[name = tensor("op_916_cast_fp16")]; + tensor model_layers_4_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_4_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(226940736)))]; + tensor var_918_cast_fp16 = add(x = q_25_cast_fp16, y = model_layers_4_self_attn_pos_bias_v_to_fp16)[name = tensor("op_918_cast_fp16")]; + tensor q_with_bias_v_9_perm_0 = const()[name = tensor("q_with_bias_v_9_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_95_transpose_x_0 = const()[name = tensor("x_95_transpose_x_0"), val = tensor(false)]; + tensor x_95_transpose_y_0 = const()[name = tensor("x_95_transpose_y_0"), val = tensor(false)]; + tensor var_920_to_fp16 = const()[name = tensor("op_920_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(226942848)))]; + tensor transpose_259 = transpose(perm = q_with_bias_v_9_perm_0, x = var_918_cast_fp16)[name = tensor("transpose_259")]; + tensor x_95_cast_fp16 = matmul(transpose_x = x_95_transpose_x_0, transpose_y = x_95_transpose_y_0, x = transpose_259, y = var_920_to_fp16)[name = tensor("x_95_cast_fp16")]; + tensor x_97_pad_0 = const()[name = tensor("x_97_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_97_mode_0 = const()[name = tensor("x_97_mode_0"), val = tensor("constant")]; + tensor const_53_to_fp16 = const()[name = tensor("const_53_to_fp16"), val = tensor(0x0p+0)]; + tensor x_97_cast_fp16 = pad(constant_val = const_53_to_fp16, mode = x_97_mode_0, pad = x_97_pad_0, x = x_95_cast_fp16)[name = tensor("x_97_cast_fp16")]; + tensor var_928 = const()[name = tensor("op_928"), val = tensor([1, 8, -1, 126])]; + tensor x_99_cast_fp16 = reshape(shape = var_928, x = x_97_cast_fp16)[name = tensor("x_99_cast_fp16")]; + tensor var_932_begin_0 = const()[name = tensor("op_932_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_932_end_0 = const()[name = tensor("op_932_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_932_end_mask_0 = const()[name = tensor("op_932_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_932_cast_fp16 = slice_by_index(begin = var_932_begin_0, end = var_932_end_0, end_mask = var_932_end_mask_0, x = x_99_cast_fp16)[name = tensor("op_932_cast_fp16")]; + tensor var_933 = const()[name = tensor("op_933"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_17_cast_fp16 = reshape(shape = var_933, x = var_932_cast_fp16)[name = tensor("matrix_bd_17_cast_fp16")]; + tensor matrix_ac_9_transpose_x_0 = const()[name = tensor("matrix_ac_9_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_9_transpose_y_0 = const()[name = tensor("matrix_ac_9_transpose_y_0"), val = tensor(false)]; + tensor transpose_80_perm_0 = const()[name = tensor("transpose_80_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_81_perm_0 = const()[name = tensor("transpose_81_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_257 = transpose(perm = transpose_81_perm_0, x = k_17_cast_fp16)[name = tensor("transpose_257")]; + tensor transpose_258 = transpose(perm = transpose_80_perm_0, x = var_916_cast_fp16)[name = tensor("transpose_258")]; + tensor matrix_ac_9_cast_fp16 = matmul(transpose_x = matrix_ac_9_transpose_x_0, transpose_y = matrix_ac_9_transpose_y_0, x = transpose_258, y = transpose_257)[name = tensor("matrix_ac_9_cast_fp16")]; + tensor matrix_bd_19_begin_0 = const()[name = tensor("matrix_bd_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_19_end_0 = const()[name = tensor("matrix_bd_19_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_19_end_mask_0 = const()[name = tensor("matrix_bd_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_19_cast_fp16 = slice_by_index(begin = matrix_bd_19_begin_0, end = matrix_bd_19_end_0, end_mask = matrix_bd_19_end_mask_0, x = matrix_bd_17_cast_fp16)[name = tensor("matrix_bd_19_cast_fp16")]; + tensor var_942_cast_fp16 = add(x = matrix_ac_9_cast_fp16, y = matrix_bd_19_cast_fp16)[name = tensor("op_942_cast_fp16")]; + tensor _inversed_scores_17_y_0_to_fp16 = const()[name = tensor("_inversed_scores_17_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_17_cast_fp16 = mul(x = var_942_cast_fp16, y = _inversed_scores_17_y_0_to_fp16)[name = tensor("_inversed_scores_17_cast_fp16")]; + tensor scores_19_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_17_cast_fp16, cond = mask_3)[name = tensor("scores_19_cast_fp16")]; + tensor var_948_cast_fp16 = softmax(axis = var_25, x = scores_19_cast_fp16)[name = tensor("op_948_cast_fp16")]; + tensor input_241_cast_fp16 = select(a = var_6_to_fp16, b = var_948_cast_fp16, cond = mask_3)[name = tensor("input_241_cast_fp16")]; + tensor x_101_transpose_x_0 = const()[name = tensor("x_101_transpose_x_0"), val = tensor(false)]; + tensor x_101_transpose_y_0 = const()[name = tensor("x_101_transpose_y_0"), val = tensor(false)]; + tensor transpose_260 = transpose(perm = value_9_perm_0, x = v_9_cast_fp16)[name = tensor("transpose_260")]; + tensor x_101_cast_fp16 = matmul(transpose_x = x_101_transpose_x_0, transpose_y = x_101_transpose_y_0, x = input_241_cast_fp16, y = transpose_260)[name = tensor("x_101_cast_fp16")]; + tensor var_952_perm_0 = const()[name = tensor("op_952_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_953 = const()[name = tensor("op_953"), val = tensor([1, -1, 1024])]; + tensor transpose_256 = transpose(perm = var_952_perm_0, x = x_101_cast_fp16)[name = tensor("transpose_256")]; + tensor input_243_cast_fp16 = reshape(shape = var_953, x = transpose_256)[name = tensor("input_243_cast_fp16")]; + tensor model_layers_4_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_4_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(227456960)))]; + tensor linear_43_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_self_attn_linear_out_weight_to_fp16, x = input_243_cast_fp16)[name = tensor("linear_43_cast_fp16")]; + tensor input_247_cast_fp16 = add(x = input_239_cast_fp16, y = linear_43_cast_fp16)[name = tensor("input_247_cast_fp16")]; + tensor x_105_axes_0 = const()[name = tensor("x_105_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(229554176)))]; + tensor model_layers_4_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(229556288)))]; + tensor x_105_cast_fp16 = layer_norm(axes = x_105_axes_0, beta = model_layers_4_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_conv_weight_to_fp16, x = input_247_cast_fp16)[name = tensor("x_105_cast_fp16")]; + tensor input_249_perm_0 = const()[name = tensor("input_249_perm_0"), val = tensor([0, 2, 1])]; + tensor var_969 = const()[name = tensor("op_969"), val = tensor([1])]; + tensor var_971 = const()[name = tensor("op_971"), val = tensor([1])]; + tensor input_251_pad_type_0 = const()[name = tensor("input_251_pad_type_0"), val = tensor("custom")]; + tensor input_251_pad_0 = const()[name = tensor("input_251_pad_0"), val = tensor([0, 0])]; + tensor model_layers_4_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_4_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(229558400)))]; + tensor transpose_255 = transpose(perm = input_249_perm_0, x = x_105_cast_fp16)[name = tensor("transpose_255")]; + tensor input_251_cast_fp16 = conv(dilations = var_971, groups = var_27, pad = input_251_pad_0, pad_type = input_251_pad_type_0, strides = var_969, weight = model_layers_4_conv_pointwise_conv1_weight_to_fp16, x = transpose_255)[name = tensor("input_251_cast_fp16")]; + tensor x_107_split_num_splits_0 = const()[name = tensor("x_107_split_num_splits_0"), val = tensor(2)]; + tensor x_107_split_axis_0 = const()[name = tensor("x_107_split_axis_0"), val = tensor(1)]; + tensor x_107_split_cast_fp16_0, tensor x_107_split_cast_fp16_1 = split(axis = x_107_split_axis_0, num_splits = x_107_split_num_splits_0, x = input_251_cast_fp16)[name = tensor("x_107_split_cast_fp16")]; + tensor x_107_split_1_sigmoid_cast_fp16 = sigmoid(x = x_107_split_cast_fp16_1)[name = tensor("x_107_split_1_sigmoid_cast_fp16")]; + tensor x_107_cast_fp16 = mul(x = x_107_split_cast_fp16_0, y = x_107_split_1_sigmoid_cast_fp16)[name = tensor("x_107_cast_fp16")]; + tensor input_253_cast_fp16 = select(a = var_6_to_fp16, b = x_107_cast_fp16, cond = var_323)[name = tensor("input_253_cast_fp16")]; + tensor input_255_pad_0 = const()[name = tensor("input_255_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_255_mode_0 = const()[name = tensor("input_255_mode_0"), val = tensor("constant")]; + tensor const_56_to_fp16 = const()[name = tensor("const_56_to_fp16"), val = tensor(0x0p+0)]; + tensor input_255_cast_fp16 = pad(constant_val = const_56_to_fp16, mode = input_255_mode_0, pad = input_255_pad_0, x = input_253_cast_fp16)[name = tensor("input_255_cast_fp16")]; + tensor var_980 = const()[name = tensor("op_980"), val = tensor([1])]; + tensor var_982 = const()[name = tensor("op_982"), val = tensor([1])]; + tensor input_257_pad_type_0 = const()[name = tensor("input_257_pad_type_0"), val = tensor("custom")]; + tensor input_257_pad_0 = const()[name = tensor("input_257_pad_0"), val = tensor([0, 0])]; + tensor input_259_weight_0_to_fp16 = const()[name = tensor("input_259_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(233752768)))]; + tensor input_259_bias_0_to_fp16 = const()[name = tensor("input_259_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(233771264)))]; + tensor input_259_cast_fp16 = conv(bias = input_259_bias_0_to_fp16, dilations = var_982, groups = var_5, pad = input_257_pad_0, pad_type = input_257_pad_type_0, strides = var_980, weight = input_259_weight_0_to_fp16, x = input_255_cast_fp16)[name = tensor("input_259_cast_fp16")]; + tensor input_261_cast_fp16 = silu(x = input_259_cast_fp16)[name = tensor("input_261_cast_fp16")]; + tensor var_992 = const()[name = tensor("op_992"), val = tensor([1])]; + tensor var_994 = const()[name = tensor("op_994"), val = tensor([1])]; + tensor x_109_pad_type_0 = const()[name = tensor("x_109_pad_type_0"), val = tensor("custom")]; + tensor x_109_pad_0 = const()[name = tensor("x_109_pad_0"), val = tensor([0, 0])]; + tensor model_layers_4_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_4_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(233773376)))]; + tensor x_109_cast_fp16 = conv(dilations = var_994, groups = var_27, pad = x_109_pad_0, pad_type = x_109_pad_type_0, strides = var_992, weight = model_layers_4_conv_pointwise_conv2_weight_to_fp16, x = input_261_cast_fp16)[name = tensor("x_109_cast_fp16")]; + tensor input_263_perm_0 = const()[name = tensor("input_263_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_254 = transpose(perm = input_263_perm_0, x = x_109_cast_fp16)[name = tensor("transpose_254")]; + tensor input_265_cast_fp16 = add(x = input_247_cast_fp16, y = transpose_254)[name = tensor("input_265_cast_fp16")]; + tensor input_267_axes_0 = const()[name = tensor("input_267_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235870592)))]; + tensor model_layers_4_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235872704)))]; + tensor input_267_cast_fp16 = layer_norm(axes = input_267_axes_0, beta = model_layers_4_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_feed_forward2_weight_to_fp16, x = input_265_cast_fp16)[name = tensor("input_267_cast_fp16")]; + tensor model_layers_4_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_4_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(235874816)))]; + tensor linear_44_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_4_feed_forward2_linear1_weight_to_fp16, x = input_267_cast_fp16)[name = tensor("linear_44_cast_fp16")]; + tensor input_271_cast_fp16 = silu(x = linear_44_cast_fp16)[name = tensor("input_271_cast_fp16")]; + tensor model_layers_4_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_4_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244263488)))]; + tensor linear_45_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_4_feed_forward2_linear2_weight_to_fp16, x = input_271_cast_fp16)[name = tensor("linear_45_cast_fp16")]; + tensor var_1013_to_fp16 = const()[name = tensor("op_1013_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1014_cast_fp16 = mul(x = linear_45_cast_fp16, y = var_1013_to_fp16)[name = tensor("op_1014_cast_fp16")]; + tensor input_277_cast_fp16 = add(x = input_265_cast_fp16, y = var_1014_cast_fp16)[name = tensor("input_277_cast_fp16")]; + tensor input_279_axes_0 = const()[name = tensor("input_279_axes_0"), val = tensor([-1])]; + tensor model_layers_4_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_4_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(252652160)))]; + tensor model_layers_4_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_4_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(252654272)))]; + tensor input_279_cast_fp16 = layer_norm(axes = input_279_axes_0, beta = model_layers_4_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_4_norm_out_weight_to_fp16, x = input_277_cast_fp16)[name = tensor("input_279_cast_fp16")]; + tensor input_281_axes_0 = const()[name = tensor("input_281_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(252656384)))]; + tensor model_layers_5_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(252658496)))]; + tensor input_281_cast_fp16 = layer_norm(axes = input_281_axes_0, beta = model_layers_5_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_feed_forward1_weight_to_fp16, x = input_279_cast_fp16)[name = tensor("input_281_cast_fp16")]; + tensor model_layers_5_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_5_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(252660608)))]; + tensor linear_46_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_5_feed_forward1_linear1_weight_to_fp16, x = input_281_cast_fp16)[name = tensor("linear_46_cast_fp16")]; + tensor input_285_cast_fp16 = silu(x = linear_46_cast_fp16)[name = tensor("input_285_cast_fp16")]; + tensor model_layers_5_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_5_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261049280)))]; + tensor linear_47_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_feed_forward1_linear2_weight_to_fp16, x = input_285_cast_fp16)[name = tensor("linear_47_cast_fp16")]; + tensor var_1042_to_fp16 = const()[name = tensor("op_1042_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1043_cast_fp16 = mul(x = linear_47_cast_fp16, y = var_1042_to_fp16)[name = tensor("op_1043_cast_fp16")]; + tensor input_291_cast_fp16 = add(x = input_279_cast_fp16, y = var_1043_cast_fp16)[name = tensor("input_291_cast_fp16")]; + tensor query_11_axes_0 = const()[name = tensor("query_11_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(269437952)))]; + tensor model_layers_5_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(269440064)))]; + tensor query_11_cast_fp16 = layer_norm(axes = query_11_axes_0, beta = model_layers_5_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_self_att_weight_to_fp16, x = input_291_cast_fp16)[name = tensor("query_11_cast_fp16")]; + tensor model_layers_5_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_5_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(269442176)))]; + tensor linear_48_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_q_weight_to_fp16, x = query_11_cast_fp16)[name = tensor("linear_48_cast_fp16")]; + tensor var_1059 = const()[name = tensor("op_1059"), val = tensor([1, -1, 8, 128])]; + tensor q_31_cast_fp16 = reshape(shape = var_1059, x = linear_48_cast_fp16)[name = tensor("q_31_cast_fp16")]; + tensor model_layers_5_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_5_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(271539392)))]; + tensor linear_49_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_k_weight_to_fp16, x = query_11_cast_fp16)[name = tensor("linear_49_cast_fp16")]; + tensor var_1063 = const()[name = tensor("op_1063"), val = tensor([1, -1, 8, 128])]; + tensor k_21_cast_fp16 = reshape(shape = var_1063, x = linear_49_cast_fp16)[name = tensor("k_21_cast_fp16")]; + tensor model_layers_5_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_5_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(273636608)))]; + tensor linear_50_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_v_weight_to_fp16, x = query_11_cast_fp16)[name = tensor("linear_50_cast_fp16")]; + tensor var_1067 = const()[name = tensor("op_1067"), val = tensor([1, -1, 8, 128])]; + tensor v_11_cast_fp16 = reshape(shape = var_1067, x = linear_50_cast_fp16)[name = tensor("v_11_cast_fp16")]; + tensor value_11_perm_0 = const()[name = tensor("value_11_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_5_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_5_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(275733824)))]; + tensor var_1079_cast_fp16 = add(x = q_31_cast_fp16, y = model_layers_5_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1079_cast_fp16")]; + tensor model_layers_5_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_5_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(275735936)))]; + tensor var_1081_cast_fp16 = add(x = q_31_cast_fp16, y = model_layers_5_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1081_cast_fp16")]; + tensor q_with_bias_v_11_perm_0 = const()[name = tensor("q_with_bias_v_11_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_117_transpose_x_0 = const()[name = tensor("x_117_transpose_x_0"), val = tensor(false)]; + tensor x_117_transpose_y_0 = const()[name = tensor("x_117_transpose_y_0"), val = tensor(false)]; + tensor var_1083_to_fp16 = const()[name = tensor("op_1083_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(275738048)))]; + tensor transpose_252 = transpose(perm = q_with_bias_v_11_perm_0, x = var_1081_cast_fp16)[name = tensor("transpose_252")]; + tensor x_117_cast_fp16 = matmul(transpose_x = x_117_transpose_x_0, transpose_y = x_117_transpose_y_0, x = transpose_252, y = var_1083_to_fp16)[name = tensor("x_117_cast_fp16")]; + tensor x_119_pad_0 = const()[name = tensor("x_119_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_119_mode_0 = const()[name = tensor("x_119_mode_0"), val = tensor("constant")]; + tensor const_63_to_fp16 = const()[name = tensor("const_63_to_fp16"), val = tensor(0x0p+0)]; + tensor x_119_cast_fp16 = pad(constant_val = const_63_to_fp16, mode = x_119_mode_0, pad = x_119_pad_0, x = x_117_cast_fp16)[name = tensor("x_119_cast_fp16")]; + tensor var_1091 = const()[name = tensor("op_1091"), val = tensor([1, 8, -1, 126])]; + tensor x_121_cast_fp16 = reshape(shape = var_1091, x = x_119_cast_fp16)[name = tensor("x_121_cast_fp16")]; + tensor var_1095_begin_0 = const()[name = tensor("op_1095_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1095_end_0 = const()[name = tensor("op_1095_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1095_end_mask_0 = const()[name = tensor("op_1095_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1095_cast_fp16 = slice_by_index(begin = var_1095_begin_0, end = var_1095_end_0, end_mask = var_1095_end_mask_0, x = x_121_cast_fp16)[name = tensor("op_1095_cast_fp16")]; + tensor var_1096 = const()[name = tensor("op_1096"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_21_cast_fp16 = reshape(shape = var_1096, x = var_1095_cast_fp16)[name = tensor("matrix_bd_21_cast_fp16")]; + tensor matrix_ac_11_transpose_x_0 = const()[name = tensor("matrix_ac_11_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_11_transpose_y_0 = const()[name = tensor("matrix_ac_11_transpose_y_0"), val = tensor(false)]; + tensor transpose_82_perm_0 = const()[name = tensor("transpose_82_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_83_perm_0 = const()[name = tensor("transpose_83_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_250 = transpose(perm = transpose_83_perm_0, x = k_21_cast_fp16)[name = tensor("transpose_250")]; + tensor transpose_251 = transpose(perm = transpose_82_perm_0, x = var_1079_cast_fp16)[name = tensor("transpose_251")]; + tensor matrix_ac_11_cast_fp16 = matmul(transpose_x = matrix_ac_11_transpose_x_0, transpose_y = matrix_ac_11_transpose_y_0, x = transpose_251, y = transpose_250)[name = tensor("matrix_ac_11_cast_fp16")]; + tensor matrix_bd_23_begin_0 = const()[name = tensor("matrix_bd_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_23_end_0 = const()[name = tensor("matrix_bd_23_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_23_end_mask_0 = const()[name = tensor("matrix_bd_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_23_cast_fp16 = slice_by_index(begin = matrix_bd_23_begin_0, end = matrix_bd_23_end_0, end_mask = matrix_bd_23_end_mask_0, x = matrix_bd_21_cast_fp16)[name = tensor("matrix_bd_23_cast_fp16")]; + tensor var_1105_cast_fp16 = add(x = matrix_ac_11_cast_fp16, y = matrix_bd_23_cast_fp16)[name = tensor("op_1105_cast_fp16")]; + tensor _inversed_scores_21_y_0_to_fp16 = const()[name = tensor("_inversed_scores_21_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_21_cast_fp16 = mul(x = var_1105_cast_fp16, y = _inversed_scores_21_y_0_to_fp16)[name = tensor("_inversed_scores_21_cast_fp16")]; + tensor scores_23_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_21_cast_fp16, cond = mask_3)[name = tensor("scores_23_cast_fp16")]; + tensor var_1111_cast_fp16 = softmax(axis = var_25, x = scores_23_cast_fp16)[name = tensor("op_1111_cast_fp16")]; + tensor input_293_cast_fp16 = select(a = var_6_to_fp16, b = var_1111_cast_fp16, cond = mask_3)[name = tensor("input_293_cast_fp16")]; + tensor x_123_transpose_x_0 = const()[name = tensor("x_123_transpose_x_0"), val = tensor(false)]; + tensor x_123_transpose_y_0 = const()[name = tensor("x_123_transpose_y_0"), val = tensor(false)]; + tensor transpose_253 = transpose(perm = value_11_perm_0, x = v_11_cast_fp16)[name = tensor("transpose_253")]; + tensor x_123_cast_fp16 = matmul(transpose_x = x_123_transpose_x_0, transpose_y = x_123_transpose_y_0, x = input_293_cast_fp16, y = transpose_253)[name = tensor("x_123_cast_fp16")]; + tensor var_1115_perm_0 = const()[name = tensor("op_1115_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1116 = const()[name = tensor("op_1116"), val = tensor([1, -1, 1024])]; + tensor transpose_249 = transpose(perm = var_1115_perm_0, x = x_123_cast_fp16)[name = tensor("transpose_249")]; + tensor input_295_cast_fp16 = reshape(shape = var_1116, x = transpose_249)[name = tensor("input_295_cast_fp16")]; + tensor model_layers_5_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_5_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(276252160)))]; + tensor linear_52_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_self_attn_linear_out_weight_to_fp16, x = input_295_cast_fp16)[name = tensor("linear_52_cast_fp16")]; + tensor input_299_cast_fp16 = add(x = input_291_cast_fp16, y = linear_52_cast_fp16)[name = tensor("input_299_cast_fp16")]; + tensor x_127_axes_0 = const()[name = tensor("x_127_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278349376)))]; + tensor model_layers_5_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278351488)))]; + tensor x_127_cast_fp16 = layer_norm(axes = x_127_axes_0, beta = model_layers_5_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_conv_weight_to_fp16, x = input_299_cast_fp16)[name = tensor("x_127_cast_fp16")]; + tensor input_301_perm_0 = const()[name = tensor("input_301_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1132 = const()[name = tensor("op_1132"), val = tensor([1])]; + tensor var_1134 = const()[name = tensor("op_1134"), val = tensor([1])]; + tensor input_303_pad_type_0 = const()[name = tensor("input_303_pad_type_0"), val = tensor("custom")]; + tensor input_303_pad_0 = const()[name = tensor("input_303_pad_0"), val = tensor([0, 0])]; + tensor model_layers_5_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_5_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278353600)))]; + tensor transpose_248 = transpose(perm = input_301_perm_0, x = x_127_cast_fp16)[name = tensor("transpose_248")]; + tensor input_303_cast_fp16 = conv(dilations = var_1134, groups = var_27, pad = input_303_pad_0, pad_type = input_303_pad_type_0, strides = var_1132, weight = model_layers_5_conv_pointwise_conv1_weight_to_fp16, x = transpose_248)[name = tensor("input_303_cast_fp16")]; + tensor x_129_split_num_splits_0 = const()[name = tensor("x_129_split_num_splits_0"), val = tensor(2)]; + tensor x_129_split_axis_0 = const()[name = tensor("x_129_split_axis_0"), val = tensor(1)]; + tensor x_129_split_cast_fp16_0, tensor x_129_split_cast_fp16_1 = split(axis = x_129_split_axis_0, num_splits = x_129_split_num_splits_0, x = input_303_cast_fp16)[name = tensor("x_129_split_cast_fp16")]; + tensor x_129_split_1_sigmoid_cast_fp16 = sigmoid(x = x_129_split_cast_fp16_1)[name = tensor("x_129_split_1_sigmoid_cast_fp16")]; + tensor x_129_cast_fp16 = mul(x = x_129_split_cast_fp16_0, y = x_129_split_1_sigmoid_cast_fp16)[name = tensor("x_129_cast_fp16")]; + tensor input_305_cast_fp16 = select(a = var_6_to_fp16, b = x_129_cast_fp16, cond = var_323)[name = tensor("input_305_cast_fp16")]; + tensor input_307_pad_0 = const()[name = tensor("input_307_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_307_mode_0 = const()[name = tensor("input_307_mode_0"), val = tensor("constant")]; + tensor const_66_to_fp16 = const()[name = tensor("const_66_to_fp16"), val = tensor(0x0p+0)]; + tensor input_307_cast_fp16 = pad(constant_val = const_66_to_fp16, mode = input_307_mode_0, pad = input_307_pad_0, x = input_305_cast_fp16)[name = tensor("input_307_cast_fp16")]; + tensor var_1143 = const()[name = tensor("op_1143"), val = tensor([1])]; + tensor var_1145 = const()[name = tensor("op_1145"), val = tensor([1])]; + tensor input_309_pad_type_0 = const()[name = tensor("input_309_pad_type_0"), val = tensor("custom")]; + tensor input_309_pad_0 = const()[name = tensor("input_309_pad_0"), val = tensor([0, 0])]; + tensor input_311_weight_0_to_fp16 = const()[name = tensor("input_311_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(282547968)))]; + tensor input_311_bias_0_to_fp16 = const()[name = tensor("input_311_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(282566464)))]; + tensor input_311_cast_fp16 = conv(bias = input_311_bias_0_to_fp16, dilations = var_1145, groups = var_5, pad = input_309_pad_0, pad_type = input_309_pad_type_0, strides = var_1143, weight = input_311_weight_0_to_fp16, x = input_307_cast_fp16)[name = tensor("input_311_cast_fp16")]; + tensor input_313_cast_fp16 = silu(x = input_311_cast_fp16)[name = tensor("input_313_cast_fp16")]; + tensor var_1155 = const()[name = tensor("op_1155"), val = tensor([1])]; + tensor var_1157 = const()[name = tensor("op_1157"), val = tensor([1])]; + tensor x_131_pad_type_0 = const()[name = tensor("x_131_pad_type_0"), val = tensor("custom")]; + tensor x_131_pad_0 = const()[name = tensor("x_131_pad_0"), val = tensor([0, 0])]; + tensor model_layers_5_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_5_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(282568576)))]; + tensor x_131_cast_fp16 = conv(dilations = var_1157, groups = var_27, pad = x_131_pad_0, pad_type = x_131_pad_type_0, strides = var_1155, weight = model_layers_5_conv_pointwise_conv2_weight_to_fp16, x = input_313_cast_fp16)[name = tensor("x_131_cast_fp16")]; + tensor input_315_perm_0 = const()[name = tensor("input_315_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_247 = transpose(perm = input_315_perm_0, x = x_131_cast_fp16)[name = tensor("transpose_247")]; + tensor input_317_cast_fp16 = add(x = input_299_cast_fp16, y = transpose_247)[name = tensor("input_317_cast_fp16")]; + tensor input_319_axes_0 = const()[name = tensor("input_319_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284665792)))]; + tensor model_layers_5_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284667904)))]; + tensor input_319_cast_fp16 = layer_norm(axes = input_319_axes_0, beta = model_layers_5_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_feed_forward2_weight_to_fp16, x = input_317_cast_fp16)[name = tensor("input_319_cast_fp16")]; + tensor model_layers_5_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_5_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(284670016)))]; + tensor linear_53_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_5_feed_forward2_linear1_weight_to_fp16, x = input_319_cast_fp16)[name = tensor("linear_53_cast_fp16")]; + tensor input_323_cast_fp16 = silu(x = linear_53_cast_fp16)[name = tensor("input_323_cast_fp16")]; + tensor model_layers_5_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_5_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(293058688)))]; + tensor linear_54_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_5_feed_forward2_linear2_weight_to_fp16, x = input_323_cast_fp16)[name = tensor("linear_54_cast_fp16")]; + tensor var_1176_to_fp16 = const()[name = tensor("op_1176_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1177_cast_fp16 = mul(x = linear_54_cast_fp16, y = var_1176_to_fp16)[name = tensor("op_1177_cast_fp16")]; + tensor input_329_cast_fp16 = add(x = input_317_cast_fp16, y = var_1177_cast_fp16)[name = tensor("input_329_cast_fp16")]; + tensor input_331_axes_0 = const()[name = tensor("input_331_axes_0"), val = tensor([-1])]; + tensor model_layers_5_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_5_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301447360)))]; + tensor model_layers_5_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_5_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301449472)))]; + tensor input_331_cast_fp16 = layer_norm(axes = input_331_axes_0, beta = model_layers_5_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_5_norm_out_weight_to_fp16, x = input_329_cast_fp16)[name = tensor("input_331_cast_fp16")]; + tensor input_333_axes_0 = const()[name = tensor("input_333_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301451584)))]; + tensor model_layers_6_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301453696)))]; + tensor input_333_cast_fp16 = layer_norm(axes = input_333_axes_0, beta = model_layers_6_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_feed_forward1_weight_to_fp16, x = input_331_cast_fp16)[name = tensor("input_333_cast_fp16")]; + tensor model_layers_6_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_6_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301455808)))]; + tensor linear_55_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_6_feed_forward1_linear1_weight_to_fp16, x = input_333_cast_fp16)[name = tensor("linear_55_cast_fp16")]; + tensor input_337_cast_fp16 = silu(x = linear_55_cast_fp16)[name = tensor("input_337_cast_fp16")]; + tensor model_layers_6_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_6_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(309844480)))]; + tensor linear_56_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_feed_forward1_linear2_weight_to_fp16, x = input_337_cast_fp16)[name = tensor("linear_56_cast_fp16")]; + tensor var_1205_to_fp16 = const()[name = tensor("op_1205_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1206_cast_fp16 = mul(x = linear_56_cast_fp16, y = var_1205_to_fp16)[name = tensor("op_1206_cast_fp16")]; + tensor input_343_cast_fp16 = add(x = input_331_cast_fp16, y = var_1206_cast_fp16)[name = tensor("input_343_cast_fp16")]; + tensor query_13_axes_0 = const()[name = tensor("query_13_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(318233152)))]; + tensor model_layers_6_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(318235264)))]; + tensor query_13_cast_fp16 = layer_norm(axes = query_13_axes_0, beta = model_layers_6_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_self_att_weight_to_fp16, x = input_343_cast_fp16)[name = tensor("query_13_cast_fp16")]; + tensor model_layers_6_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_6_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(318237376)))]; + tensor linear_57_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_q_weight_to_fp16, x = query_13_cast_fp16)[name = tensor("linear_57_cast_fp16")]; + tensor var_1222 = const()[name = tensor("op_1222"), val = tensor([1, -1, 8, 128])]; + tensor q_37_cast_fp16 = reshape(shape = var_1222, x = linear_57_cast_fp16)[name = tensor("q_37_cast_fp16")]; + tensor model_layers_6_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_6_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(320334592)))]; + tensor linear_58_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_k_weight_to_fp16, x = query_13_cast_fp16)[name = tensor("linear_58_cast_fp16")]; + tensor var_1226 = const()[name = tensor("op_1226"), val = tensor([1, -1, 8, 128])]; + tensor k_25_cast_fp16 = reshape(shape = var_1226, x = linear_58_cast_fp16)[name = tensor("k_25_cast_fp16")]; + tensor model_layers_6_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_6_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(322431808)))]; + tensor linear_59_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_v_weight_to_fp16, x = query_13_cast_fp16)[name = tensor("linear_59_cast_fp16")]; + tensor var_1230 = const()[name = tensor("op_1230"), val = tensor([1, -1, 8, 128])]; + tensor v_13_cast_fp16 = reshape(shape = var_1230, x = linear_59_cast_fp16)[name = tensor("v_13_cast_fp16")]; + tensor value_13_perm_0 = const()[name = tensor("value_13_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_6_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_6_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(324529024)))]; + tensor var_1242_cast_fp16 = add(x = q_37_cast_fp16, y = model_layers_6_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1242_cast_fp16")]; + tensor model_layers_6_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_6_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(324531136)))]; + tensor var_1244_cast_fp16 = add(x = q_37_cast_fp16, y = model_layers_6_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1244_cast_fp16")]; + tensor q_with_bias_v_13_perm_0 = const()[name = tensor("q_with_bias_v_13_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_139_transpose_x_0 = const()[name = tensor("x_139_transpose_x_0"), val = tensor(false)]; + tensor x_139_transpose_y_0 = const()[name = tensor("x_139_transpose_y_0"), val = tensor(false)]; + tensor var_1246_to_fp16 = const()[name = tensor("op_1246_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(324533248)))]; + tensor transpose_245 = transpose(perm = q_with_bias_v_13_perm_0, x = var_1244_cast_fp16)[name = tensor("transpose_245")]; + tensor x_139_cast_fp16 = matmul(transpose_x = x_139_transpose_x_0, transpose_y = x_139_transpose_y_0, x = transpose_245, y = var_1246_to_fp16)[name = tensor("x_139_cast_fp16")]; + tensor x_141_pad_0 = const()[name = tensor("x_141_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_141_mode_0 = const()[name = tensor("x_141_mode_0"), val = tensor("constant")]; + tensor const_73_to_fp16 = const()[name = tensor("const_73_to_fp16"), val = tensor(0x0p+0)]; + tensor x_141_cast_fp16 = pad(constant_val = const_73_to_fp16, mode = x_141_mode_0, pad = x_141_pad_0, x = x_139_cast_fp16)[name = tensor("x_141_cast_fp16")]; + tensor var_1254 = const()[name = tensor("op_1254"), val = tensor([1, 8, -1, 126])]; + tensor x_143_cast_fp16 = reshape(shape = var_1254, x = x_141_cast_fp16)[name = tensor("x_143_cast_fp16")]; + tensor var_1258_begin_0 = const()[name = tensor("op_1258_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1258_end_0 = const()[name = tensor("op_1258_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1258_end_mask_0 = const()[name = tensor("op_1258_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1258_cast_fp16 = slice_by_index(begin = var_1258_begin_0, end = var_1258_end_0, end_mask = var_1258_end_mask_0, x = x_143_cast_fp16)[name = tensor("op_1258_cast_fp16")]; + tensor var_1259 = const()[name = tensor("op_1259"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_25_cast_fp16 = reshape(shape = var_1259, x = var_1258_cast_fp16)[name = tensor("matrix_bd_25_cast_fp16")]; + tensor matrix_ac_13_transpose_x_0 = const()[name = tensor("matrix_ac_13_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_13_transpose_y_0 = const()[name = tensor("matrix_ac_13_transpose_y_0"), val = tensor(false)]; + tensor transpose_84_perm_0 = const()[name = tensor("transpose_84_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_85_perm_0 = const()[name = tensor("transpose_85_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_243 = transpose(perm = transpose_85_perm_0, x = k_25_cast_fp16)[name = tensor("transpose_243")]; + tensor transpose_244 = transpose(perm = transpose_84_perm_0, x = var_1242_cast_fp16)[name = tensor("transpose_244")]; + tensor matrix_ac_13_cast_fp16 = matmul(transpose_x = matrix_ac_13_transpose_x_0, transpose_y = matrix_ac_13_transpose_y_0, x = transpose_244, y = transpose_243)[name = tensor("matrix_ac_13_cast_fp16")]; + tensor matrix_bd_27_begin_0 = const()[name = tensor("matrix_bd_27_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_27_end_0 = const()[name = tensor("matrix_bd_27_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_27_end_mask_0 = const()[name = tensor("matrix_bd_27_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_27_cast_fp16 = slice_by_index(begin = matrix_bd_27_begin_0, end = matrix_bd_27_end_0, end_mask = matrix_bd_27_end_mask_0, x = matrix_bd_25_cast_fp16)[name = tensor("matrix_bd_27_cast_fp16")]; + tensor var_1268_cast_fp16 = add(x = matrix_ac_13_cast_fp16, y = matrix_bd_27_cast_fp16)[name = tensor("op_1268_cast_fp16")]; + tensor _inversed_scores_25_y_0_to_fp16 = const()[name = tensor("_inversed_scores_25_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_25_cast_fp16 = mul(x = var_1268_cast_fp16, y = _inversed_scores_25_y_0_to_fp16)[name = tensor("_inversed_scores_25_cast_fp16")]; + tensor scores_27_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_25_cast_fp16, cond = mask_3)[name = tensor("scores_27_cast_fp16")]; + tensor var_1274_cast_fp16 = softmax(axis = var_25, x = scores_27_cast_fp16)[name = tensor("op_1274_cast_fp16")]; + tensor input_345_cast_fp16 = select(a = var_6_to_fp16, b = var_1274_cast_fp16, cond = mask_3)[name = tensor("input_345_cast_fp16")]; + tensor x_145_transpose_x_0 = const()[name = tensor("x_145_transpose_x_0"), val = tensor(false)]; + tensor x_145_transpose_y_0 = const()[name = tensor("x_145_transpose_y_0"), val = tensor(false)]; + tensor transpose_246 = transpose(perm = value_13_perm_0, x = v_13_cast_fp16)[name = tensor("transpose_246")]; + tensor x_145_cast_fp16 = matmul(transpose_x = x_145_transpose_x_0, transpose_y = x_145_transpose_y_0, x = input_345_cast_fp16, y = transpose_246)[name = tensor("x_145_cast_fp16")]; + tensor var_1278_perm_0 = const()[name = tensor("op_1278_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1279 = const()[name = tensor("op_1279"), val = tensor([1, -1, 1024])]; + tensor transpose_242 = transpose(perm = var_1278_perm_0, x = x_145_cast_fp16)[name = tensor("transpose_242")]; + tensor input_347_cast_fp16 = reshape(shape = var_1279, x = transpose_242)[name = tensor("input_347_cast_fp16")]; + tensor model_layers_6_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_6_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(325047360)))]; + tensor linear_61_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_self_attn_linear_out_weight_to_fp16, x = input_347_cast_fp16)[name = tensor("linear_61_cast_fp16")]; + tensor input_351_cast_fp16 = add(x = input_343_cast_fp16, y = linear_61_cast_fp16)[name = tensor("input_351_cast_fp16")]; + tensor x_149_axes_0 = const()[name = tensor("x_149_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(327144576)))]; + tensor model_layers_6_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(327146688)))]; + tensor x_149_cast_fp16 = layer_norm(axes = x_149_axes_0, beta = model_layers_6_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_conv_weight_to_fp16, x = input_351_cast_fp16)[name = tensor("x_149_cast_fp16")]; + tensor input_353_perm_0 = const()[name = tensor("input_353_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1295 = const()[name = tensor("op_1295"), val = tensor([1])]; + tensor var_1297 = const()[name = tensor("op_1297"), val = tensor([1])]; + tensor input_355_pad_type_0 = const()[name = tensor("input_355_pad_type_0"), val = tensor("custom")]; + tensor input_355_pad_0 = const()[name = tensor("input_355_pad_0"), val = tensor([0, 0])]; + tensor model_layers_6_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_6_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(327148800)))]; + tensor transpose_241 = transpose(perm = input_353_perm_0, x = x_149_cast_fp16)[name = tensor("transpose_241")]; + tensor input_355_cast_fp16 = conv(dilations = var_1297, groups = var_27, pad = input_355_pad_0, pad_type = input_355_pad_type_0, strides = var_1295, weight = model_layers_6_conv_pointwise_conv1_weight_to_fp16, x = transpose_241)[name = tensor("input_355_cast_fp16")]; + tensor x_151_split_num_splits_0 = const()[name = tensor("x_151_split_num_splits_0"), val = tensor(2)]; + tensor x_151_split_axis_0 = const()[name = tensor("x_151_split_axis_0"), val = tensor(1)]; + tensor x_151_split_cast_fp16_0, tensor x_151_split_cast_fp16_1 = split(axis = x_151_split_axis_0, num_splits = x_151_split_num_splits_0, x = input_355_cast_fp16)[name = tensor("x_151_split_cast_fp16")]; + tensor x_151_split_1_sigmoid_cast_fp16 = sigmoid(x = x_151_split_cast_fp16_1)[name = tensor("x_151_split_1_sigmoid_cast_fp16")]; + tensor x_151_cast_fp16 = mul(x = x_151_split_cast_fp16_0, y = x_151_split_1_sigmoid_cast_fp16)[name = tensor("x_151_cast_fp16")]; + tensor input_357_cast_fp16 = select(a = var_6_to_fp16, b = x_151_cast_fp16, cond = var_323)[name = tensor("input_357_cast_fp16")]; + tensor input_359_pad_0 = const()[name = tensor("input_359_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_359_mode_0 = const()[name = tensor("input_359_mode_0"), val = tensor("constant")]; + tensor const_76_to_fp16 = const()[name = tensor("const_76_to_fp16"), val = tensor(0x0p+0)]; + tensor input_359_cast_fp16 = pad(constant_val = const_76_to_fp16, mode = input_359_mode_0, pad = input_359_pad_0, x = input_357_cast_fp16)[name = tensor("input_359_cast_fp16")]; + tensor var_1306 = const()[name = tensor("op_1306"), val = tensor([1])]; + tensor var_1308 = const()[name = tensor("op_1308"), val = tensor([1])]; + tensor input_361_pad_type_0 = const()[name = tensor("input_361_pad_type_0"), val = tensor("custom")]; + tensor input_361_pad_0 = const()[name = tensor("input_361_pad_0"), val = tensor([0, 0])]; + tensor input_363_weight_0_to_fp16 = const()[name = tensor("input_363_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(331343168)))]; + tensor input_363_bias_0_to_fp16 = const()[name = tensor("input_363_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(331361664)))]; + tensor input_363_cast_fp16 = conv(bias = input_363_bias_0_to_fp16, dilations = var_1308, groups = var_5, pad = input_361_pad_0, pad_type = input_361_pad_type_0, strides = var_1306, weight = input_363_weight_0_to_fp16, x = input_359_cast_fp16)[name = tensor("input_363_cast_fp16")]; + tensor input_365_cast_fp16 = silu(x = input_363_cast_fp16)[name = tensor("input_365_cast_fp16")]; + tensor var_1318 = const()[name = tensor("op_1318"), val = tensor([1])]; + tensor var_1320 = const()[name = tensor("op_1320"), val = tensor([1])]; + tensor x_153_pad_type_0 = const()[name = tensor("x_153_pad_type_0"), val = tensor("custom")]; + tensor x_153_pad_0 = const()[name = tensor("x_153_pad_0"), val = tensor([0, 0])]; + tensor model_layers_6_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_6_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(331363776)))]; + tensor x_153_cast_fp16 = conv(dilations = var_1320, groups = var_27, pad = x_153_pad_0, pad_type = x_153_pad_type_0, strides = var_1318, weight = model_layers_6_conv_pointwise_conv2_weight_to_fp16, x = input_365_cast_fp16)[name = tensor("x_153_cast_fp16")]; + tensor input_367_perm_0 = const()[name = tensor("input_367_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_240 = transpose(perm = input_367_perm_0, x = x_153_cast_fp16)[name = tensor("transpose_240")]; + tensor input_369_cast_fp16 = add(x = input_351_cast_fp16, y = transpose_240)[name = tensor("input_369_cast_fp16")]; + tensor input_371_axes_0 = const()[name = tensor("input_371_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333460992)))]; + tensor model_layers_6_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333463104)))]; + tensor input_371_cast_fp16 = layer_norm(axes = input_371_axes_0, beta = model_layers_6_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_feed_forward2_weight_to_fp16, x = input_369_cast_fp16)[name = tensor("input_371_cast_fp16")]; + tensor model_layers_6_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_6_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(333465216)))]; + tensor linear_62_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_6_feed_forward2_linear1_weight_to_fp16, x = input_371_cast_fp16)[name = tensor("linear_62_cast_fp16")]; + tensor input_375_cast_fp16 = silu(x = linear_62_cast_fp16)[name = tensor("input_375_cast_fp16")]; + tensor model_layers_6_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_6_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(341853888)))]; + tensor linear_63_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_6_feed_forward2_linear2_weight_to_fp16, x = input_375_cast_fp16)[name = tensor("linear_63_cast_fp16")]; + tensor var_1339_to_fp16 = const()[name = tensor("op_1339_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1340_cast_fp16 = mul(x = linear_63_cast_fp16, y = var_1339_to_fp16)[name = tensor("op_1340_cast_fp16")]; + tensor input_381_cast_fp16 = add(x = input_369_cast_fp16, y = var_1340_cast_fp16)[name = tensor("input_381_cast_fp16")]; + tensor input_383_axes_0 = const()[name = tensor("input_383_axes_0"), val = tensor([-1])]; + tensor model_layers_6_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_6_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350242560)))]; + tensor model_layers_6_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_6_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350244672)))]; + tensor input_383_cast_fp16 = layer_norm(axes = input_383_axes_0, beta = model_layers_6_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_6_norm_out_weight_to_fp16, x = input_381_cast_fp16)[name = tensor("input_383_cast_fp16")]; + tensor input_385_axes_0 = const()[name = tensor("input_385_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350246784)))]; + tensor model_layers_7_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350248896)))]; + tensor input_385_cast_fp16 = layer_norm(axes = input_385_axes_0, beta = model_layers_7_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_feed_forward1_weight_to_fp16, x = input_383_cast_fp16)[name = tensor("input_385_cast_fp16")]; + tensor model_layers_7_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_7_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(350251008)))]; + tensor linear_64_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_7_feed_forward1_linear1_weight_to_fp16, x = input_385_cast_fp16)[name = tensor("linear_64_cast_fp16")]; + tensor input_389_cast_fp16 = silu(x = linear_64_cast_fp16)[name = tensor("input_389_cast_fp16")]; + tensor model_layers_7_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_7_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(358639680)))]; + tensor linear_65_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_feed_forward1_linear2_weight_to_fp16, x = input_389_cast_fp16)[name = tensor("linear_65_cast_fp16")]; + tensor var_1368_to_fp16 = const()[name = tensor("op_1368_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1369_cast_fp16 = mul(x = linear_65_cast_fp16, y = var_1368_to_fp16)[name = tensor("op_1369_cast_fp16")]; + tensor input_395_cast_fp16 = add(x = input_383_cast_fp16, y = var_1369_cast_fp16)[name = tensor("input_395_cast_fp16")]; + tensor query_15_axes_0 = const()[name = tensor("query_15_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(367028352)))]; + tensor model_layers_7_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(367030464)))]; + tensor query_15_cast_fp16 = layer_norm(axes = query_15_axes_0, beta = model_layers_7_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_self_att_weight_to_fp16, x = input_395_cast_fp16)[name = tensor("query_15_cast_fp16")]; + tensor model_layers_7_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_7_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(367032576)))]; + tensor linear_66_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_q_weight_to_fp16, x = query_15_cast_fp16)[name = tensor("linear_66_cast_fp16")]; + tensor var_1385 = const()[name = tensor("op_1385"), val = tensor([1, -1, 8, 128])]; + tensor q_43_cast_fp16 = reshape(shape = var_1385, x = linear_66_cast_fp16)[name = tensor("q_43_cast_fp16")]; + tensor model_layers_7_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_7_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(369129792)))]; + tensor linear_67_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_k_weight_to_fp16, x = query_15_cast_fp16)[name = tensor("linear_67_cast_fp16")]; + tensor var_1389 = const()[name = tensor("op_1389"), val = tensor([1, -1, 8, 128])]; + tensor k_29_cast_fp16 = reshape(shape = var_1389, x = linear_67_cast_fp16)[name = tensor("k_29_cast_fp16")]; + tensor model_layers_7_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_7_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(371227008)))]; + tensor linear_68_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_v_weight_to_fp16, x = query_15_cast_fp16)[name = tensor("linear_68_cast_fp16")]; + tensor var_1393 = const()[name = tensor("op_1393"), val = tensor([1, -1, 8, 128])]; + tensor v_15_cast_fp16 = reshape(shape = var_1393, x = linear_68_cast_fp16)[name = tensor("v_15_cast_fp16")]; + tensor value_15_perm_0 = const()[name = tensor("value_15_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_7_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_7_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(373324224)))]; + tensor var_1405_cast_fp16 = add(x = q_43_cast_fp16, y = model_layers_7_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1405_cast_fp16")]; + tensor model_layers_7_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_7_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(373326336)))]; + tensor var_1407_cast_fp16 = add(x = q_43_cast_fp16, y = model_layers_7_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1407_cast_fp16")]; + tensor q_with_bias_v_15_perm_0 = const()[name = tensor("q_with_bias_v_15_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_161_transpose_x_0 = const()[name = tensor("x_161_transpose_x_0"), val = tensor(false)]; + tensor x_161_transpose_y_0 = const()[name = tensor("x_161_transpose_y_0"), val = tensor(false)]; + tensor var_1409_to_fp16 = const()[name = tensor("op_1409_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(373328448)))]; + tensor transpose_238 = transpose(perm = q_with_bias_v_15_perm_0, x = var_1407_cast_fp16)[name = tensor("transpose_238")]; + tensor x_161_cast_fp16 = matmul(transpose_x = x_161_transpose_x_0, transpose_y = x_161_transpose_y_0, x = transpose_238, y = var_1409_to_fp16)[name = tensor("x_161_cast_fp16")]; + tensor x_163_pad_0 = const()[name = tensor("x_163_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_163_mode_0 = const()[name = tensor("x_163_mode_0"), val = tensor("constant")]; + tensor const_83_to_fp16 = const()[name = tensor("const_83_to_fp16"), val = tensor(0x0p+0)]; + tensor x_163_cast_fp16 = pad(constant_val = const_83_to_fp16, mode = x_163_mode_0, pad = x_163_pad_0, x = x_161_cast_fp16)[name = tensor("x_163_cast_fp16")]; + tensor var_1417 = const()[name = tensor("op_1417"), val = tensor([1, 8, -1, 126])]; + tensor x_165_cast_fp16 = reshape(shape = var_1417, x = x_163_cast_fp16)[name = tensor("x_165_cast_fp16")]; + tensor var_1421_begin_0 = const()[name = tensor("op_1421_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1421_end_0 = const()[name = tensor("op_1421_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1421_end_mask_0 = const()[name = tensor("op_1421_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1421_cast_fp16 = slice_by_index(begin = var_1421_begin_0, end = var_1421_end_0, end_mask = var_1421_end_mask_0, x = x_165_cast_fp16)[name = tensor("op_1421_cast_fp16")]; + tensor var_1422 = const()[name = tensor("op_1422"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_29_cast_fp16 = reshape(shape = var_1422, x = var_1421_cast_fp16)[name = tensor("matrix_bd_29_cast_fp16")]; + tensor matrix_ac_15_transpose_x_0 = const()[name = tensor("matrix_ac_15_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_15_transpose_y_0 = const()[name = tensor("matrix_ac_15_transpose_y_0"), val = tensor(false)]; + tensor transpose_86_perm_0 = const()[name = tensor("transpose_86_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_87_perm_0 = const()[name = tensor("transpose_87_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_236 = transpose(perm = transpose_87_perm_0, x = k_29_cast_fp16)[name = tensor("transpose_236")]; + tensor transpose_237 = transpose(perm = transpose_86_perm_0, x = var_1405_cast_fp16)[name = tensor("transpose_237")]; + tensor matrix_ac_15_cast_fp16 = matmul(transpose_x = matrix_ac_15_transpose_x_0, transpose_y = matrix_ac_15_transpose_y_0, x = transpose_237, y = transpose_236)[name = tensor("matrix_ac_15_cast_fp16")]; + tensor matrix_bd_31_begin_0 = const()[name = tensor("matrix_bd_31_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_31_end_0 = const()[name = tensor("matrix_bd_31_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_31_end_mask_0 = const()[name = tensor("matrix_bd_31_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_31_cast_fp16 = slice_by_index(begin = matrix_bd_31_begin_0, end = matrix_bd_31_end_0, end_mask = matrix_bd_31_end_mask_0, x = matrix_bd_29_cast_fp16)[name = tensor("matrix_bd_31_cast_fp16")]; + tensor var_1431_cast_fp16 = add(x = matrix_ac_15_cast_fp16, y = matrix_bd_31_cast_fp16)[name = tensor("op_1431_cast_fp16")]; + tensor _inversed_scores_29_y_0_to_fp16 = const()[name = tensor("_inversed_scores_29_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_29_cast_fp16 = mul(x = var_1431_cast_fp16, y = _inversed_scores_29_y_0_to_fp16)[name = tensor("_inversed_scores_29_cast_fp16")]; + tensor scores_31_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_29_cast_fp16, cond = mask_3)[name = tensor("scores_31_cast_fp16")]; + tensor var_1437_cast_fp16 = softmax(axis = var_25, x = scores_31_cast_fp16)[name = tensor("op_1437_cast_fp16")]; + tensor input_397_cast_fp16 = select(a = var_6_to_fp16, b = var_1437_cast_fp16, cond = mask_3)[name = tensor("input_397_cast_fp16")]; + tensor x_167_transpose_x_0 = const()[name = tensor("x_167_transpose_x_0"), val = tensor(false)]; + tensor x_167_transpose_y_0 = const()[name = tensor("x_167_transpose_y_0"), val = tensor(false)]; + tensor transpose_239 = transpose(perm = value_15_perm_0, x = v_15_cast_fp16)[name = tensor("transpose_239")]; + tensor x_167_cast_fp16 = matmul(transpose_x = x_167_transpose_x_0, transpose_y = x_167_transpose_y_0, x = input_397_cast_fp16, y = transpose_239)[name = tensor("x_167_cast_fp16")]; + tensor var_1441_perm_0 = const()[name = tensor("op_1441_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1442 = const()[name = tensor("op_1442"), val = tensor([1, -1, 1024])]; + tensor transpose_235 = transpose(perm = var_1441_perm_0, x = x_167_cast_fp16)[name = tensor("transpose_235")]; + tensor input_399_cast_fp16 = reshape(shape = var_1442, x = transpose_235)[name = tensor("input_399_cast_fp16")]; + tensor model_layers_7_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_7_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(373842560)))]; + tensor linear_70_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_self_attn_linear_out_weight_to_fp16, x = input_399_cast_fp16)[name = tensor("linear_70_cast_fp16")]; + tensor input_403_cast_fp16 = add(x = input_395_cast_fp16, y = linear_70_cast_fp16)[name = tensor("input_403_cast_fp16")]; + tensor x_171_axes_0 = const()[name = tensor("x_171_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(375939776)))]; + tensor model_layers_7_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(375941888)))]; + tensor x_171_cast_fp16 = layer_norm(axes = x_171_axes_0, beta = model_layers_7_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_conv_weight_to_fp16, x = input_403_cast_fp16)[name = tensor("x_171_cast_fp16")]; + tensor input_405_perm_0 = const()[name = tensor("input_405_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1458 = const()[name = tensor("op_1458"), val = tensor([1])]; + tensor var_1460 = const()[name = tensor("op_1460"), val = tensor([1])]; + tensor input_407_pad_type_0 = const()[name = tensor("input_407_pad_type_0"), val = tensor("custom")]; + tensor input_407_pad_0 = const()[name = tensor("input_407_pad_0"), val = tensor([0, 0])]; + tensor model_layers_7_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_7_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(375944000)))]; + tensor transpose_234 = transpose(perm = input_405_perm_0, x = x_171_cast_fp16)[name = tensor("transpose_234")]; + tensor input_407_cast_fp16 = conv(dilations = var_1460, groups = var_27, pad = input_407_pad_0, pad_type = input_407_pad_type_0, strides = var_1458, weight = model_layers_7_conv_pointwise_conv1_weight_to_fp16, x = transpose_234)[name = tensor("input_407_cast_fp16")]; + tensor x_173_split_num_splits_0 = const()[name = tensor("x_173_split_num_splits_0"), val = tensor(2)]; + tensor x_173_split_axis_0 = const()[name = tensor("x_173_split_axis_0"), val = tensor(1)]; + tensor x_173_split_cast_fp16_0, tensor x_173_split_cast_fp16_1 = split(axis = x_173_split_axis_0, num_splits = x_173_split_num_splits_0, x = input_407_cast_fp16)[name = tensor("x_173_split_cast_fp16")]; + tensor x_173_split_1_sigmoid_cast_fp16 = sigmoid(x = x_173_split_cast_fp16_1)[name = tensor("x_173_split_1_sigmoid_cast_fp16")]; + tensor x_173_cast_fp16 = mul(x = x_173_split_cast_fp16_0, y = x_173_split_1_sigmoid_cast_fp16)[name = tensor("x_173_cast_fp16")]; + tensor input_409_cast_fp16 = select(a = var_6_to_fp16, b = x_173_cast_fp16, cond = var_323)[name = tensor("input_409_cast_fp16")]; + tensor input_411_pad_0 = const()[name = tensor("input_411_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_411_mode_0 = const()[name = tensor("input_411_mode_0"), val = tensor("constant")]; + tensor const_86_to_fp16 = const()[name = tensor("const_86_to_fp16"), val = tensor(0x0p+0)]; + tensor input_411_cast_fp16 = pad(constant_val = const_86_to_fp16, mode = input_411_mode_0, pad = input_411_pad_0, x = input_409_cast_fp16)[name = tensor("input_411_cast_fp16")]; + tensor var_1469 = const()[name = tensor("op_1469"), val = tensor([1])]; + tensor var_1471 = const()[name = tensor("op_1471"), val = tensor([1])]; + tensor input_413_pad_type_0 = const()[name = tensor("input_413_pad_type_0"), val = tensor("custom")]; + tensor input_413_pad_0 = const()[name = tensor("input_413_pad_0"), val = tensor([0, 0])]; + tensor input_415_weight_0_to_fp16 = const()[name = tensor("input_415_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(380138368)))]; + tensor input_415_bias_0_to_fp16 = const()[name = tensor("input_415_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(380156864)))]; + tensor input_415_cast_fp16 = conv(bias = input_415_bias_0_to_fp16, dilations = var_1471, groups = var_5, pad = input_413_pad_0, pad_type = input_413_pad_type_0, strides = var_1469, weight = input_415_weight_0_to_fp16, x = input_411_cast_fp16)[name = tensor("input_415_cast_fp16")]; + tensor input_417_cast_fp16 = silu(x = input_415_cast_fp16)[name = tensor("input_417_cast_fp16")]; + tensor var_1481 = const()[name = tensor("op_1481"), val = tensor([1])]; + tensor var_1483 = const()[name = tensor("op_1483"), val = tensor([1])]; + tensor x_175_pad_type_0 = const()[name = tensor("x_175_pad_type_0"), val = tensor("custom")]; + tensor x_175_pad_0 = const()[name = tensor("x_175_pad_0"), val = tensor([0, 0])]; + tensor model_layers_7_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_7_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(380158976)))]; + tensor x_175_cast_fp16 = conv(dilations = var_1483, groups = var_27, pad = x_175_pad_0, pad_type = x_175_pad_type_0, strides = var_1481, weight = model_layers_7_conv_pointwise_conv2_weight_to_fp16, x = input_417_cast_fp16)[name = tensor("x_175_cast_fp16")]; + tensor input_419_perm_0 = const()[name = tensor("input_419_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_233 = transpose(perm = input_419_perm_0, x = x_175_cast_fp16)[name = tensor("transpose_233")]; + tensor input_421_cast_fp16 = add(x = input_403_cast_fp16, y = transpose_233)[name = tensor("input_421_cast_fp16")]; + tensor input_423_axes_0 = const()[name = tensor("input_423_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382256192)))]; + tensor model_layers_7_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382258304)))]; + tensor input_423_cast_fp16 = layer_norm(axes = input_423_axes_0, beta = model_layers_7_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_feed_forward2_weight_to_fp16, x = input_421_cast_fp16)[name = tensor("input_423_cast_fp16")]; + tensor model_layers_7_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_7_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(382260416)))]; + tensor linear_71_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_7_feed_forward2_linear1_weight_to_fp16, x = input_423_cast_fp16)[name = tensor("linear_71_cast_fp16")]; + tensor input_427_cast_fp16 = silu(x = linear_71_cast_fp16)[name = tensor("input_427_cast_fp16")]; + tensor model_layers_7_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_7_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(390649088)))]; + tensor linear_72_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_7_feed_forward2_linear2_weight_to_fp16, x = input_427_cast_fp16)[name = tensor("linear_72_cast_fp16")]; + tensor var_1502_to_fp16 = const()[name = tensor("op_1502_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1503_cast_fp16 = mul(x = linear_72_cast_fp16, y = var_1502_to_fp16)[name = tensor("op_1503_cast_fp16")]; + tensor input_433_cast_fp16 = add(x = input_421_cast_fp16, y = var_1503_cast_fp16)[name = tensor("input_433_cast_fp16")]; + tensor input_435_axes_0 = const()[name = tensor("input_435_axes_0"), val = tensor([-1])]; + tensor model_layers_7_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_7_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399037760)))]; + tensor model_layers_7_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_7_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399039872)))]; + tensor input_435_cast_fp16 = layer_norm(axes = input_435_axes_0, beta = model_layers_7_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_7_norm_out_weight_to_fp16, x = input_433_cast_fp16)[name = tensor("input_435_cast_fp16")]; + tensor input_437_axes_0 = const()[name = tensor("input_437_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399041984)))]; + tensor model_layers_8_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399044096)))]; + tensor input_437_cast_fp16 = layer_norm(axes = input_437_axes_0, beta = model_layers_8_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_feed_forward1_weight_to_fp16, x = input_435_cast_fp16)[name = tensor("input_437_cast_fp16")]; + tensor model_layers_8_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_8_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(399046208)))]; + tensor linear_73_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_8_feed_forward1_linear1_weight_to_fp16, x = input_437_cast_fp16)[name = tensor("linear_73_cast_fp16")]; + tensor input_441_cast_fp16 = silu(x = linear_73_cast_fp16)[name = tensor("input_441_cast_fp16")]; + tensor model_layers_8_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_8_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(407434880)))]; + tensor linear_74_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_feed_forward1_linear2_weight_to_fp16, x = input_441_cast_fp16)[name = tensor("linear_74_cast_fp16")]; + tensor var_1531_to_fp16 = const()[name = tensor("op_1531_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1532_cast_fp16 = mul(x = linear_74_cast_fp16, y = var_1531_to_fp16)[name = tensor("op_1532_cast_fp16")]; + tensor input_447_cast_fp16 = add(x = input_435_cast_fp16, y = var_1532_cast_fp16)[name = tensor("input_447_cast_fp16")]; + tensor query_17_axes_0 = const()[name = tensor("query_17_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415823552)))]; + tensor model_layers_8_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415825664)))]; + tensor query_17_cast_fp16 = layer_norm(axes = query_17_axes_0, beta = model_layers_8_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_self_att_weight_to_fp16, x = input_447_cast_fp16)[name = tensor("query_17_cast_fp16")]; + tensor model_layers_8_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_8_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415827776)))]; + tensor linear_75_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_q_weight_to_fp16, x = query_17_cast_fp16)[name = tensor("linear_75_cast_fp16")]; + tensor var_1548 = const()[name = tensor("op_1548"), val = tensor([1, -1, 8, 128])]; + tensor q_49_cast_fp16 = reshape(shape = var_1548, x = linear_75_cast_fp16)[name = tensor("q_49_cast_fp16")]; + tensor model_layers_8_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_8_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(417924992)))]; + tensor linear_76_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_k_weight_to_fp16, x = query_17_cast_fp16)[name = tensor("linear_76_cast_fp16")]; + tensor var_1552 = const()[name = tensor("op_1552"), val = tensor([1, -1, 8, 128])]; + tensor k_33_cast_fp16 = reshape(shape = var_1552, x = linear_76_cast_fp16)[name = tensor("k_33_cast_fp16")]; + tensor model_layers_8_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_8_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(420022208)))]; + tensor linear_77_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_v_weight_to_fp16, x = query_17_cast_fp16)[name = tensor("linear_77_cast_fp16")]; + tensor var_1556 = const()[name = tensor("op_1556"), val = tensor([1, -1, 8, 128])]; + tensor v_17_cast_fp16 = reshape(shape = var_1556, x = linear_77_cast_fp16)[name = tensor("v_17_cast_fp16")]; + tensor value_17_perm_0 = const()[name = tensor("value_17_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_8_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_8_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(422119424)))]; + tensor var_1568_cast_fp16 = add(x = q_49_cast_fp16, y = model_layers_8_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1568_cast_fp16")]; + tensor model_layers_8_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_8_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(422121536)))]; + tensor var_1570_cast_fp16 = add(x = q_49_cast_fp16, y = model_layers_8_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1570_cast_fp16")]; + tensor q_with_bias_v_17_perm_0 = const()[name = tensor("q_with_bias_v_17_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_183_transpose_x_0 = const()[name = tensor("x_183_transpose_x_0"), val = tensor(false)]; + tensor x_183_transpose_y_0 = const()[name = tensor("x_183_transpose_y_0"), val = tensor(false)]; + tensor var_1572_to_fp16 = const()[name = tensor("op_1572_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(422123648)))]; + tensor transpose_231 = transpose(perm = q_with_bias_v_17_perm_0, x = var_1570_cast_fp16)[name = tensor("transpose_231")]; + tensor x_183_cast_fp16 = matmul(transpose_x = x_183_transpose_x_0, transpose_y = x_183_transpose_y_0, x = transpose_231, y = var_1572_to_fp16)[name = tensor("x_183_cast_fp16")]; + tensor x_185_pad_0 = const()[name = tensor("x_185_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_185_mode_0 = const()[name = tensor("x_185_mode_0"), val = tensor("constant")]; + tensor const_93_to_fp16 = const()[name = tensor("const_93_to_fp16"), val = tensor(0x0p+0)]; + tensor x_185_cast_fp16 = pad(constant_val = const_93_to_fp16, mode = x_185_mode_0, pad = x_185_pad_0, x = x_183_cast_fp16)[name = tensor("x_185_cast_fp16")]; + tensor var_1580 = const()[name = tensor("op_1580"), val = tensor([1, 8, -1, 126])]; + tensor x_187_cast_fp16 = reshape(shape = var_1580, x = x_185_cast_fp16)[name = tensor("x_187_cast_fp16")]; + tensor var_1584_begin_0 = const()[name = tensor("op_1584_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1584_end_0 = const()[name = tensor("op_1584_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1584_end_mask_0 = const()[name = tensor("op_1584_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1584_cast_fp16 = slice_by_index(begin = var_1584_begin_0, end = var_1584_end_0, end_mask = var_1584_end_mask_0, x = x_187_cast_fp16)[name = tensor("op_1584_cast_fp16")]; + tensor var_1585 = const()[name = tensor("op_1585"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_33_cast_fp16 = reshape(shape = var_1585, x = var_1584_cast_fp16)[name = tensor("matrix_bd_33_cast_fp16")]; + tensor matrix_ac_17_transpose_x_0 = const()[name = tensor("matrix_ac_17_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_17_transpose_y_0 = const()[name = tensor("matrix_ac_17_transpose_y_0"), val = tensor(false)]; + tensor transpose_88_perm_0 = const()[name = tensor("transpose_88_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_89_perm_0 = const()[name = tensor("transpose_89_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_229 = transpose(perm = transpose_89_perm_0, x = k_33_cast_fp16)[name = tensor("transpose_229")]; + tensor transpose_230 = transpose(perm = transpose_88_perm_0, x = var_1568_cast_fp16)[name = tensor("transpose_230")]; + tensor matrix_ac_17_cast_fp16 = matmul(transpose_x = matrix_ac_17_transpose_x_0, transpose_y = matrix_ac_17_transpose_y_0, x = transpose_230, y = transpose_229)[name = tensor("matrix_ac_17_cast_fp16")]; + tensor matrix_bd_35_begin_0 = const()[name = tensor("matrix_bd_35_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_35_end_0 = const()[name = tensor("matrix_bd_35_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_35_end_mask_0 = const()[name = tensor("matrix_bd_35_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_35_cast_fp16 = slice_by_index(begin = matrix_bd_35_begin_0, end = matrix_bd_35_end_0, end_mask = matrix_bd_35_end_mask_0, x = matrix_bd_33_cast_fp16)[name = tensor("matrix_bd_35_cast_fp16")]; + tensor var_1594_cast_fp16 = add(x = matrix_ac_17_cast_fp16, y = matrix_bd_35_cast_fp16)[name = tensor("op_1594_cast_fp16")]; + tensor _inversed_scores_33_y_0_to_fp16 = const()[name = tensor("_inversed_scores_33_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_33_cast_fp16 = mul(x = var_1594_cast_fp16, y = _inversed_scores_33_y_0_to_fp16)[name = tensor("_inversed_scores_33_cast_fp16")]; + tensor scores_35_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_33_cast_fp16, cond = mask_3)[name = tensor("scores_35_cast_fp16")]; + tensor var_1600_cast_fp16 = softmax(axis = var_25, x = scores_35_cast_fp16)[name = tensor("op_1600_cast_fp16")]; + tensor input_449_cast_fp16 = select(a = var_6_to_fp16, b = var_1600_cast_fp16, cond = mask_3)[name = tensor("input_449_cast_fp16")]; + tensor x_189_transpose_x_0 = const()[name = tensor("x_189_transpose_x_0"), val = tensor(false)]; + tensor x_189_transpose_y_0 = const()[name = tensor("x_189_transpose_y_0"), val = tensor(false)]; + tensor transpose_232 = transpose(perm = value_17_perm_0, x = v_17_cast_fp16)[name = tensor("transpose_232")]; + tensor x_189_cast_fp16 = matmul(transpose_x = x_189_transpose_x_0, transpose_y = x_189_transpose_y_0, x = input_449_cast_fp16, y = transpose_232)[name = tensor("x_189_cast_fp16")]; + tensor var_1604_perm_0 = const()[name = tensor("op_1604_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1605 = const()[name = tensor("op_1605"), val = tensor([1, -1, 1024])]; + tensor transpose_228 = transpose(perm = var_1604_perm_0, x = x_189_cast_fp16)[name = tensor("transpose_228")]; + tensor input_451_cast_fp16 = reshape(shape = var_1605, x = transpose_228)[name = tensor("input_451_cast_fp16")]; + tensor model_layers_8_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_8_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(422637760)))]; + tensor linear_79_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_self_attn_linear_out_weight_to_fp16, x = input_451_cast_fp16)[name = tensor("linear_79_cast_fp16")]; + tensor input_455_cast_fp16 = add(x = input_447_cast_fp16, y = linear_79_cast_fp16)[name = tensor("input_455_cast_fp16")]; + tensor x_193_axes_0 = const()[name = tensor("x_193_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(424734976)))]; + tensor model_layers_8_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(424737088)))]; + tensor x_193_cast_fp16 = layer_norm(axes = x_193_axes_0, beta = model_layers_8_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_conv_weight_to_fp16, x = input_455_cast_fp16)[name = tensor("x_193_cast_fp16")]; + tensor input_457_perm_0 = const()[name = tensor("input_457_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1621 = const()[name = tensor("op_1621"), val = tensor([1])]; + tensor var_1623 = const()[name = tensor("op_1623"), val = tensor([1])]; + tensor input_459_pad_type_0 = const()[name = tensor("input_459_pad_type_0"), val = tensor("custom")]; + tensor input_459_pad_0 = const()[name = tensor("input_459_pad_0"), val = tensor([0, 0])]; + tensor model_layers_8_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_8_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(424739200)))]; + tensor transpose_227 = transpose(perm = input_457_perm_0, x = x_193_cast_fp16)[name = tensor("transpose_227")]; + tensor input_459_cast_fp16 = conv(dilations = var_1623, groups = var_27, pad = input_459_pad_0, pad_type = input_459_pad_type_0, strides = var_1621, weight = model_layers_8_conv_pointwise_conv1_weight_to_fp16, x = transpose_227)[name = tensor("input_459_cast_fp16")]; + tensor x_195_split_num_splits_0 = const()[name = tensor("x_195_split_num_splits_0"), val = tensor(2)]; + tensor x_195_split_axis_0 = const()[name = tensor("x_195_split_axis_0"), val = tensor(1)]; + tensor x_195_split_cast_fp16_0, tensor x_195_split_cast_fp16_1 = split(axis = x_195_split_axis_0, num_splits = x_195_split_num_splits_0, x = input_459_cast_fp16)[name = tensor("x_195_split_cast_fp16")]; + tensor x_195_split_1_sigmoid_cast_fp16 = sigmoid(x = x_195_split_cast_fp16_1)[name = tensor("x_195_split_1_sigmoid_cast_fp16")]; + tensor x_195_cast_fp16 = mul(x = x_195_split_cast_fp16_0, y = x_195_split_1_sigmoid_cast_fp16)[name = tensor("x_195_cast_fp16")]; + tensor input_461_cast_fp16 = select(a = var_6_to_fp16, b = x_195_cast_fp16, cond = var_323)[name = tensor("input_461_cast_fp16")]; + tensor input_463_pad_0 = const()[name = tensor("input_463_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_463_mode_0 = const()[name = tensor("input_463_mode_0"), val = tensor("constant")]; + tensor const_96_to_fp16 = const()[name = tensor("const_96_to_fp16"), val = tensor(0x0p+0)]; + tensor input_463_cast_fp16 = pad(constant_val = const_96_to_fp16, mode = input_463_mode_0, pad = input_463_pad_0, x = input_461_cast_fp16)[name = tensor("input_463_cast_fp16")]; + tensor var_1632 = const()[name = tensor("op_1632"), val = tensor([1])]; + tensor var_1634 = const()[name = tensor("op_1634"), val = tensor([1])]; + tensor input_465_pad_type_0 = const()[name = tensor("input_465_pad_type_0"), val = tensor("custom")]; + tensor input_465_pad_0 = const()[name = tensor("input_465_pad_0"), val = tensor([0, 0])]; + tensor input_467_weight_0_to_fp16 = const()[name = tensor("input_467_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428933568)))]; + tensor input_467_bias_0_to_fp16 = const()[name = tensor("input_467_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428952064)))]; + tensor input_467_cast_fp16 = conv(bias = input_467_bias_0_to_fp16, dilations = var_1634, groups = var_5, pad = input_465_pad_0, pad_type = input_465_pad_type_0, strides = var_1632, weight = input_467_weight_0_to_fp16, x = input_463_cast_fp16)[name = tensor("input_467_cast_fp16")]; + tensor input_469_cast_fp16 = silu(x = input_467_cast_fp16)[name = tensor("input_469_cast_fp16")]; + tensor var_1644 = const()[name = tensor("op_1644"), val = tensor([1])]; + tensor var_1646 = const()[name = tensor("op_1646"), val = tensor([1])]; + tensor x_197_pad_type_0 = const()[name = tensor("x_197_pad_type_0"), val = tensor("custom")]; + tensor x_197_pad_0 = const()[name = tensor("x_197_pad_0"), val = tensor([0, 0])]; + tensor model_layers_8_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_8_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(428954176)))]; + tensor x_197_cast_fp16 = conv(dilations = var_1646, groups = var_27, pad = x_197_pad_0, pad_type = x_197_pad_type_0, strides = var_1644, weight = model_layers_8_conv_pointwise_conv2_weight_to_fp16, x = input_469_cast_fp16)[name = tensor("x_197_cast_fp16")]; + tensor input_471_perm_0 = const()[name = tensor("input_471_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_226 = transpose(perm = input_471_perm_0, x = x_197_cast_fp16)[name = tensor("transpose_226")]; + tensor input_473_cast_fp16 = add(x = input_455_cast_fp16, y = transpose_226)[name = tensor("input_473_cast_fp16")]; + tensor input_475_axes_0 = const()[name = tensor("input_475_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431051392)))]; + tensor model_layers_8_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431053504)))]; + tensor input_475_cast_fp16 = layer_norm(axes = input_475_axes_0, beta = model_layers_8_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_feed_forward2_weight_to_fp16, x = input_473_cast_fp16)[name = tensor("input_475_cast_fp16")]; + tensor model_layers_8_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_8_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(431055616)))]; + tensor linear_80_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_8_feed_forward2_linear1_weight_to_fp16, x = input_475_cast_fp16)[name = tensor("linear_80_cast_fp16")]; + tensor input_479_cast_fp16 = silu(x = linear_80_cast_fp16)[name = tensor("input_479_cast_fp16")]; + tensor model_layers_8_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_8_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(439444288)))]; + tensor linear_81_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_8_feed_forward2_linear2_weight_to_fp16, x = input_479_cast_fp16)[name = tensor("linear_81_cast_fp16")]; + tensor var_1665_to_fp16 = const()[name = tensor("op_1665_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1666_cast_fp16 = mul(x = linear_81_cast_fp16, y = var_1665_to_fp16)[name = tensor("op_1666_cast_fp16")]; + tensor input_485_cast_fp16 = add(x = input_473_cast_fp16, y = var_1666_cast_fp16)[name = tensor("input_485_cast_fp16")]; + tensor input_487_axes_0 = const()[name = tensor("input_487_axes_0"), val = tensor([-1])]; + tensor model_layers_8_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_8_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(447832960)))]; + tensor model_layers_8_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_8_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(447835072)))]; + tensor input_487_cast_fp16 = layer_norm(axes = input_487_axes_0, beta = model_layers_8_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_8_norm_out_weight_to_fp16, x = input_485_cast_fp16)[name = tensor("input_487_cast_fp16")]; + tensor input_489_axes_0 = const()[name = tensor("input_489_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(447837184)))]; + tensor model_layers_9_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(447839296)))]; + tensor input_489_cast_fp16 = layer_norm(axes = input_489_axes_0, beta = model_layers_9_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_feed_forward1_weight_to_fp16, x = input_487_cast_fp16)[name = tensor("input_489_cast_fp16")]; + tensor model_layers_9_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_9_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(447841408)))]; + tensor linear_82_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_9_feed_forward1_linear1_weight_to_fp16, x = input_489_cast_fp16)[name = tensor("linear_82_cast_fp16")]; + tensor input_493_cast_fp16 = silu(x = linear_82_cast_fp16)[name = tensor("input_493_cast_fp16")]; + tensor model_layers_9_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_9_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(456230080)))]; + tensor linear_83_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_feed_forward1_linear2_weight_to_fp16, x = input_493_cast_fp16)[name = tensor("linear_83_cast_fp16")]; + tensor var_1694_to_fp16 = const()[name = tensor("op_1694_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1695_cast_fp16 = mul(x = linear_83_cast_fp16, y = var_1694_to_fp16)[name = tensor("op_1695_cast_fp16")]; + tensor input_499_cast_fp16 = add(x = input_487_cast_fp16, y = var_1695_cast_fp16)[name = tensor("input_499_cast_fp16")]; + tensor query_19_axes_0 = const()[name = tensor("query_19_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(464618752)))]; + tensor model_layers_9_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(464620864)))]; + tensor query_19_cast_fp16 = layer_norm(axes = query_19_axes_0, beta = model_layers_9_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_self_att_weight_to_fp16, x = input_499_cast_fp16)[name = tensor("query_19_cast_fp16")]; + tensor model_layers_9_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_9_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(464622976)))]; + tensor linear_84_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_q_weight_to_fp16, x = query_19_cast_fp16)[name = tensor("linear_84_cast_fp16")]; + tensor var_1711 = const()[name = tensor("op_1711"), val = tensor([1, -1, 8, 128])]; + tensor q_55_cast_fp16 = reshape(shape = var_1711, x = linear_84_cast_fp16)[name = tensor("q_55_cast_fp16")]; + tensor model_layers_9_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_9_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(466720192)))]; + tensor linear_85_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_k_weight_to_fp16, x = query_19_cast_fp16)[name = tensor("linear_85_cast_fp16")]; + tensor var_1715 = const()[name = tensor("op_1715"), val = tensor([1, -1, 8, 128])]; + tensor k_37_cast_fp16 = reshape(shape = var_1715, x = linear_85_cast_fp16)[name = tensor("k_37_cast_fp16")]; + tensor model_layers_9_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_9_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(468817408)))]; + tensor linear_86_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_v_weight_to_fp16, x = query_19_cast_fp16)[name = tensor("linear_86_cast_fp16")]; + tensor var_1719 = const()[name = tensor("op_1719"), val = tensor([1, -1, 8, 128])]; + tensor v_19_cast_fp16 = reshape(shape = var_1719, x = linear_86_cast_fp16)[name = tensor("v_19_cast_fp16")]; + tensor value_19_perm_0 = const()[name = tensor("value_19_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_9_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_9_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(470914624)))]; + tensor var_1731_cast_fp16 = add(x = q_55_cast_fp16, y = model_layers_9_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1731_cast_fp16")]; + tensor model_layers_9_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_9_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(470916736)))]; + tensor var_1733_cast_fp16 = add(x = q_55_cast_fp16, y = model_layers_9_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1733_cast_fp16")]; + tensor q_with_bias_v_19_perm_0 = const()[name = tensor("q_with_bias_v_19_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_205_transpose_x_0 = const()[name = tensor("x_205_transpose_x_0"), val = tensor(false)]; + tensor x_205_transpose_y_0 = const()[name = tensor("x_205_transpose_y_0"), val = tensor(false)]; + tensor var_1735_to_fp16 = const()[name = tensor("op_1735_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(470918848)))]; + tensor transpose_224 = transpose(perm = q_with_bias_v_19_perm_0, x = var_1733_cast_fp16)[name = tensor("transpose_224")]; + tensor x_205_cast_fp16 = matmul(transpose_x = x_205_transpose_x_0, transpose_y = x_205_transpose_y_0, x = transpose_224, y = var_1735_to_fp16)[name = tensor("x_205_cast_fp16")]; + tensor x_207_pad_0 = const()[name = tensor("x_207_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_207_mode_0 = const()[name = tensor("x_207_mode_0"), val = tensor("constant")]; + tensor const_103_to_fp16 = const()[name = tensor("const_103_to_fp16"), val = tensor(0x0p+0)]; + tensor x_207_cast_fp16 = pad(constant_val = const_103_to_fp16, mode = x_207_mode_0, pad = x_207_pad_0, x = x_205_cast_fp16)[name = tensor("x_207_cast_fp16")]; + tensor var_1743 = const()[name = tensor("op_1743"), val = tensor([1, 8, -1, 126])]; + tensor x_209_cast_fp16 = reshape(shape = var_1743, x = x_207_cast_fp16)[name = tensor("x_209_cast_fp16")]; + tensor var_1747_begin_0 = const()[name = tensor("op_1747_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1747_end_0 = const()[name = tensor("op_1747_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1747_end_mask_0 = const()[name = tensor("op_1747_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1747_cast_fp16 = slice_by_index(begin = var_1747_begin_0, end = var_1747_end_0, end_mask = var_1747_end_mask_0, x = x_209_cast_fp16)[name = tensor("op_1747_cast_fp16")]; + tensor var_1748 = const()[name = tensor("op_1748"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_37_cast_fp16 = reshape(shape = var_1748, x = var_1747_cast_fp16)[name = tensor("matrix_bd_37_cast_fp16")]; + tensor matrix_ac_19_transpose_x_0 = const()[name = tensor("matrix_ac_19_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_19_transpose_y_0 = const()[name = tensor("matrix_ac_19_transpose_y_0"), val = tensor(false)]; + tensor transpose_90_perm_0 = const()[name = tensor("transpose_90_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_91_perm_0 = const()[name = tensor("transpose_91_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_222 = transpose(perm = transpose_91_perm_0, x = k_37_cast_fp16)[name = tensor("transpose_222")]; + tensor transpose_223 = transpose(perm = transpose_90_perm_0, x = var_1731_cast_fp16)[name = tensor("transpose_223")]; + tensor matrix_ac_19_cast_fp16 = matmul(transpose_x = matrix_ac_19_transpose_x_0, transpose_y = matrix_ac_19_transpose_y_0, x = transpose_223, y = transpose_222)[name = tensor("matrix_ac_19_cast_fp16")]; + tensor matrix_bd_39_begin_0 = const()[name = tensor("matrix_bd_39_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_39_end_0 = const()[name = tensor("matrix_bd_39_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_39_end_mask_0 = const()[name = tensor("matrix_bd_39_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_39_cast_fp16 = slice_by_index(begin = matrix_bd_39_begin_0, end = matrix_bd_39_end_0, end_mask = matrix_bd_39_end_mask_0, x = matrix_bd_37_cast_fp16)[name = tensor("matrix_bd_39_cast_fp16")]; + tensor var_1757_cast_fp16 = add(x = matrix_ac_19_cast_fp16, y = matrix_bd_39_cast_fp16)[name = tensor("op_1757_cast_fp16")]; + tensor _inversed_scores_37_y_0_to_fp16 = const()[name = tensor("_inversed_scores_37_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_37_cast_fp16 = mul(x = var_1757_cast_fp16, y = _inversed_scores_37_y_0_to_fp16)[name = tensor("_inversed_scores_37_cast_fp16")]; + tensor scores_39_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_37_cast_fp16, cond = mask_3)[name = tensor("scores_39_cast_fp16")]; + tensor var_1763_cast_fp16 = softmax(axis = var_25, x = scores_39_cast_fp16)[name = tensor("op_1763_cast_fp16")]; + tensor input_501_cast_fp16 = select(a = var_6_to_fp16, b = var_1763_cast_fp16, cond = mask_3)[name = tensor("input_501_cast_fp16")]; + tensor x_211_transpose_x_0 = const()[name = tensor("x_211_transpose_x_0"), val = tensor(false)]; + tensor x_211_transpose_y_0 = const()[name = tensor("x_211_transpose_y_0"), val = tensor(false)]; + tensor transpose_225 = transpose(perm = value_19_perm_0, x = v_19_cast_fp16)[name = tensor("transpose_225")]; + tensor x_211_cast_fp16 = matmul(transpose_x = x_211_transpose_x_0, transpose_y = x_211_transpose_y_0, x = input_501_cast_fp16, y = transpose_225)[name = tensor("x_211_cast_fp16")]; + tensor var_1767_perm_0 = const()[name = tensor("op_1767_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1768 = const()[name = tensor("op_1768"), val = tensor([1, -1, 1024])]; + tensor transpose_221 = transpose(perm = var_1767_perm_0, x = x_211_cast_fp16)[name = tensor("transpose_221")]; + tensor input_503_cast_fp16 = reshape(shape = var_1768, x = transpose_221)[name = tensor("input_503_cast_fp16")]; + tensor model_layers_9_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_9_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(471432960)))]; + tensor linear_88_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_self_attn_linear_out_weight_to_fp16, x = input_503_cast_fp16)[name = tensor("linear_88_cast_fp16")]; + tensor input_507_cast_fp16 = add(x = input_499_cast_fp16, y = linear_88_cast_fp16)[name = tensor("input_507_cast_fp16")]; + tensor x_215_axes_0 = const()[name = tensor("x_215_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(473530176)))]; + tensor model_layers_9_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(473532288)))]; + tensor x_215_cast_fp16 = layer_norm(axes = x_215_axes_0, beta = model_layers_9_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_conv_weight_to_fp16, x = input_507_cast_fp16)[name = tensor("x_215_cast_fp16")]; + tensor input_509_perm_0 = const()[name = tensor("input_509_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1784 = const()[name = tensor("op_1784"), val = tensor([1])]; + tensor var_1786 = const()[name = tensor("op_1786"), val = tensor([1])]; + tensor input_511_pad_type_0 = const()[name = tensor("input_511_pad_type_0"), val = tensor("custom")]; + tensor input_511_pad_0 = const()[name = tensor("input_511_pad_0"), val = tensor([0, 0])]; + tensor model_layers_9_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_9_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(473534400)))]; + tensor transpose_220 = transpose(perm = input_509_perm_0, x = x_215_cast_fp16)[name = tensor("transpose_220")]; + tensor input_511_cast_fp16 = conv(dilations = var_1786, groups = var_27, pad = input_511_pad_0, pad_type = input_511_pad_type_0, strides = var_1784, weight = model_layers_9_conv_pointwise_conv1_weight_to_fp16, x = transpose_220)[name = tensor("input_511_cast_fp16")]; + tensor x_217_split_num_splits_0 = const()[name = tensor("x_217_split_num_splits_0"), val = tensor(2)]; + tensor x_217_split_axis_0 = const()[name = tensor("x_217_split_axis_0"), val = tensor(1)]; + tensor x_217_split_cast_fp16_0, tensor x_217_split_cast_fp16_1 = split(axis = x_217_split_axis_0, num_splits = x_217_split_num_splits_0, x = input_511_cast_fp16)[name = tensor("x_217_split_cast_fp16")]; + tensor x_217_split_1_sigmoid_cast_fp16 = sigmoid(x = x_217_split_cast_fp16_1)[name = tensor("x_217_split_1_sigmoid_cast_fp16")]; + tensor x_217_cast_fp16 = mul(x = x_217_split_cast_fp16_0, y = x_217_split_1_sigmoid_cast_fp16)[name = tensor("x_217_cast_fp16")]; + tensor input_513_cast_fp16 = select(a = var_6_to_fp16, b = x_217_cast_fp16, cond = var_323)[name = tensor("input_513_cast_fp16")]; + tensor input_515_pad_0 = const()[name = tensor("input_515_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_515_mode_0 = const()[name = tensor("input_515_mode_0"), val = tensor("constant")]; + tensor const_106_to_fp16 = const()[name = tensor("const_106_to_fp16"), val = tensor(0x0p+0)]; + tensor input_515_cast_fp16 = pad(constant_val = const_106_to_fp16, mode = input_515_mode_0, pad = input_515_pad_0, x = input_513_cast_fp16)[name = tensor("input_515_cast_fp16")]; + tensor var_1795 = const()[name = tensor("op_1795"), val = tensor([1])]; + tensor var_1797 = const()[name = tensor("op_1797"), val = tensor([1])]; + tensor input_517_pad_type_0 = const()[name = tensor("input_517_pad_type_0"), val = tensor("custom")]; + tensor input_517_pad_0 = const()[name = tensor("input_517_pad_0"), val = tensor([0, 0])]; + tensor input_519_weight_0_to_fp16 = const()[name = tensor("input_519_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477728768)))]; + tensor input_519_bias_0_to_fp16 = const()[name = tensor("input_519_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477747264)))]; + tensor input_519_cast_fp16 = conv(bias = input_519_bias_0_to_fp16, dilations = var_1797, groups = var_5, pad = input_517_pad_0, pad_type = input_517_pad_type_0, strides = var_1795, weight = input_519_weight_0_to_fp16, x = input_515_cast_fp16)[name = tensor("input_519_cast_fp16")]; + tensor input_521_cast_fp16 = silu(x = input_519_cast_fp16)[name = tensor("input_521_cast_fp16")]; + tensor var_1807 = const()[name = tensor("op_1807"), val = tensor([1])]; + tensor var_1809 = const()[name = tensor("op_1809"), val = tensor([1])]; + tensor x_219_pad_type_0 = const()[name = tensor("x_219_pad_type_0"), val = tensor("custom")]; + tensor x_219_pad_0 = const()[name = tensor("x_219_pad_0"), val = tensor([0, 0])]; + tensor model_layers_9_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_9_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(477749376)))]; + tensor x_219_cast_fp16 = conv(dilations = var_1809, groups = var_27, pad = x_219_pad_0, pad_type = x_219_pad_type_0, strides = var_1807, weight = model_layers_9_conv_pointwise_conv2_weight_to_fp16, x = input_521_cast_fp16)[name = tensor("x_219_cast_fp16")]; + tensor input_523_perm_0 = const()[name = tensor("input_523_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_219 = transpose(perm = input_523_perm_0, x = x_219_cast_fp16)[name = tensor("transpose_219")]; + tensor input_525_cast_fp16 = add(x = input_507_cast_fp16, y = transpose_219)[name = tensor("input_525_cast_fp16")]; + tensor input_527_axes_0 = const()[name = tensor("input_527_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(479846592)))]; + tensor model_layers_9_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(479848704)))]; + tensor input_527_cast_fp16 = layer_norm(axes = input_527_axes_0, beta = model_layers_9_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_feed_forward2_weight_to_fp16, x = input_525_cast_fp16)[name = tensor("input_527_cast_fp16")]; + tensor model_layers_9_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_9_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(479850816)))]; + tensor linear_89_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_9_feed_forward2_linear1_weight_to_fp16, x = input_527_cast_fp16)[name = tensor("linear_89_cast_fp16")]; + tensor input_531_cast_fp16 = silu(x = linear_89_cast_fp16)[name = tensor("input_531_cast_fp16")]; + tensor model_layers_9_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_9_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(488239488)))]; + tensor linear_90_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_9_feed_forward2_linear2_weight_to_fp16, x = input_531_cast_fp16)[name = tensor("linear_90_cast_fp16")]; + tensor var_1828_to_fp16 = const()[name = tensor("op_1828_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1829_cast_fp16 = mul(x = linear_90_cast_fp16, y = var_1828_to_fp16)[name = tensor("op_1829_cast_fp16")]; + tensor input_537_cast_fp16 = add(x = input_525_cast_fp16, y = var_1829_cast_fp16)[name = tensor("input_537_cast_fp16")]; + tensor input_539_axes_0 = const()[name = tensor("input_539_axes_0"), val = tensor([-1])]; + tensor model_layers_9_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_9_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496628160)))]; + tensor model_layers_9_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_9_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496630272)))]; + tensor input_539_cast_fp16 = layer_norm(axes = input_539_axes_0, beta = model_layers_9_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_9_norm_out_weight_to_fp16, x = input_537_cast_fp16)[name = tensor("input_539_cast_fp16")]; + tensor input_541_axes_0 = const()[name = tensor("input_541_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496632384)))]; + tensor model_layers_10_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496634496)))]; + tensor input_541_cast_fp16 = layer_norm(axes = input_541_axes_0, beta = model_layers_10_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_feed_forward1_weight_to_fp16, x = input_539_cast_fp16)[name = tensor("input_541_cast_fp16")]; + tensor model_layers_10_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_10_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496636608)))]; + tensor linear_91_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_10_feed_forward1_linear1_weight_to_fp16, x = input_541_cast_fp16)[name = tensor("linear_91_cast_fp16")]; + tensor input_545_cast_fp16 = silu(x = linear_91_cast_fp16)[name = tensor("input_545_cast_fp16")]; + tensor model_layers_10_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_10_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(505025280)))]; + tensor linear_92_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_feed_forward1_linear2_weight_to_fp16, x = input_545_cast_fp16)[name = tensor("linear_92_cast_fp16")]; + tensor var_1857_to_fp16 = const()[name = tensor("op_1857_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1858_cast_fp16 = mul(x = linear_92_cast_fp16, y = var_1857_to_fp16)[name = tensor("op_1858_cast_fp16")]; + tensor input_551_cast_fp16 = add(x = input_539_cast_fp16, y = var_1858_cast_fp16)[name = tensor("input_551_cast_fp16")]; + tensor query_21_axes_0 = const()[name = tensor("query_21_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513413952)))]; + tensor model_layers_10_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513416064)))]; + tensor query_21_cast_fp16 = layer_norm(axes = query_21_axes_0, beta = model_layers_10_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_self_att_weight_to_fp16, x = input_551_cast_fp16)[name = tensor("query_21_cast_fp16")]; + tensor model_layers_10_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_10_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513418176)))]; + tensor linear_93_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_q_weight_to_fp16, x = query_21_cast_fp16)[name = tensor("linear_93_cast_fp16")]; + tensor var_1874 = const()[name = tensor("op_1874"), val = tensor([1, -1, 8, 128])]; + tensor q_61_cast_fp16 = reshape(shape = var_1874, x = linear_93_cast_fp16)[name = tensor("q_61_cast_fp16")]; + tensor model_layers_10_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_10_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(515515392)))]; + tensor linear_94_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_k_weight_to_fp16, x = query_21_cast_fp16)[name = tensor("linear_94_cast_fp16")]; + tensor var_1878 = const()[name = tensor("op_1878"), val = tensor([1, -1, 8, 128])]; + tensor k_41_cast_fp16 = reshape(shape = var_1878, x = linear_94_cast_fp16)[name = tensor("k_41_cast_fp16")]; + tensor model_layers_10_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_10_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517612608)))]; + tensor linear_95_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_v_weight_to_fp16, x = query_21_cast_fp16)[name = tensor("linear_95_cast_fp16")]; + tensor var_1882 = const()[name = tensor("op_1882"), val = tensor([1, -1, 8, 128])]; + tensor v_21_cast_fp16 = reshape(shape = var_1882, x = linear_95_cast_fp16)[name = tensor("v_21_cast_fp16")]; + tensor value_21_perm_0 = const()[name = tensor("value_21_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_10_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_10_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(519709824)))]; + tensor var_1894_cast_fp16 = add(x = q_61_cast_fp16, y = model_layers_10_self_attn_pos_bias_u_to_fp16)[name = tensor("op_1894_cast_fp16")]; + tensor model_layers_10_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_10_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(519711936)))]; + tensor var_1896_cast_fp16 = add(x = q_61_cast_fp16, y = model_layers_10_self_attn_pos_bias_v_to_fp16)[name = tensor("op_1896_cast_fp16")]; + tensor q_with_bias_v_21_perm_0 = const()[name = tensor("q_with_bias_v_21_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_227_transpose_x_0 = const()[name = tensor("x_227_transpose_x_0"), val = tensor(false)]; + tensor x_227_transpose_y_0 = const()[name = tensor("x_227_transpose_y_0"), val = tensor(false)]; + tensor var_1898_to_fp16 = const()[name = tensor("op_1898_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(519714048)))]; + tensor transpose_217 = transpose(perm = q_with_bias_v_21_perm_0, x = var_1896_cast_fp16)[name = tensor("transpose_217")]; + tensor x_227_cast_fp16 = matmul(transpose_x = x_227_transpose_x_0, transpose_y = x_227_transpose_y_0, x = transpose_217, y = var_1898_to_fp16)[name = tensor("x_227_cast_fp16")]; + tensor x_229_pad_0 = const()[name = tensor("x_229_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_229_mode_0 = const()[name = tensor("x_229_mode_0"), val = tensor("constant")]; + tensor const_113_to_fp16 = const()[name = tensor("const_113_to_fp16"), val = tensor(0x0p+0)]; + tensor x_229_cast_fp16 = pad(constant_val = const_113_to_fp16, mode = x_229_mode_0, pad = x_229_pad_0, x = x_227_cast_fp16)[name = tensor("x_229_cast_fp16")]; + tensor var_1906 = const()[name = tensor("op_1906"), val = tensor([1, 8, -1, 126])]; + tensor x_231_cast_fp16 = reshape(shape = var_1906, x = x_229_cast_fp16)[name = tensor("x_231_cast_fp16")]; + tensor var_1910_begin_0 = const()[name = tensor("op_1910_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_1910_end_0 = const()[name = tensor("op_1910_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_1910_end_mask_0 = const()[name = tensor("op_1910_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1910_cast_fp16 = slice_by_index(begin = var_1910_begin_0, end = var_1910_end_0, end_mask = var_1910_end_mask_0, x = x_231_cast_fp16)[name = tensor("op_1910_cast_fp16")]; + tensor var_1911 = const()[name = tensor("op_1911"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_41_cast_fp16 = reshape(shape = var_1911, x = var_1910_cast_fp16)[name = tensor("matrix_bd_41_cast_fp16")]; + tensor matrix_ac_21_transpose_x_0 = const()[name = tensor("matrix_ac_21_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_21_transpose_y_0 = const()[name = tensor("matrix_ac_21_transpose_y_0"), val = tensor(false)]; + tensor transpose_92_perm_0 = const()[name = tensor("transpose_92_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_93_perm_0 = const()[name = tensor("transpose_93_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_215 = transpose(perm = transpose_93_perm_0, x = k_41_cast_fp16)[name = tensor("transpose_215")]; + tensor transpose_216 = transpose(perm = transpose_92_perm_0, x = var_1894_cast_fp16)[name = tensor("transpose_216")]; + tensor matrix_ac_21_cast_fp16 = matmul(transpose_x = matrix_ac_21_transpose_x_0, transpose_y = matrix_ac_21_transpose_y_0, x = transpose_216, y = transpose_215)[name = tensor("matrix_ac_21_cast_fp16")]; + tensor matrix_bd_43_begin_0 = const()[name = tensor("matrix_bd_43_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_43_end_0 = const()[name = tensor("matrix_bd_43_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_43_end_mask_0 = const()[name = tensor("matrix_bd_43_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_43_cast_fp16 = slice_by_index(begin = matrix_bd_43_begin_0, end = matrix_bd_43_end_0, end_mask = matrix_bd_43_end_mask_0, x = matrix_bd_41_cast_fp16)[name = tensor("matrix_bd_43_cast_fp16")]; + tensor var_1920_cast_fp16 = add(x = matrix_ac_21_cast_fp16, y = matrix_bd_43_cast_fp16)[name = tensor("op_1920_cast_fp16")]; + tensor _inversed_scores_41_y_0_to_fp16 = const()[name = tensor("_inversed_scores_41_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_41_cast_fp16 = mul(x = var_1920_cast_fp16, y = _inversed_scores_41_y_0_to_fp16)[name = tensor("_inversed_scores_41_cast_fp16")]; + tensor scores_43_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_41_cast_fp16, cond = mask_3)[name = tensor("scores_43_cast_fp16")]; + tensor var_1926_cast_fp16 = softmax(axis = var_25, x = scores_43_cast_fp16)[name = tensor("op_1926_cast_fp16")]; + tensor input_553_cast_fp16 = select(a = var_6_to_fp16, b = var_1926_cast_fp16, cond = mask_3)[name = tensor("input_553_cast_fp16")]; + tensor x_233_transpose_x_0 = const()[name = tensor("x_233_transpose_x_0"), val = tensor(false)]; + tensor x_233_transpose_y_0 = const()[name = tensor("x_233_transpose_y_0"), val = tensor(false)]; + tensor transpose_218 = transpose(perm = value_21_perm_0, x = v_21_cast_fp16)[name = tensor("transpose_218")]; + tensor x_233_cast_fp16 = matmul(transpose_x = x_233_transpose_x_0, transpose_y = x_233_transpose_y_0, x = input_553_cast_fp16, y = transpose_218)[name = tensor("x_233_cast_fp16")]; + tensor var_1930_perm_0 = const()[name = tensor("op_1930_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1931 = const()[name = tensor("op_1931"), val = tensor([1, -1, 1024])]; + tensor transpose_214 = transpose(perm = var_1930_perm_0, x = x_233_cast_fp16)[name = tensor("transpose_214")]; + tensor input_555_cast_fp16 = reshape(shape = var_1931, x = transpose_214)[name = tensor("input_555_cast_fp16")]; + tensor model_layers_10_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_10_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(520228160)))]; + tensor linear_97_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_self_attn_linear_out_weight_to_fp16, x = input_555_cast_fp16)[name = tensor("linear_97_cast_fp16")]; + tensor input_559_cast_fp16 = add(x = input_551_cast_fp16, y = linear_97_cast_fp16)[name = tensor("input_559_cast_fp16")]; + tensor x_237_axes_0 = const()[name = tensor("x_237_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522325376)))]; + tensor model_layers_10_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522327488)))]; + tensor x_237_cast_fp16 = layer_norm(axes = x_237_axes_0, beta = model_layers_10_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_conv_weight_to_fp16, x = input_559_cast_fp16)[name = tensor("x_237_cast_fp16")]; + tensor input_561_perm_0 = const()[name = tensor("input_561_perm_0"), val = tensor([0, 2, 1])]; + tensor var_1947 = const()[name = tensor("op_1947"), val = tensor([1])]; + tensor var_1949 = const()[name = tensor("op_1949"), val = tensor([1])]; + tensor input_563_pad_type_0 = const()[name = tensor("input_563_pad_type_0"), val = tensor("custom")]; + tensor input_563_pad_0 = const()[name = tensor("input_563_pad_0"), val = tensor([0, 0])]; + tensor model_layers_10_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_10_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522329600)))]; + tensor transpose_213 = transpose(perm = input_561_perm_0, x = x_237_cast_fp16)[name = tensor("transpose_213")]; + tensor input_563_cast_fp16 = conv(dilations = var_1949, groups = var_27, pad = input_563_pad_0, pad_type = input_563_pad_type_0, strides = var_1947, weight = model_layers_10_conv_pointwise_conv1_weight_to_fp16, x = transpose_213)[name = tensor("input_563_cast_fp16")]; + tensor x_239_split_num_splits_0 = const()[name = tensor("x_239_split_num_splits_0"), val = tensor(2)]; + tensor x_239_split_axis_0 = const()[name = tensor("x_239_split_axis_0"), val = tensor(1)]; + tensor x_239_split_cast_fp16_0, tensor x_239_split_cast_fp16_1 = split(axis = x_239_split_axis_0, num_splits = x_239_split_num_splits_0, x = input_563_cast_fp16)[name = tensor("x_239_split_cast_fp16")]; + tensor x_239_split_1_sigmoid_cast_fp16 = sigmoid(x = x_239_split_cast_fp16_1)[name = tensor("x_239_split_1_sigmoid_cast_fp16")]; + tensor x_239_cast_fp16 = mul(x = x_239_split_cast_fp16_0, y = x_239_split_1_sigmoid_cast_fp16)[name = tensor("x_239_cast_fp16")]; + tensor input_565_cast_fp16 = select(a = var_6_to_fp16, b = x_239_cast_fp16, cond = var_323)[name = tensor("input_565_cast_fp16")]; + tensor input_567_pad_0 = const()[name = tensor("input_567_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_567_mode_0 = const()[name = tensor("input_567_mode_0"), val = tensor("constant")]; + tensor const_116_to_fp16 = const()[name = tensor("const_116_to_fp16"), val = tensor(0x0p+0)]; + tensor input_567_cast_fp16 = pad(constant_val = const_116_to_fp16, mode = input_567_mode_0, pad = input_567_pad_0, x = input_565_cast_fp16)[name = tensor("input_567_cast_fp16")]; + tensor var_1958 = const()[name = tensor("op_1958"), val = tensor([1])]; + tensor var_1960 = const()[name = tensor("op_1960"), val = tensor([1])]; + tensor input_569_pad_type_0 = const()[name = tensor("input_569_pad_type_0"), val = tensor("custom")]; + tensor input_569_pad_0 = const()[name = tensor("input_569_pad_0"), val = tensor([0, 0])]; + tensor input_571_weight_0_to_fp16 = const()[name = tensor("input_571_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526523968)))]; + tensor input_571_bias_0_to_fp16 = const()[name = tensor("input_571_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526542464)))]; + tensor input_571_cast_fp16 = conv(bias = input_571_bias_0_to_fp16, dilations = var_1960, groups = var_5, pad = input_569_pad_0, pad_type = input_569_pad_type_0, strides = var_1958, weight = input_571_weight_0_to_fp16, x = input_567_cast_fp16)[name = tensor("input_571_cast_fp16")]; + tensor input_573_cast_fp16 = silu(x = input_571_cast_fp16)[name = tensor("input_573_cast_fp16")]; + tensor var_1970 = const()[name = tensor("op_1970"), val = tensor([1])]; + tensor var_1972 = const()[name = tensor("op_1972"), val = tensor([1])]; + tensor x_241_pad_type_0 = const()[name = tensor("x_241_pad_type_0"), val = tensor("custom")]; + tensor x_241_pad_0 = const()[name = tensor("x_241_pad_0"), val = tensor([0, 0])]; + tensor model_layers_10_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_10_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(526544576)))]; + tensor x_241_cast_fp16 = conv(dilations = var_1972, groups = var_27, pad = x_241_pad_0, pad_type = x_241_pad_type_0, strides = var_1970, weight = model_layers_10_conv_pointwise_conv2_weight_to_fp16, x = input_573_cast_fp16)[name = tensor("x_241_cast_fp16")]; + tensor input_575_perm_0 = const()[name = tensor("input_575_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_212 = transpose(perm = input_575_perm_0, x = x_241_cast_fp16)[name = tensor("transpose_212")]; + tensor input_577_cast_fp16 = add(x = input_559_cast_fp16, y = transpose_212)[name = tensor("input_577_cast_fp16")]; + tensor input_579_axes_0 = const()[name = tensor("input_579_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(528641792)))]; + tensor model_layers_10_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(528643904)))]; + tensor input_579_cast_fp16 = layer_norm(axes = input_579_axes_0, beta = model_layers_10_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_feed_forward2_weight_to_fp16, x = input_577_cast_fp16)[name = tensor("input_579_cast_fp16")]; + tensor model_layers_10_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_10_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(528646016)))]; + tensor linear_98_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_10_feed_forward2_linear1_weight_to_fp16, x = input_579_cast_fp16)[name = tensor("linear_98_cast_fp16")]; + tensor input_583_cast_fp16 = silu(x = linear_98_cast_fp16)[name = tensor("input_583_cast_fp16")]; + tensor model_layers_10_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_10_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(537034688)))]; + tensor linear_99_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_10_feed_forward2_linear2_weight_to_fp16, x = input_583_cast_fp16)[name = tensor("linear_99_cast_fp16")]; + tensor var_1991_to_fp16 = const()[name = tensor("op_1991_to_fp16"), val = tensor(0x1p-1)]; + tensor var_1992_cast_fp16 = mul(x = linear_99_cast_fp16, y = var_1991_to_fp16)[name = tensor("op_1992_cast_fp16")]; + tensor input_589_cast_fp16 = add(x = input_577_cast_fp16, y = var_1992_cast_fp16)[name = tensor("input_589_cast_fp16")]; + tensor input_591_axes_0 = const()[name = tensor("input_591_axes_0"), val = tensor([-1])]; + tensor model_layers_10_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_10_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545423360)))]; + tensor model_layers_10_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_10_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545425472)))]; + tensor input_591_cast_fp16 = layer_norm(axes = input_591_axes_0, beta = model_layers_10_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_10_norm_out_weight_to_fp16, x = input_589_cast_fp16)[name = tensor("input_591_cast_fp16")]; + tensor input_593_axes_0 = const()[name = tensor("input_593_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545427584)))]; + tensor model_layers_11_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545429696)))]; + tensor input_593_cast_fp16 = layer_norm(axes = input_593_axes_0, beta = model_layers_11_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_feed_forward1_weight_to_fp16, x = input_591_cast_fp16)[name = tensor("input_593_cast_fp16")]; + tensor model_layers_11_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_11_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545431808)))]; + tensor linear_100_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_11_feed_forward1_linear1_weight_to_fp16, x = input_593_cast_fp16)[name = tensor("linear_100_cast_fp16")]; + tensor input_597_cast_fp16 = silu(x = linear_100_cast_fp16)[name = tensor("input_597_cast_fp16")]; + tensor model_layers_11_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_11_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(553820480)))]; + tensor linear_101_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_feed_forward1_linear2_weight_to_fp16, x = input_597_cast_fp16)[name = tensor("linear_101_cast_fp16")]; + tensor var_2020_to_fp16 = const()[name = tensor("op_2020_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2021_cast_fp16 = mul(x = linear_101_cast_fp16, y = var_2020_to_fp16)[name = tensor("op_2021_cast_fp16")]; + tensor input_603_cast_fp16 = add(x = input_591_cast_fp16, y = var_2021_cast_fp16)[name = tensor("input_603_cast_fp16")]; + tensor query_23_axes_0 = const()[name = tensor("query_23_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(562209152)))]; + tensor model_layers_11_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(562211264)))]; + tensor query_23_cast_fp16 = layer_norm(axes = query_23_axes_0, beta = model_layers_11_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_self_att_weight_to_fp16, x = input_603_cast_fp16)[name = tensor("query_23_cast_fp16")]; + tensor model_layers_11_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_11_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(562213376)))]; + tensor linear_102_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_q_weight_to_fp16, x = query_23_cast_fp16)[name = tensor("linear_102_cast_fp16")]; + tensor var_2037 = const()[name = tensor("op_2037"), val = tensor([1, -1, 8, 128])]; + tensor q_67_cast_fp16 = reshape(shape = var_2037, x = linear_102_cast_fp16)[name = tensor("q_67_cast_fp16")]; + tensor model_layers_11_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_11_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(564310592)))]; + tensor linear_103_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_k_weight_to_fp16, x = query_23_cast_fp16)[name = tensor("linear_103_cast_fp16")]; + tensor var_2041 = const()[name = tensor("op_2041"), val = tensor([1, -1, 8, 128])]; + tensor k_45_cast_fp16 = reshape(shape = var_2041, x = linear_103_cast_fp16)[name = tensor("k_45_cast_fp16")]; + tensor model_layers_11_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_11_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566407808)))]; + tensor linear_104_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_v_weight_to_fp16, x = query_23_cast_fp16)[name = tensor("linear_104_cast_fp16")]; + tensor var_2045 = const()[name = tensor("op_2045"), val = tensor([1, -1, 8, 128])]; + tensor v_23_cast_fp16 = reshape(shape = var_2045, x = linear_104_cast_fp16)[name = tensor("v_23_cast_fp16")]; + tensor value_23_perm_0 = const()[name = tensor("value_23_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_11_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_11_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(568505024)))]; + tensor var_2057_cast_fp16 = add(x = q_67_cast_fp16, y = model_layers_11_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2057_cast_fp16")]; + tensor model_layers_11_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_11_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(568507136)))]; + tensor var_2059_cast_fp16 = add(x = q_67_cast_fp16, y = model_layers_11_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2059_cast_fp16")]; + tensor q_with_bias_v_23_perm_0 = const()[name = tensor("q_with_bias_v_23_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_249_transpose_x_0 = const()[name = tensor("x_249_transpose_x_0"), val = tensor(false)]; + tensor x_249_transpose_y_0 = const()[name = tensor("x_249_transpose_y_0"), val = tensor(false)]; + tensor var_2061_to_fp16 = const()[name = tensor("op_2061_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(568509248)))]; + tensor transpose_210 = transpose(perm = q_with_bias_v_23_perm_0, x = var_2059_cast_fp16)[name = tensor("transpose_210")]; + tensor x_249_cast_fp16 = matmul(transpose_x = x_249_transpose_x_0, transpose_y = x_249_transpose_y_0, x = transpose_210, y = var_2061_to_fp16)[name = tensor("x_249_cast_fp16")]; + tensor x_251_pad_0 = const()[name = tensor("x_251_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_251_mode_0 = const()[name = tensor("x_251_mode_0"), val = tensor("constant")]; + tensor const_123_to_fp16 = const()[name = tensor("const_123_to_fp16"), val = tensor(0x0p+0)]; + tensor x_251_cast_fp16 = pad(constant_val = const_123_to_fp16, mode = x_251_mode_0, pad = x_251_pad_0, x = x_249_cast_fp16)[name = tensor("x_251_cast_fp16")]; + tensor var_2069 = const()[name = tensor("op_2069"), val = tensor([1, 8, -1, 126])]; + tensor x_253_cast_fp16 = reshape(shape = var_2069, x = x_251_cast_fp16)[name = tensor("x_253_cast_fp16")]; + tensor var_2073_begin_0 = const()[name = tensor("op_2073_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2073_end_0 = const()[name = tensor("op_2073_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2073_end_mask_0 = const()[name = tensor("op_2073_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2073_cast_fp16 = slice_by_index(begin = var_2073_begin_0, end = var_2073_end_0, end_mask = var_2073_end_mask_0, x = x_253_cast_fp16)[name = tensor("op_2073_cast_fp16")]; + tensor var_2074 = const()[name = tensor("op_2074"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_45_cast_fp16 = reshape(shape = var_2074, x = var_2073_cast_fp16)[name = tensor("matrix_bd_45_cast_fp16")]; + tensor matrix_ac_23_transpose_x_0 = const()[name = tensor("matrix_ac_23_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_23_transpose_y_0 = const()[name = tensor("matrix_ac_23_transpose_y_0"), val = tensor(false)]; + tensor transpose_94_perm_0 = const()[name = tensor("transpose_94_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_95_perm_0 = const()[name = tensor("transpose_95_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_208 = transpose(perm = transpose_95_perm_0, x = k_45_cast_fp16)[name = tensor("transpose_208")]; + tensor transpose_209 = transpose(perm = transpose_94_perm_0, x = var_2057_cast_fp16)[name = tensor("transpose_209")]; + tensor matrix_ac_23_cast_fp16 = matmul(transpose_x = matrix_ac_23_transpose_x_0, transpose_y = matrix_ac_23_transpose_y_0, x = transpose_209, y = transpose_208)[name = tensor("matrix_ac_23_cast_fp16")]; + tensor matrix_bd_47_begin_0 = const()[name = tensor("matrix_bd_47_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_47_end_0 = const()[name = tensor("matrix_bd_47_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_47_end_mask_0 = const()[name = tensor("matrix_bd_47_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_47_cast_fp16 = slice_by_index(begin = matrix_bd_47_begin_0, end = matrix_bd_47_end_0, end_mask = matrix_bd_47_end_mask_0, x = matrix_bd_45_cast_fp16)[name = tensor("matrix_bd_47_cast_fp16")]; + tensor var_2083_cast_fp16 = add(x = matrix_ac_23_cast_fp16, y = matrix_bd_47_cast_fp16)[name = tensor("op_2083_cast_fp16")]; + tensor _inversed_scores_45_y_0_to_fp16 = const()[name = tensor("_inversed_scores_45_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_45_cast_fp16 = mul(x = var_2083_cast_fp16, y = _inversed_scores_45_y_0_to_fp16)[name = tensor("_inversed_scores_45_cast_fp16")]; + tensor scores_47_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_45_cast_fp16, cond = mask_3)[name = tensor("scores_47_cast_fp16")]; + tensor var_2089_cast_fp16 = softmax(axis = var_25, x = scores_47_cast_fp16)[name = tensor("op_2089_cast_fp16")]; + tensor input_605_cast_fp16 = select(a = var_6_to_fp16, b = var_2089_cast_fp16, cond = mask_3)[name = tensor("input_605_cast_fp16")]; + tensor x_255_transpose_x_0 = const()[name = tensor("x_255_transpose_x_0"), val = tensor(false)]; + tensor x_255_transpose_y_0 = const()[name = tensor("x_255_transpose_y_0"), val = tensor(false)]; + tensor transpose_211 = transpose(perm = value_23_perm_0, x = v_23_cast_fp16)[name = tensor("transpose_211")]; + tensor x_255_cast_fp16 = matmul(transpose_x = x_255_transpose_x_0, transpose_y = x_255_transpose_y_0, x = input_605_cast_fp16, y = transpose_211)[name = tensor("x_255_cast_fp16")]; + tensor var_2093_perm_0 = const()[name = tensor("op_2093_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2094 = const()[name = tensor("op_2094"), val = tensor([1, -1, 1024])]; + tensor transpose_207 = transpose(perm = var_2093_perm_0, x = x_255_cast_fp16)[name = tensor("transpose_207")]; + tensor input_607_cast_fp16 = reshape(shape = var_2094, x = transpose_207)[name = tensor("input_607_cast_fp16")]; + tensor model_layers_11_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_11_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(569023360)))]; + tensor linear_106_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_self_attn_linear_out_weight_to_fp16, x = input_607_cast_fp16)[name = tensor("linear_106_cast_fp16")]; + tensor input_611_cast_fp16 = add(x = input_603_cast_fp16, y = linear_106_cast_fp16)[name = tensor("input_611_cast_fp16")]; + tensor x_259_axes_0 = const()[name = tensor("x_259_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(571120576)))]; + tensor model_layers_11_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(571122688)))]; + tensor x_259_cast_fp16 = layer_norm(axes = x_259_axes_0, beta = model_layers_11_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_conv_weight_to_fp16, x = input_611_cast_fp16)[name = tensor("x_259_cast_fp16")]; + tensor input_613_perm_0 = const()[name = tensor("input_613_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2110 = const()[name = tensor("op_2110"), val = tensor([1])]; + tensor var_2112 = const()[name = tensor("op_2112"), val = tensor([1])]; + tensor input_615_pad_type_0 = const()[name = tensor("input_615_pad_type_0"), val = tensor("custom")]; + tensor input_615_pad_0 = const()[name = tensor("input_615_pad_0"), val = tensor([0, 0])]; + tensor model_layers_11_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_11_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(571124800)))]; + tensor transpose_206 = transpose(perm = input_613_perm_0, x = x_259_cast_fp16)[name = tensor("transpose_206")]; + tensor input_615_cast_fp16 = conv(dilations = var_2112, groups = var_27, pad = input_615_pad_0, pad_type = input_615_pad_type_0, strides = var_2110, weight = model_layers_11_conv_pointwise_conv1_weight_to_fp16, x = transpose_206)[name = tensor("input_615_cast_fp16")]; + tensor x_261_split_num_splits_0 = const()[name = tensor("x_261_split_num_splits_0"), val = tensor(2)]; + tensor x_261_split_axis_0 = const()[name = tensor("x_261_split_axis_0"), val = tensor(1)]; + tensor x_261_split_cast_fp16_0, tensor x_261_split_cast_fp16_1 = split(axis = x_261_split_axis_0, num_splits = x_261_split_num_splits_0, x = input_615_cast_fp16)[name = tensor("x_261_split_cast_fp16")]; + tensor x_261_split_1_sigmoid_cast_fp16 = sigmoid(x = x_261_split_cast_fp16_1)[name = tensor("x_261_split_1_sigmoid_cast_fp16")]; + tensor x_261_cast_fp16 = mul(x = x_261_split_cast_fp16_0, y = x_261_split_1_sigmoid_cast_fp16)[name = tensor("x_261_cast_fp16")]; + tensor input_617_cast_fp16 = select(a = var_6_to_fp16, b = x_261_cast_fp16, cond = var_323)[name = tensor("input_617_cast_fp16")]; + tensor input_619_pad_0 = const()[name = tensor("input_619_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_619_mode_0 = const()[name = tensor("input_619_mode_0"), val = tensor("constant")]; + tensor const_126_to_fp16 = const()[name = tensor("const_126_to_fp16"), val = tensor(0x0p+0)]; + tensor input_619_cast_fp16 = pad(constant_val = const_126_to_fp16, mode = input_619_mode_0, pad = input_619_pad_0, x = input_617_cast_fp16)[name = tensor("input_619_cast_fp16")]; + tensor var_2121 = const()[name = tensor("op_2121"), val = tensor([1])]; + tensor var_2123 = const()[name = tensor("op_2123"), val = tensor([1])]; + tensor input_621_pad_type_0 = const()[name = tensor("input_621_pad_type_0"), val = tensor("custom")]; + tensor input_621_pad_0 = const()[name = tensor("input_621_pad_0"), val = tensor([0, 0])]; + tensor input_623_weight_0_to_fp16 = const()[name = tensor("input_623_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575319168)))]; + tensor input_623_bias_0_to_fp16 = const()[name = tensor("input_623_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575337664)))]; + tensor input_623_cast_fp16 = conv(bias = input_623_bias_0_to_fp16, dilations = var_2123, groups = var_5, pad = input_621_pad_0, pad_type = input_621_pad_type_0, strides = var_2121, weight = input_623_weight_0_to_fp16, x = input_619_cast_fp16)[name = tensor("input_623_cast_fp16")]; + tensor input_625_cast_fp16 = silu(x = input_623_cast_fp16)[name = tensor("input_625_cast_fp16")]; + tensor var_2133 = const()[name = tensor("op_2133"), val = tensor([1])]; + tensor var_2135 = const()[name = tensor("op_2135"), val = tensor([1])]; + tensor x_263_pad_type_0 = const()[name = tensor("x_263_pad_type_0"), val = tensor("custom")]; + tensor x_263_pad_0 = const()[name = tensor("x_263_pad_0"), val = tensor([0, 0])]; + tensor model_layers_11_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_11_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(575339776)))]; + tensor x_263_cast_fp16 = conv(dilations = var_2135, groups = var_27, pad = x_263_pad_0, pad_type = x_263_pad_type_0, strides = var_2133, weight = model_layers_11_conv_pointwise_conv2_weight_to_fp16, x = input_625_cast_fp16)[name = tensor("x_263_cast_fp16")]; + tensor input_627_perm_0 = const()[name = tensor("input_627_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_205 = transpose(perm = input_627_perm_0, x = x_263_cast_fp16)[name = tensor("transpose_205")]; + tensor input_629_cast_fp16 = add(x = input_611_cast_fp16, y = transpose_205)[name = tensor("input_629_cast_fp16")]; + tensor input_631_axes_0 = const()[name = tensor("input_631_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(577436992)))]; + tensor model_layers_11_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(577439104)))]; + tensor input_631_cast_fp16 = layer_norm(axes = input_631_axes_0, beta = model_layers_11_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_feed_forward2_weight_to_fp16, x = input_629_cast_fp16)[name = tensor("input_631_cast_fp16")]; + tensor model_layers_11_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_11_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(577441216)))]; + tensor linear_107_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_11_feed_forward2_linear1_weight_to_fp16, x = input_631_cast_fp16)[name = tensor("linear_107_cast_fp16")]; + tensor input_635_cast_fp16 = silu(x = linear_107_cast_fp16)[name = tensor("input_635_cast_fp16")]; + tensor model_layers_11_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_11_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(585829888)))]; + tensor linear_108_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_11_feed_forward2_linear2_weight_to_fp16, x = input_635_cast_fp16)[name = tensor("linear_108_cast_fp16")]; + tensor var_2154_to_fp16 = const()[name = tensor("op_2154_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2155_cast_fp16 = mul(x = linear_108_cast_fp16, y = var_2154_to_fp16)[name = tensor("op_2155_cast_fp16")]; + tensor input_641_cast_fp16 = add(x = input_629_cast_fp16, y = var_2155_cast_fp16)[name = tensor("input_641_cast_fp16")]; + tensor input_643_axes_0 = const()[name = tensor("input_643_axes_0"), val = tensor([-1])]; + tensor model_layers_11_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_11_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(594218560)))]; + tensor model_layers_11_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_11_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(594220672)))]; + tensor input_643_cast_fp16 = layer_norm(axes = input_643_axes_0, beta = model_layers_11_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_11_norm_out_weight_to_fp16, x = input_641_cast_fp16)[name = tensor("input_643_cast_fp16")]; + tensor input_645_axes_0 = const()[name = tensor("input_645_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(594222784)))]; + tensor model_layers_12_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(594224896)))]; + tensor input_645_cast_fp16 = layer_norm(axes = input_645_axes_0, beta = model_layers_12_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_feed_forward1_weight_to_fp16, x = input_643_cast_fp16)[name = tensor("input_645_cast_fp16")]; + tensor model_layers_12_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_12_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(594227008)))]; + tensor linear_109_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_12_feed_forward1_linear1_weight_to_fp16, x = input_645_cast_fp16)[name = tensor("linear_109_cast_fp16")]; + tensor input_649_cast_fp16 = silu(x = linear_109_cast_fp16)[name = tensor("input_649_cast_fp16")]; + tensor model_layers_12_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_12_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(602615680)))]; + tensor linear_110_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_feed_forward1_linear2_weight_to_fp16, x = input_649_cast_fp16)[name = tensor("linear_110_cast_fp16")]; + tensor var_2183_to_fp16 = const()[name = tensor("op_2183_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2184_cast_fp16 = mul(x = linear_110_cast_fp16, y = var_2183_to_fp16)[name = tensor("op_2184_cast_fp16")]; + tensor input_655_cast_fp16 = add(x = input_643_cast_fp16, y = var_2184_cast_fp16)[name = tensor("input_655_cast_fp16")]; + tensor query_25_axes_0 = const()[name = tensor("query_25_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(611004352)))]; + tensor model_layers_12_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(611006464)))]; + tensor query_25_cast_fp16 = layer_norm(axes = query_25_axes_0, beta = model_layers_12_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_self_att_weight_to_fp16, x = input_655_cast_fp16)[name = tensor("query_25_cast_fp16")]; + tensor model_layers_12_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_12_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(611008576)))]; + tensor linear_111_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_q_weight_to_fp16, x = query_25_cast_fp16)[name = tensor("linear_111_cast_fp16")]; + tensor var_2200 = const()[name = tensor("op_2200"), val = tensor([1, -1, 8, 128])]; + tensor q_73_cast_fp16 = reshape(shape = var_2200, x = linear_111_cast_fp16)[name = tensor("q_73_cast_fp16")]; + tensor model_layers_12_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_12_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(613105792)))]; + tensor linear_112_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_k_weight_to_fp16, x = query_25_cast_fp16)[name = tensor("linear_112_cast_fp16")]; + tensor var_2204 = const()[name = tensor("op_2204"), val = tensor([1, -1, 8, 128])]; + tensor k_49_cast_fp16 = reshape(shape = var_2204, x = linear_112_cast_fp16)[name = tensor("k_49_cast_fp16")]; + tensor model_layers_12_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_12_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(615203008)))]; + tensor linear_113_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_v_weight_to_fp16, x = query_25_cast_fp16)[name = tensor("linear_113_cast_fp16")]; + tensor var_2208 = const()[name = tensor("op_2208"), val = tensor([1, -1, 8, 128])]; + tensor v_25_cast_fp16 = reshape(shape = var_2208, x = linear_113_cast_fp16)[name = tensor("v_25_cast_fp16")]; + tensor value_25_perm_0 = const()[name = tensor("value_25_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_12_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_12_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(617300224)))]; + tensor var_2220_cast_fp16 = add(x = q_73_cast_fp16, y = model_layers_12_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2220_cast_fp16")]; + tensor model_layers_12_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_12_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(617302336)))]; + tensor var_2222_cast_fp16 = add(x = q_73_cast_fp16, y = model_layers_12_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2222_cast_fp16")]; + tensor q_with_bias_v_25_perm_0 = const()[name = tensor("q_with_bias_v_25_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_271_transpose_x_0 = const()[name = tensor("x_271_transpose_x_0"), val = tensor(false)]; + tensor x_271_transpose_y_0 = const()[name = tensor("x_271_transpose_y_0"), val = tensor(false)]; + tensor var_2224_to_fp16 = const()[name = tensor("op_2224_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(617304448)))]; + tensor transpose_203 = transpose(perm = q_with_bias_v_25_perm_0, x = var_2222_cast_fp16)[name = tensor("transpose_203")]; + tensor x_271_cast_fp16 = matmul(transpose_x = x_271_transpose_x_0, transpose_y = x_271_transpose_y_0, x = transpose_203, y = var_2224_to_fp16)[name = tensor("x_271_cast_fp16")]; + tensor x_273_pad_0 = const()[name = tensor("x_273_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_273_mode_0 = const()[name = tensor("x_273_mode_0"), val = tensor("constant")]; + tensor const_133_to_fp16 = const()[name = tensor("const_133_to_fp16"), val = tensor(0x0p+0)]; + tensor x_273_cast_fp16 = pad(constant_val = const_133_to_fp16, mode = x_273_mode_0, pad = x_273_pad_0, x = x_271_cast_fp16)[name = tensor("x_273_cast_fp16")]; + tensor var_2232 = const()[name = tensor("op_2232"), val = tensor([1, 8, -1, 126])]; + tensor x_275_cast_fp16 = reshape(shape = var_2232, x = x_273_cast_fp16)[name = tensor("x_275_cast_fp16")]; + tensor var_2236_begin_0 = const()[name = tensor("op_2236_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2236_end_0 = const()[name = tensor("op_2236_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2236_end_mask_0 = const()[name = tensor("op_2236_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2236_cast_fp16 = slice_by_index(begin = var_2236_begin_0, end = var_2236_end_0, end_mask = var_2236_end_mask_0, x = x_275_cast_fp16)[name = tensor("op_2236_cast_fp16")]; + tensor var_2237 = const()[name = tensor("op_2237"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_49_cast_fp16 = reshape(shape = var_2237, x = var_2236_cast_fp16)[name = tensor("matrix_bd_49_cast_fp16")]; + tensor matrix_ac_25_transpose_x_0 = const()[name = tensor("matrix_ac_25_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_25_transpose_y_0 = const()[name = tensor("matrix_ac_25_transpose_y_0"), val = tensor(false)]; + tensor transpose_96_perm_0 = const()[name = tensor("transpose_96_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_97_perm_0 = const()[name = tensor("transpose_97_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_201 = transpose(perm = transpose_97_perm_0, x = k_49_cast_fp16)[name = tensor("transpose_201")]; + tensor transpose_202 = transpose(perm = transpose_96_perm_0, x = var_2220_cast_fp16)[name = tensor("transpose_202")]; + tensor matrix_ac_25_cast_fp16 = matmul(transpose_x = matrix_ac_25_transpose_x_0, transpose_y = matrix_ac_25_transpose_y_0, x = transpose_202, y = transpose_201)[name = tensor("matrix_ac_25_cast_fp16")]; + tensor matrix_bd_51_begin_0 = const()[name = tensor("matrix_bd_51_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_51_end_0 = const()[name = tensor("matrix_bd_51_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_51_end_mask_0 = const()[name = tensor("matrix_bd_51_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_51_cast_fp16 = slice_by_index(begin = matrix_bd_51_begin_0, end = matrix_bd_51_end_0, end_mask = matrix_bd_51_end_mask_0, x = matrix_bd_49_cast_fp16)[name = tensor("matrix_bd_51_cast_fp16")]; + tensor var_2246_cast_fp16 = add(x = matrix_ac_25_cast_fp16, y = matrix_bd_51_cast_fp16)[name = tensor("op_2246_cast_fp16")]; + tensor _inversed_scores_49_y_0_to_fp16 = const()[name = tensor("_inversed_scores_49_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_49_cast_fp16 = mul(x = var_2246_cast_fp16, y = _inversed_scores_49_y_0_to_fp16)[name = tensor("_inversed_scores_49_cast_fp16")]; + tensor scores_51_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_49_cast_fp16, cond = mask_3)[name = tensor("scores_51_cast_fp16")]; + tensor var_2252_cast_fp16 = softmax(axis = var_25, x = scores_51_cast_fp16)[name = tensor("op_2252_cast_fp16")]; + tensor input_657_cast_fp16 = select(a = var_6_to_fp16, b = var_2252_cast_fp16, cond = mask_3)[name = tensor("input_657_cast_fp16")]; + tensor x_277_transpose_x_0 = const()[name = tensor("x_277_transpose_x_0"), val = tensor(false)]; + tensor x_277_transpose_y_0 = const()[name = tensor("x_277_transpose_y_0"), val = tensor(false)]; + tensor transpose_204 = transpose(perm = value_25_perm_0, x = v_25_cast_fp16)[name = tensor("transpose_204")]; + tensor x_277_cast_fp16 = matmul(transpose_x = x_277_transpose_x_0, transpose_y = x_277_transpose_y_0, x = input_657_cast_fp16, y = transpose_204)[name = tensor("x_277_cast_fp16")]; + tensor var_2256_perm_0 = const()[name = tensor("op_2256_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2257 = const()[name = tensor("op_2257"), val = tensor([1, -1, 1024])]; + tensor transpose_200 = transpose(perm = var_2256_perm_0, x = x_277_cast_fp16)[name = tensor("transpose_200")]; + tensor input_659_cast_fp16 = reshape(shape = var_2257, x = transpose_200)[name = tensor("input_659_cast_fp16")]; + tensor model_layers_12_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_12_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(617818560)))]; + tensor linear_115_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_self_attn_linear_out_weight_to_fp16, x = input_659_cast_fp16)[name = tensor("linear_115_cast_fp16")]; + tensor input_663_cast_fp16 = add(x = input_655_cast_fp16, y = linear_115_cast_fp16)[name = tensor("input_663_cast_fp16")]; + tensor x_281_axes_0 = const()[name = tensor("x_281_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(619915776)))]; + tensor model_layers_12_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(619917888)))]; + tensor x_281_cast_fp16 = layer_norm(axes = x_281_axes_0, beta = model_layers_12_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_conv_weight_to_fp16, x = input_663_cast_fp16)[name = tensor("x_281_cast_fp16")]; + tensor input_665_perm_0 = const()[name = tensor("input_665_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2273 = const()[name = tensor("op_2273"), val = tensor([1])]; + tensor var_2275 = const()[name = tensor("op_2275"), val = tensor([1])]; + tensor input_667_pad_type_0 = const()[name = tensor("input_667_pad_type_0"), val = tensor("custom")]; + tensor input_667_pad_0 = const()[name = tensor("input_667_pad_0"), val = tensor([0, 0])]; + tensor model_layers_12_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_12_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(619920000)))]; + tensor transpose_199 = transpose(perm = input_665_perm_0, x = x_281_cast_fp16)[name = tensor("transpose_199")]; + tensor input_667_cast_fp16 = conv(dilations = var_2275, groups = var_27, pad = input_667_pad_0, pad_type = input_667_pad_type_0, strides = var_2273, weight = model_layers_12_conv_pointwise_conv1_weight_to_fp16, x = transpose_199)[name = tensor("input_667_cast_fp16")]; + tensor x_283_split_num_splits_0 = const()[name = tensor("x_283_split_num_splits_0"), val = tensor(2)]; + tensor x_283_split_axis_0 = const()[name = tensor("x_283_split_axis_0"), val = tensor(1)]; + tensor x_283_split_cast_fp16_0, tensor x_283_split_cast_fp16_1 = split(axis = x_283_split_axis_0, num_splits = x_283_split_num_splits_0, x = input_667_cast_fp16)[name = tensor("x_283_split_cast_fp16")]; + tensor x_283_split_1_sigmoid_cast_fp16 = sigmoid(x = x_283_split_cast_fp16_1)[name = tensor("x_283_split_1_sigmoid_cast_fp16")]; + tensor x_283_cast_fp16 = mul(x = x_283_split_cast_fp16_0, y = x_283_split_1_sigmoid_cast_fp16)[name = tensor("x_283_cast_fp16")]; + tensor input_669_cast_fp16 = select(a = var_6_to_fp16, b = x_283_cast_fp16, cond = var_323)[name = tensor("input_669_cast_fp16")]; + tensor input_671_pad_0 = const()[name = tensor("input_671_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_671_mode_0 = const()[name = tensor("input_671_mode_0"), val = tensor("constant")]; + tensor const_136_to_fp16 = const()[name = tensor("const_136_to_fp16"), val = tensor(0x0p+0)]; + tensor input_671_cast_fp16 = pad(constant_val = const_136_to_fp16, mode = input_671_mode_0, pad = input_671_pad_0, x = input_669_cast_fp16)[name = tensor("input_671_cast_fp16")]; + tensor var_2284 = const()[name = tensor("op_2284"), val = tensor([1])]; + tensor var_2286 = const()[name = tensor("op_2286"), val = tensor([1])]; + tensor input_673_pad_type_0 = const()[name = tensor("input_673_pad_type_0"), val = tensor("custom")]; + tensor input_673_pad_0 = const()[name = tensor("input_673_pad_0"), val = tensor([0, 0])]; + tensor input_675_weight_0_to_fp16 = const()[name = tensor("input_675_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(624114368)))]; + tensor input_675_bias_0_to_fp16 = const()[name = tensor("input_675_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(624132864)))]; + tensor input_675_cast_fp16 = conv(bias = input_675_bias_0_to_fp16, dilations = var_2286, groups = var_5, pad = input_673_pad_0, pad_type = input_673_pad_type_0, strides = var_2284, weight = input_675_weight_0_to_fp16, x = input_671_cast_fp16)[name = tensor("input_675_cast_fp16")]; + tensor input_677_cast_fp16 = silu(x = input_675_cast_fp16)[name = tensor("input_677_cast_fp16")]; + tensor var_2296 = const()[name = tensor("op_2296"), val = tensor([1])]; + tensor var_2298 = const()[name = tensor("op_2298"), val = tensor([1])]; + tensor x_285_pad_type_0 = const()[name = tensor("x_285_pad_type_0"), val = tensor("custom")]; + tensor x_285_pad_0 = const()[name = tensor("x_285_pad_0"), val = tensor([0, 0])]; + tensor model_layers_12_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_12_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(624134976)))]; + tensor x_285_cast_fp16 = conv(dilations = var_2298, groups = var_27, pad = x_285_pad_0, pad_type = x_285_pad_type_0, strides = var_2296, weight = model_layers_12_conv_pointwise_conv2_weight_to_fp16, x = input_677_cast_fp16)[name = tensor("x_285_cast_fp16")]; + tensor input_679_perm_0 = const()[name = tensor("input_679_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_198 = transpose(perm = input_679_perm_0, x = x_285_cast_fp16)[name = tensor("transpose_198")]; + tensor input_681_cast_fp16 = add(x = input_663_cast_fp16, y = transpose_198)[name = tensor("input_681_cast_fp16")]; + tensor input_683_axes_0 = const()[name = tensor("input_683_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(626232192)))]; + tensor model_layers_12_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(626234304)))]; + tensor input_683_cast_fp16 = layer_norm(axes = input_683_axes_0, beta = model_layers_12_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_feed_forward2_weight_to_fp16, x = input_681_cast_fp16)[name = tensor("input_683_cast_fp16")]; + tensor model_layers_12_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_12_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(626236416)))]; + tensor linear_116_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_12_feed_forward2_linear1_weight_to_fp16, x = input_683_cast_fp16)[name = tensor("linear_116_cast_fp16")]; + tensor input_687_cast_fp16 = silu(x = linear_116_cast_fp16)[name = tensor("input_687_cast_fp16")]; + tensor model_layers_12_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_12_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(634625088)))]; + tensor linear_117_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_12_feed_forward2_linear2_weight_to_fp16, x = input_687_cast_fp16)[name = tensor("linear_117_cast_fp16")]; + tensor var_2317_to_fp16 = const()[name = tensor("op_2317_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2318_cast_fp16 = mul(x = linear_117_cast_fp16, y = var_2317_to_fp16)[name = tensor("op_2318_cast_fp16")]; + tensor input_693_cast_fp16 = add(x = input_681_cast_fp16, y = var_2318_cast_fp16)[name = tensor("input_693_cast_fp16")]; + tensor input_695_axes_0 = const()[name = tensor("input_695_axes_0"), val = tensor([-1])]; + tensor model_layers_12_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_12_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(643013760)))]; + tensor model_layers_12_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_12_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(643015872)))]; + tensor input_695_cast_fp16 = layer_norm(axes = input_695_axes_0, beta = model_layers_12_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_12_norm_out_weight_to_fp16, x = input_693_cast_fp16)[name = tensor("input_695_cast_fp16")]; + tensor input_697_axes_0 = const()[name = tensor("input_697_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(643017984)))]; + tensor model_layers_13_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(643020096)))]; + tensor input_697_cast_fp16 = layer_norm(axes = input_697_axes_0, beta = model_layers_13_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_feed_forward1_weight_to_fp16, x = input_695_cast_fp16)[name = tensor("input_697_cast_fp16")]; + tensor model_layers_13_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_13_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(643022208)))]; + tensor linear_118_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_13_feed_forward1_linear1_weight_to_fp16, x = input_697_cast_fp16)[name = tensor("linear_118_cast_fp16")]; + tensor input_701_cast_fp16 = silu(x = linear_118_cast_fp16)[name = tensor("input_701_cast_fp16")]; + tensor model_layers_13_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_13_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(651410880)))]; + tensor linear_119_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_feed_forward1_linear2_weight_to_fp16, x = input_701_cast_fp16)[name = tensor("linear_119_cast_fp16")]; + tensor var_2346_to_fp16 = const()[name = tensor("op_2346_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2347_cast_fp16 = mul(x = linear_119_cast_fp16, y = var_2346_to_fp16)[name = tensor("op_2347_cast_fp16")]; + tensor input_707_cast_fp16 = add(x = input_695_cast_fp16, y = var_2347_cast_fp16)[name = tensor("input_707_cast_fp16")]; + tensor query_27_axes_0 = const()[name = tensor("query_27_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(659799552)))]; + tensor model_layers_13_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(659801664)))]; + tensor query_27_cast_fp16 = layer_norm(axes = query_27_axes_0, beta = model_layers_13_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_self_att_weight_to_fp16, x = input_707_cast_fp16)[name = tensor("query_27_cast_fp16")]; + tensor model_layers_13_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_13_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(659803776)))]; + tensor linear_120_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_q_weight_to_fp16, x = query_27_cast_fp16)[name = tensor("linear_120_cast_fp16")]; + tensor var_2363 = const()[name = tensor("op_2363"), val = tensor([1, -1, 8, 128])]; + tensor q_79_cast_fp16 = reshape(shape = var_2363, x = linear_120_cast_fp16)[name = tensor("q_79_cast_fp16")]; + tensor model_layers_13_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_13_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(661900992)))]; + tensor linear_121_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_k_weight_to_fp16, x = query_27_cast_fp16)[name = tensor("linear_121_cast_fp16")]; + tensor var_2367 = const()[name = tensor("op_2367"), val = tensor([1, -1, 8, 128])]; + tensor k_53_cast_fp16 = reshape(shape = var_2367, x = linear_121_cast_fp16)[name = tensor("k_53_cast_fp16")]; + tensor model_layers_13_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_13_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(663998208)))]; + tensor linear_122_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_v_weight_to_fp16, x = query_27_cast_fp16)[name = tensor("linear_122_cast_fp16")]; + tensor var_2371 = const()[name = tensor("op_2371"), val = tensor([1, -1, 8, 128])]; + tensor v_27_cast_fp16 = reshape(shape = var_2371, x = linear_122_cast_fp16)[name = tensor("v_27_cast_fp16")]; + tensor value_27_perm_0 = const()[name = tensor("value_27_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_13_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_13_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(666095424)))]; + tensor var_2383_cast_fp16 = add(x = q_79_cast_fp16, y = model_layers_13_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2383_cast_fp16")]; + tensor model_layers_13_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_13_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(666097536)))]; + tensor var_2385_cast_fp16 = add(x = q_79_cast_fp16, y = model_layers_13_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2385_cast_fp16")]; + tensor q_with_bias_v_27_perm_0 = const()[name = tensor("q_with_bias_v_27_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_293_transpose_x_0 = const()[name = tensor("x_293_transpose_x_0"), val = tensor(false)]; + tensor x_293_transpose_y_0 = const()[name = tensor("x_293_transpose_y_0"), val = tensor(false)]; + tensor var_2387_to_fp16 = const()[name = tensor("op_2387_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(666099648)))]; + tensor transpose_196 = transpose(perm = q_with_bias_v_27_perm_0, x = var_2385_cast_fp16)[name = tensor("transpose_196")]; + tensor x_293_cast_fp16 = matmul(transpose_x = x_293_transpose_x_0, transpose_y = x_293_transpose_y_0, x = transpose_196, y = var_2387_to_fp16)[name = tensor("x_293_cast_fp16")]; + tensor x_295_pad_0 = const()[name = tensor("x_295_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_295_mode_0 = const()[name = tensor("x_295_mode_0"), val = tensor("constant")]; + tensor const_143_to_fp16 = const()[name = tensor("const_143_to_fp16"), val = tensor(0x0p+0)]; + tensor x_295_cast_fp16 = pad(constant_val = const_143_to_fp16, mode = x_295_mode_0, pad = x_295_pad_0, x = x_293_cast_fp16)[name = tensor("x_295_cast_fp16")]; + tensor var_2395 = const()[name = tensor("op_2395"), val = tensor([1, 8, -1, 126])]; + tensor x_297_cast_fp16 = reshape(shape = var_2395, x = x_295_cast_fp16)[name = tensor("x_297_cast_fp16")]; + tensor var_2399_begin_0 = const()[name = tensor("op_2399_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2399_end_0 = const()[name = tensor("op_2399_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2399_end_mask_0 = const()[name = tensor("op_2399_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2399_cast_fp16 = slice_by_index(begin = var_2399_begin_0, end = var_2399_end_0, end_mask = var_2399_end_mask_0, x = x_297_cast_fp16)[name = tensor("op_2399_cast_fp16")]; + tensor var_2400 = const()[name = tensor("op_2400"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_53_cast_fp16 = reshape(shape = var_2400, x = var_2399_cast_fp16)[name = tensor("matrix_bd_53_cast_fp16")]; + tensor matrix_ac_27_transpose_x_0 = const()[name = tensor("matrix_ac_27_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_27_transpose_y_0 = const()[name = tensor("matrix_ac_27_transpose_y_0"), val = tensor(false)]; + tensor transpose_98_perm_0 = const()[name = tensor("transpose_98_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_99_perm_0 = const()[name = tensor("transpose_99_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_194 = transpose(perm = transpose_99_perm_0, x = k_53_cast_fp16)[name = tensor("transpose_194")]; + tensor transpose_195 = transpose(perm = transpose_98_perm_0, x = var_2383_cast_fp16)[name = tensor("transpose_195")]; + tensor matrix_ac_27_cast_fp16 = matmul(transpose_x = matrix_ac_27_transpose_x_0, transpose_y = matrix_ac_27_transpose_y_0, x = transpose_195, y = transpose_194)[name = tensor("matrix_ac_27_cast_fp16")]; + tensor matrix_bd_55_begin_0 = const()[name = tensor("matrix_bd_55_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_55_end_0 = const()[name = tensor("matrix_bd_55_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_55_end_mask_0 = const()[name = tensor("matrix_bd_55_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_55_cast_fp16 = slice_by_index(begin = matrix_bd_55_begin_0, end = matrix_bd_55_end_0, end_mask = matrix_bd_55_end_mask_0, x = matrix_bd_53_cast_fp16)[name = tensor("matrix_bd_55_cast_fp16")]; + tensor var_2409_cast_fp16 = add(x = matrix_ac_27_cast_fp16, y = matrix_bd_55_cast_fp16)[name = tensor("op_2409_cast_fp16")]; + tensor _inversed_scores_53_y_0_to_fp16 = const()[name = tensor("_inversed_scores_53_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_53_cast_fp16 = mul(x = var_2409_cast_fp16, y = _inversed_scores_53_y_0_to_fp16)[name = tensor("_inversed_scores_53_cast_fp16")]; + tensor scores_55_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_53_cast_fp16, cond = mask_3)[name = tensor("scores_55_cast_fp16")]; + tensor var_2415_cast_fp16 = softmax(axis = var_25, x = scores_55_cast_fp16)[name = tensor("op_2415_cast_fp16")]; + tensor input_709_cast_fp16 = select(a = var_6_to_fp16, b = var_2415_cast_fp16, cond = mask_3)[name = tensor("input_709_cast_fp16")]; + tensor x_299_transpose_x_0 = const()[name = tensor("x_299_transpose_x_0"), val = tensor(false)]; + tensor x_299_transpose_y_0 = const()[name = tensor("x_299_transpose_y_0"), val = tensor(false)]; + tensor transpose_197 = transpose(perm = value_27_perm_0, x = v_27_cast_fp16)[name = tensor("transpose_197")]; + tensor x_299_cast_fp16 = matmul(transpose_x = x_299_transpose_x_0, transpose_y = x_299_transpose_y_0, x = input_709_cast_fp16, y = transpose_197)[name = tensor("x_299_cast_fp16")]; + tensor var_2419_perm_0 = const()[name = tensor("op_2419_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2420 = const()[name = tensor("op_2420"), val = tensor([1, -1, 1024])]; + tensor transpose_193 = transpose(perm = var_2419_perm_0, x = x_299_cast_fp16)[name = tensor("transpose_193")]; + tensor input_711_cast_fp16 = reshape(shape = var_2420, x = transpose_193)[name = tensor("input_711_cast_fp16")]; + tensor model_layers_13_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_13_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(666613760)))]; + tensor linear_124_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_self_attn_linear_out_weight_to_fp16, x = input_711_cast_fp16)[name = tensor("linear_124_cast_fp16")]; + tensor input_715_cast_fp16 = add(x = input_707_cast_fp16, y = linear_124_cast_fp16)[name = tensor("input_715_cast_fp16")]; + tensor x_303_axes_0 = const()[name = tensor("x_303_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(668710976)))]; + tensor model_layers_13_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(668713088)))]; + tensor x_303_cast_fp16 = layer_norm(axes = x_303_axes_0, beta = model_layers_13_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_conv_weight_to_fp16, x = input_715_cast_fp16)[name = tensor("x_303_cast_fp16")]; + tensor input_717_perm_0 = const()[name = tensor("input_717_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2436 = const()[name = tensor("op_2436"), val = tensor([1])]; + tensor var_2438 = const()[name = tensor("op_2438"), val = tensor([1])]; + tensor input_719_pad_type_0 = const()[name = tensor("input_719_pad_type_0"), val = tensor("custom")]; + tensor input_719_pad_0 = const()[name = tensor("input_719_pad_0"), val = tensor([0, 0])]; + tensor model_layers_13_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_13_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(668715200)))]; + tensor transpose_192 = transpose(perm = input_717_perm_0, x = x_303_cast_fp16)[name = tensor("transpose_192")]; + tensor input_719_cast_fp16 = conv(dilations = var_2438, groups = var_27, pad = input_719_pad_0, pad_type = input_719_pad_type_0, strides = var_2436, weight = model_layers_13_conv_pointwise_conv1_weight_to_fp16, x = transpose_192)[name = tensor("input_719_cast_fp16")]; + tensor x_305_split_num_splits_0 = const()[name = tensor("x_305_split_num_splits_0"), val = tensor(2)]; + tensor x_305_split_axis_0 = const()[name = tensor("x_305_split_axis_0"), val = tensor(1)]; + tensor x_305_split_cast_fp16_0, tensor x_305_split_cast_fp16_1 = split(axis = x_305_split_axis_0, num_splits = x_305_split_num_splits_0, x = input_719_cast_fp16)[name = tensor("x_305_split_cast_fp16")]; + tensor x_305_split_1_sigmoid_cast_fp16 = sigmoid(x = x_305_split_cast_fp16_1)[name = tensor("x_305_split_1_sigmoid_cast_fp16")]; + tensor x_305_cast_fp16 = mul(x = x_305_split_cast_fp16_0, y = x_305_split_1_sigmoid_cast_fp16)[name = tensor("x_305_cast_fp16")]; + tensor input_721_cast_fp16 = select(a = var_6_to_fp16, b = x_305_cast_fp16, cond = var_323)[name = tensor("input_721_cast_fp16")]; + tensor input_723_pad_0 = const()[name = tensor("input_723_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_723_mode_0 = const()[name = tensor("input_723_mode_0"), val = tensor("constant")]; + tensor const_146_to_fp16 = const()[name = tensor("const_146_to_fp16"), val = tensor(0x0p+0)]; + tensor input_723_cast_fp16 = pad(constant_val = const_146_to_fp16, mode = input_723_mode_0, pad = input_723_pad_0, x = input_721_cast_fp16)[name = tensor("input_723_cast_fp16")]; + tensor var_2447 = const()[name = tensor("op_2447"), val = tensor([1])]; + tensor var_2449 = const()[name = tensor("op_2449"), val = tensor([1])]; + tensor input_725_pad_type_0 = const()[name = tensor("input_725_pad_type_0"), val = tensor("custom")]; + tensor input_725_pad_0 = const()[name = tensor("input_725_pad_0"), val = tensor([0, 0])]; + tensor input_727_weight_0_to_fp16 = const()[name = tensor("input_727_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(672909568)))]; + tensor input_727_bias_0_to_fp16 = const()[name = tensor("input_727_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(672928064)))]; + tensor input_727_cast_fp16 = conv(bias = input_727_bias_0_to_fp16, dilations = var_2449, groups = var_5, pad = input_725_pad_0, pad_type = input_725_pad_type_0, strides = var_2447, weight = input_727_weight_0_to_fp16, x = input_723_cast_fp16)[name = tensor("input_727_cast_fp16")]; + tensor input_729_cast_fp16 = silu(x = input_727_cast_fp16)[name = tensor("input_729_cast_fp16")]; + tensor var_2459 = const()[name = tensor("op_2459"), val = tensor([1])]; + tensor var_2461 = const()[name = tensor("op_2461"), val = tensor([1])]; + tensor x_307_pad_type_0 = const()[name = tensor("x_307_pad_type_0"), val = tensor("custom")]; + tensor x_307_pad_0 = const()[name = tensor("x_307_pad_0"), val = tensor([0, 0])]; + tensor model_layers_13_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_13_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(672930176)))]; + tensor x_307_cast_fp16 = conv(dilations = var_2461, groups = var_27, pad = x_307_pad_0, pad_type = x_307_pad_type_0, strides = var_2459, weight = model_layers_13_conv_pointwise_conv2_weight_to_fp16, x = input_729_cast_fp16)[name = tensor("x_307_cast_fp16")]; + tensor input_731_perm_0 = const()[name = tensor("input_731_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_191 = transpose(perm = input_731_perm_0, x = x_307_cast_fp16)[name = tensor("transpose_191")]; + tensor input_733_cast_fp16 = add(x = input_715_cast_fp16, y = transpose_191)[name = tensor("input_733_cast_fp16")]; + tensor input_735_axes_0 = const()[name = tensor("input_735_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(675027392)))]; + tensor model_layers_13_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(675029504)))]; + tensor input_735_cast_fp16 = layer_norm(axes = input_735_axes_0, beta = model_layers_13_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_feed_forward2_weight_to_fp16, x = input_733_cast_fp16)[name = tensor("input_735_cast_fp16")]; + tensor model_layers_13_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_13_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(675031616)))]; + tensor linear_125_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_13_feed_forward2_linear1_weight_to_fp16, x = input_735_cast_fp16)[name = tensor("linear_125_cast_fp16")]; + tensor input_739_cast_fp16 = silu(x = linear_125_cast_fp16)[name = tensor("input_739_cast_fp16")]; + tensor model_layers_13_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_13_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(683420288)))]; + tensor linear_126_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_13_feed_forward2_linear2_weight_to_fp16, x = input_739_cast_fp16)[name = tensor("linear_126_cast_fp16")]; + tensor var_2480_to_fp16 = const()[name = tensor("op_2480_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2481_cast_fp16 = mul(x = linear_126_cast_fp16, y = var_2480_to_fp16)[name = tensor("op_2481_cast_fp16")]; + tensor input_745_cast_fp16 = add(x = input_733_cast_fp16, y = var_2481_cast_fp16)[name = tensor("input_745_cast_fp16")]; + tensor input_747_axes_0 = const()[name = tensor("input_747_axes_0"), val = tensor([-1])]; + tensor model_layers_13_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_13_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(691808960)))]; + tensor model_layers_13_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_13_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(691811072)))]; + tensor input_747_cast_fp16 = layer_norm(axes = input_747_axes_0, beta = model_layers_13_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_13_norm_out_weight_to_fp16, x = input_745_cast_fp16)[name = tensor("input_747_cast_fp16")]; + tensor input_749_axes_0 = const()[name = tensor("input_749_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(691813184)))]; + tensor model_layers_14_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(691815296)))]; + tensor input_749_cast_fp16 = layer_norm(axes = input_749_axes_0, beta = model_layers_14_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_feed_forward1_weight_to_fp16, x = input_747_cast_fp16)[name = tensor("input_749_cast_fp16")]; + tensor model_layers_14_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_14_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(691817408)))]; + tensor linear_127_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_14_feed_forward1_linear1_weight_to_fp16, x = input_749_cast_fp16)[name = tensor("linear_127_cast_fp16")]; + tensor input_753_cast_fp16 = silu(x = linear_127_cast_fp16)[name = tensor("input_753_cast_fp16")]; + tensor model_layers_14_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_14_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(700206080)))]; + tensor linear_128_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_feed_forward1_linear2_weight_to_fp16, x = input_753_cast_fp16)[name = tensor("linear_128_cast_fp16")]; + tensor var_2509_to_fp16 = const()[name = tensor("op_2509_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2510_cast_fp16 = mul(x = linear_128_cast_fp16, y = var_2509_to_fp16)[name = tensor("op_2510_cast_fp16")]; + tensor input_759_cast_fp16 = add(x = input_747_cast_fp16, y = var_2510_cast_fp16)[name = tensor("input_759_cast_fp16")]; + tensor query_29_axes_0 = const()[name = tensor("query_29_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(708594752)))]; + tensor model_layers_14_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(708596864)))]; + tensor query_29_cast_fp16 = layer_norm(axes = query_29_axes_0, beta = model_layers_14_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_self_att_weight_to_fp16, x = input_759_cast_fp16)[name = tensor("query_29_cast_fp16")]; + tensor model_layers_14_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_14_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(708598976)))]; + tensor linear_129_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_q_weight_to_fp16, x = query_29_cast_fp16)[name = tensor("linear_129_cast_fp16")]; + tensor var_2526 = const()[name = tensor("op_2526"), val = tensor([1, -1, 8, 128])]; + tensor q_85_cast_fp16 = reshape(shape = var_2526, x = linear_129_cast_fp16)[name = tensor("q_85_cast_fp16")]; + tensor model_layers_14_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_14_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(710696192)))]; + tensor linear_130_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_k_weight_to_fp16, x = query_29_cast_fp16)[name = tensor("linear_130_cast_fp16")]; + tensor var_2530 = const()[name = tensor("op_2530"), val = tensor([1, -1, 8, 128])]; + tensor k_57_cast_fp16 = reshape(shape = var_2530, x = linear_130_cast_fp16)[name = tensor("k_57_cast_fp16")]; + tensor model_layers_14_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_14_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(712793408)))]; + tensor linear_131_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_v_weight_to_fp16, x = query_29_cast_fp16)[name = tensor("linear_131_cast_fp16")]; + tensor var_2534 = const()[name = tensor("op_2534"), val = tensor([1, -1, 8, 128])]; + tensor v_29_cast_fp16 = reshape(shape = var_2534, x = linear_131_cast_fp16)[name = tensor("v_29_cast_fp16")]; + tensor value_29_perm_0 = const()[name = tensor("value_29_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_14_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_14_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(714890624)))]; + tensor var_2546_cast_fp16 = add(x = q_85_cast_fp16, y = model_layers_14_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2546_cast_fp16")]; + tensor model_layers_14_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_14_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(714892736)))]; + tensor var_2548_cast_fp16 = add(x = q_85_cast_fp16, y = model_layers_14_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2548_cast_fp16")]; + tensor q_with_bias_v_29_perm_0 = const()[name = tensor("q_with_bias_v_29_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_315_transpose_x_0 = const()[name = tensor("x_315_transpose_x_0"), val = tensor(false)]; + tensor x_315_transpose_y_0 = const()[name = tensor("x_315_transpose_y_0"), val = tensor(false)]; + tensor var_2550_to_fp16 = const()[name = tensor("op_2550_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(714894848)))]; + tensor transpose_189 = transpose(perm = q_with_bias_v_29_perm_0, x = var_2548_cast_fp16)[name = tensor("transpose_189")]; + tensor x_315_cast_fp16 = matmul(transpose_x = x_315_transpose_x_0, transpose_y = x_315_transpose_y_0, x = transpose_189, y = var_2550_to_fp16)[name = tensor("x_315_cast_fp16")]; + tensor x_317_pad_0 = const()[name = tensor("x_317_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_317_mode_0 = const()[name = tensor("x_317_mode_0"), val = tensor("constant")]; + tensor const_153_to_fp16 = const()[name = tensor("const_153_to_fp16"), val = tensor(0x0p+0)]; + tensor x_317_cast_fp16 = pad(constant_val = const_153_to_fp16, mode = x_317_mode_0, pad = x_317_pad_0, x = x_315_cast_fp16)[name = tensor("x_317_cast_fp16")]; + tensor var_2558 = const()[name = tensor("op_2558"), val = tensor([1, 8, -1, 126])]; + tensor x_319_cast_fp16 = reshape(shape = var_2558, x = x_317_cast_fp16)[name = tensor("x_319_cast_fp16")]; + tensor var_2562_begin_0 = const()[name = tensor("op_2562_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2562_end_0 = const()[name = tensor("op_2562_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2562_end_mask_0 = const()[name = tensor("op_2562_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2562_cast_fp16 = slice_by_index(begin = var_2562_begin_0, end = var_2562_end_0, end_mask = var_2562_end_mask_0, x = x_319_cast_fp16)[name = tensor("op_2562_cast_fp16")]; + tensor var_2563 = const()[name = tensor("op_2563"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_57_cast_fp16 = reshape(shape = var_2563, x = var_2562_cast_fp16)[name = tensor("matrix_bd_57_cast_fp16")]; + tensor matrix_ac_29_transpose_x_0 = const()[name = tensor("matrix_ac_29_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_29_transpose_y_0 = const()[name = tensor("matrix_ac_29_transpose_y_0"), val = tensor(false)]; + tensor transpose_100_perm_0 = const()[name = tensor("transpose_100_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_101_perm_0 = const()[name = tensor("transpose_101_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_187 = transpose(perm = transpose_101_perm_0, x = k_57_cast_fp16)[name = tensor("transpose_187")]; + tensor transpose_188 = transpose(perm = transpose_100_perm_0, x = var_2546_cast_fp16)[name = tensor("transpose_188")]; + tensor matrix_ac_29_cast_fp16 = matmul(transpose_x = matrix_ac_29_transpose_x_0, transpose_y = matrix_ac_29_transpose_y_0, x = transpose_188, y = transpose_187)[name = tensor("matrix_ac_29_cast_fp16")]; + tensor matrix_bd_59_begin_0 = const()[name = tensor("matrix_bd_59_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_59_end_0 = const()[name = tensor("matrix_bd_59_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_59_end_mask_0 = const()[name = tensor("matrix_bd_59_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_59_cast_fp16 = slice_by_index(begin = matrix_bd_59_begin_0, end = matrix_bd_59_end_0, end_mask = matrix_bd_59_end_mask_0, x = matrix_bd_57_cast_fp16)[name = tensor("matrix_bd_59_cast_fp16")]; + tensor var_2572_cast_fp16 = add(x = matrix_ac_29_cast_fp16, y = matrix_bd_59_cast_fp16)[name = tensor("op_2572_cast_fp16")]; + tensor _inversed_scores_57_y_0_to_fp16 = const()[name = tensor("_inversed_scores_57_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_57_cast_fp16 = mul(x = var_2572_cast_fp16, y = _inversed_scores_57_y_0_to_fp16)[name = tensor("_inversed_scores_57_cast_fp16")]; + tensor scores_59_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_57_cast_fp16, cond = mask_3)[name = tensor("scores_59_cast_fp16")]; + tensor var_2578_cast_fp16 = softmax(axis = var_25, x = scores_59_cast_fp16)[name = tensor("op_2578_cast_fp16")]; + tensor input_761_cast_fp16 = select(a = var_6_to_fp16, b = var_2578_cast_fp16, cond = mask_3)[name = tensor("input_761_cast_fp16")]; + tensor x_321_transpose_x_0 = const()[name = tensor("x_321_transpose_x_0"), val = tensor(false)]; + tensor x_321_transpose_y_0 = const()[name = tensor("x_321_transpose_y_0"), val = tensor(false)]; + tensor transpose_190 = transpose(perm = value_29_perm_0, x = v_29_cast_fp16)[name = tensor("transpose_190")]; + tensor x_321_cast_fp16 = matmul(transpose_x = x_321_transpose_x_0, transpose_y = x_321_transpose_y_0, x = input_761_cast_fp16, y = transpose_190)[name = tensor("x_321_cast_fp16")]; + tensor var_2582_perm_0 = const()[name = tensor("op_2582_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2583 = const()[name = tensor("op_2583"), val = tensor([1, -1, 1024])]; + tensor transpose_186 = transpose(perm = var_2582_perm_0, x = x_321_cast_fp16)[name = tensor("transpose_186")]; + tensor input_763_cast_fp16 = reshape(shape = var_2583, x = transpose_186)[name = tensor("input_763_cast_fp16")]; + tensor model_layers_14_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_14_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(715408960)))]; + tensor linear_133_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_self_attn_linear_out_weight_to_fp16, x = input_763_cast_fp16)[name = tensor("linear_133_cast_fp16")]; + tensor input_767_cast_fp16 = add(x = input_759_cast_fp16, y = linear_133_cast_fp16)[name = tensor("input_767_cast_fp16")]; + tensor x_325_axes_0 = const()[name = tensor("x_325_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(717506176)))]; + tensor model_layers_14_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(717508288)))]; + tensor x_325_cast_fp16 = layer_norm(axes = x_325_axes_0, beta = model_layers_14_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_conv_weight_to_fp16, x = input_767_cast_fp16)[name = tensor("x_325_cast_fp16")]; + tensor input_769_perm_0 = const()[name = tensor("input_769_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2599 = const()[name = tensor("op_2599"), val = tensor([1])]; + tensor var_2601 = const()[name = tensor("op_2601"), val = tensor([1])]; + tensor input_771_pad_type_0 = const()[name = tensor("input_771_pad_type_0"), val = tensor("custom")]; + tensor input_771_pad_0 = const()[name = tensor("input_771_pad_0"), val = tensor([0, 0])]; + tensor model_layers_14_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_14_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(717510400)))]; + tensor transpose_185 = transpose(perm = input_769_perm_0, x = x_325_cast_fp16)[name = tensor("transpose_185")]; + tensor input_771_cast_fp16 = conv(dilations = var_2601, groups = var_27, pad = input_771_pad_0, pad_type = input_771_pad_type_0, strides = var_2599, weight = model_layers_14_conv_pointwise_conv1_weight_to_fp16, x = transpose_185)[name = tensor("input_771_cast_fp16")]; + tensor x_327_split_num_splits_0 = const()[name = tensor("x_327_split_num_splits_0"), val = tensor(2)]; + tensor x_327_split_axis_0 = const()[name = tensor("x_327_split_axis_0"), val = tensor(1)]; + tensor x_327_split_cast_fp16_0, tensor x_327_split_cast_fp16_1 = split(axis = x_327_split_axis_0, num_splits = x_327_split_num_splits_0, x = input_771_cast_fp16)[name = tensor("x_327_split_cast_fp16")]; + tensor x_327_split_1_sigmoid_cast_fp16 = sigmoid(x = x_327_split_cast_fp16_1)[name = tensor("x_327_split_1_sigmoid_cast_fp16")]; + tensor x_327_cast_fp16 = mul(x = x_327_split_cast_fp16_0, y = x_327_split_1_sigmoid_cast_fp16)[name = tensor("x_327_cast_fp16")]; + tensor input_773_cast_fp16 = select(a = var_6_to_fp16, b = x_327_cast_fp16, cond = var_323)[name = tensor("input_773_cast_fp16")]; + tensor input_775_pad_0 = const()[name = tensor("input_775_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_775_mode_0 = const()[name = tensor("input_775_mode_0"), val = tensor("constant")]; + tensor const_156_to_fp16 = const()[name = tensor("const_156_to_fp16"), val = tensor(0x0p+0)]; + tensor input_775_cast_fp16 = pad(constant_val = const_156_to_fp16, mode = input_775_mode_0, pad = input_775_pad_0, x = input_773_cast_fp16)[name = tensor("input_775_cast_fp16")]; + tensor var_2610 = const()[name = tensor("op_2610"), val = tensor([1])]; + tensor var_2612 = const()[name = tensor("op_2612"), val = tensor([1])]; + tensor input_777_pad_type_0 = const()[name = tensor("input_777_pad_type_0"), val = tensor("custom")]; + tensor input_777_pad_0 = const()[name = tensor("input_777_pad_0"), val = tensor([0, 0])]; + tensor input_779_weight_0_to_fp16 = const()[name = tensor("input_779_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(721704768)))]; + tensor input_779_bias_0_to_fp16 = const()[name = tensor("input_779_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(721723264)))]; + tensor input_779_cast_fp16 = conv(bias = input_779_bias_0_to_fp16, dilations = var_2612, groups = var_5, pad = input_777_pad_0, pad_type = input_777_pad_type_0, strides = var_2610, weight = input_779_weight_0_to_fp16, x = input_775_cast_fp16)[name = tensor("input_779_cast_fp16")]; + tensor input_781_cast_fp16 = silu(x = input_779_cast_fp16)[name = tensor("input_781_cast_fp16")]; + tensor var_2622 = const()[name = tensor("op_2622"), val = tensor([1])]; + tensor var_2624 = const()[name = tensor("op_2624"), val = tensor([1])]; + tensor x_329_pad_type_0 = const()[name = tensor("x_329_pad_type_0"), val = tensor("custom")]; + tensor x_329_pad_0 = const()[name = tensor("x_329_pad_0"), val = tensor([0, 0])]; + tensor model_layers_14_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_14_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(721725376)))]; + tensor x_329_cast_fp16 = conv(dilations = var_2624, groups = var_27, pad = x_329_pad_0, pad_type = x_329_pad_type_0, strides = var_2622, weight = model_layers_14_conv_pointwise_conv2_weight_to_fp16, x = input_781_cast_fp16)[name = tensor("x_329_cast_fp16")]; + tensor input_783_perm_0 = const()[name = tensor("input_783_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_184 = transpose(perm = input_783_perm_0, x = x_329_cast_fp16)[name = tensor("transpose_184")]; + tensor input_785_cast_fp16 = add(x = input_767_cast_fp16, y = transpose_184)[name = tensor("input_785_cast_fp16")]; + tensor input_787_axes_0 = const()[name = tensor("input_787_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(723822592)))]; + tensor model_layers_14_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(723824704)))]; + tensor input_787_cast_fp16 = layer_norm(axes = input_787_axes_0, beta = model_layers_14_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_feed_forward2_weight_to_fp16, x = input_785_cast_fp16)[name = tensor("input_787_cast_fp16")]; + tensor model_layers_14_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_14_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(723826816)))]; + tensor linear_134_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_14_feed_forward2_linear1_weight_to_fp16, x = input_787_cast_fp16)[name = tensor("linear_134_cast_fp16")]; + tensor input_791_cast_fp16 = silu(x = linear_134_cast_fp16)[name = tensor("input_791_cast_fp16")]; + tensor model_layers_14_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_14_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(732215488)))]; + tensor linear_135_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_14_feed_forward2_linear2_weight_to_fp16, x = input_791_cast_fp16)[name = tensor("linear_135_cast_fp16")]; + tensor var_2643_to_fp16 = const()[name = tensor("op_2643_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2644_cast_fp16 = mul(x = linear_135_cast_fp16, y = var_2643_to_fp16)[name = tensor("op_2644_cast_fp16")]; + tensor input_797_cast_fp16 = add(x = input_785_cast_fp16, y = var_2644_cast_fp16)[name = tensor("input_797_cast_fp16")]; + tensor input_799_axes_0 = const()[name = tensor("input_799_axes_0"), val = tensor([-1])]; + tensor model_layers_14_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_14_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(740604160)))]; + tensor model_layers_14_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_14_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(740606272)))]; + tensor input_799_cast_fp16 = layer_norm(axes = input_799_axes_0, beta = model_layers_14_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_14_norm_out_weight_to_fp16, x = input_797_cast_fp16)[name = tensor("input_799_cast_fp16")]; + tensor input_801_axes_0 = const()[name = tensor("input_801_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(740608384)))]; + tensor model_layers_15_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(740610496)))]; + tensor input_801_cast_fp16 = layer_norm(axes = input_801_axes_0, beta = model_layers_15_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_feed_forward1_weight_to_fp16, x = input_799_cast_fp16)[name = tensor("input_801_cast_fp16")]; + tensor model_layers_15_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_15_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(740612608)))]; + tensor linear_136_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_15_feed_forward1_linear1_weight_to_fp16, x = input_801_cast_fp16)[name = tensor("linear_136_cast_fp16")]; + tensor input_805_cast_fp16 = silu(x = linear_136_cast_fp16)[name = tensor("input_805_cast_fp16")]; + tensor model_layers_15_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_15_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(749001280)))]; + tensor linear_137_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_feed_forward1_linear2_weight_to_fp16, x = input_805_cast_fp16)[name = tensor("linear_137_cast_fp16")]; + tensor var_2672_to_fp16 = const()[name = tensor("op_2672_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2673_cast_fp16 = mul(x = linear_137_cast_fp16, y = var_2672_to_fp16)[name = tensor("op_2673_cast_fp16")]; + tensor input_811_cast_fp16 = add(x = input_799_cast_fp16, y = var_2673_cast_fp16)[name = tensor("input_811_cast_fp16")]; + tensor query_31_axes_0 = const()[name = tensor("query_31_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(757389952)))]; + tensor model_layers_15_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(757392064)))]; + tensor query_31_cast_fp16 = layer_norm(axes = query_31_axes_0, beta = model_layers_15_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_self_att_weight_to_fp16, x = input_811_cast_fp16)[name = tensor("query_31_cast_fp16")]; + tensor model_layers_15_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_15_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(757394176)))]; + tensor linear_138_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_q_weight_to_fp16, x = query_31_cast_fp16)[name = tensor("linear_138_cast_fp16")]; + tensor var_2689 = const()[name = tensor("op_2689"), val = tensor([1, -1, 8, 128])]; + tensor q_91_cast_fp16 = reshape(shape = var_2689, x = linear_138_cast_fp16)[name = tensor("q_91_cast_fp16")]; + tensor model_layers_15_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_15_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(759491392)))]; + tensor linear_139_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_k_weight_to_fp16, x = query_31_cast_fp16)[name = tensor("linear_139_cast_fp16")]; + tensor var_2693 = const()[name = tensor("op_2693"), val = tensor([1, -1, 8, 128])]; + tensor k_61_cast_fp16 = reshape(shape = var_2693, x = linear_139_cast_fp16)[name = tensor("k_61_cast_fp16")]; + tensor model_layers_15_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_15_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(761588608)))]; + tensor linear_140_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_v_weight_to_fp16, x = query_31_cast_fp16)[name = tensor("linear_140_cast_fp16")]; + tensor var_2697 = const()[name = tensor("op_2697"), val = tensor([1, -1, 8, 128])]; + tensor v_31_cast_fp16 = reshape(shape = var_2697, x = linear_140_cast_fp16)[name = tensor("v_31_cast_fp16")]; + tensor value_31_perm_0 = const()[name = tensor("value_31_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_15_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_15_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(763685824)))]; + tensor var_2709_cast_fp16 = add(x = q_91_cast_fp16, y = model_layers_15_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2709_cast_fp16")]; + tensor model_layers_15_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_15_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(763687936)))]; + tensor var_2711_cast_fp16 = add(x = q_91_cast_fp16, y = model_layers_15_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2711_cast_fp16")]; + tensor q_with_bias_v_31_perm_0 = const()[name = tensor("q_with_bias_v_31_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_337_transpose_x_0 = const()[name = tensor("x_337_transpose_x_0"), val = tensor(false)]; + tensor x_337_transpose_y_0 = const()[name = tensor("x_337_transpose_y_0"), val = tensor(false)]; + tensor var_2713_to_fp16 = const()[name = tensor("op_2713_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(763690048)))]; + tensor transpose_182 = transpose(perm = q_with_bias_v_31_perm_0, x = var_2711_cast_fp16)[name = tensor("transpose_182")]; + tensor x_337_cast_fp16 = matmul(transpose_x = x_337_transpose_x_0, transpose_y = x_337_transpose_y_0, x = transpose_182, y = var_2713_to_fp16)[name = tensor("x_337_cast_fp16")]; + tensor x_339_pad_0 = const()[name = tensor("x_339_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_339_mode_0 = const()[name = tensor("x_339_mode_0"), val = tensor("constant")]; + tensor const_163_to_fp16 = const()[name = tensor("const_163_to_fp16"), val = tensor(0x0p+0)]; + tensor x_339_cast_fp16 = pad(constant_val = const_163_to_fp16, mode = x_339_mode_0, pad = x_339_pad_0, x = x_337_cast_fp16)[name = tensor("x_339_cast_fp16")]; + tensor var_2721 = const()[name = tensor("op_2721"), val = tensor([1, 8, -1, 126])]; + tensor x_341_cast_fp16 = reshape(shape = var_2721, x = x_339_cast_fp16)[name = tensor("x_341_cast_fp16")]; + tensor var_2725_begin_0 = const()[name = tensor("op_2725_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2725_end_0 = const()[name = tensor("op_2725_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2725_end_mask_0 = const()[name = tensor("op_2725_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2725_cast_fp16 = slice_by_index(begin = var_2725_begin_0, end = var_2725_end_0, end_mask = var_2725_end_mask_0, x = x_341_cast_fp16)[name = tensor("op_2725_cast_fp16")]; + tensor var_2726 = const()[name = tensor("op_2726"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_61_cast_fp16 = reshape(shape = var_2726, x = var_2725_cast_fp16)[name = tensor("matrix_bd_61_cast_fp16")]; + tensor matrix_ac_31_transpose_x_0 = const()[name = tensor("matrix_ac_31_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_31_transpose_y_0 = const()[name = tensor("matrix_ac_31_transpose_y_0"), val = tensor(false)]; + tensor transpose_102_perm_0 = const()[name = tensor("transpose_102_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_103_perm_0 = const()[name = tensor("transpose_103_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_180 = transpose(perm = transpose_103_perm_0, x = k_61_cast_fp16)[name = tensor("transpose_180")]; + tensor transpose_181 = transpose(perm = transpose_102_perm_0, x = var_2709_cast_fp16)[name = tensor("transpose_181")]; + tensor matrix_ac_31_cast_fp16 = matmul(transpose_x = matrix_ac_31_transpose_x_0, transpose_y = matrix_ac_31_transpose_y_0, x = transpose_181, y = transpose_180)[name = tensor("matrix_ac_31_cast_fp16")]; + tensor matrix_bd_63_begin_0 = const()[name = tensor("matrix_bd_63_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_63_end_0 = const()[name = tensor("matrix_bd_63_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_63_end_mask_0 = const()[name = tensor("matrix_bd_63_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_63_cast_fp16 = slice_by_index(begin = matrix_bd_63_begin_0, end = matrix_bd_63_end_0, end_mask = matrix_bd_63_end_mask_0, x = matrix_bd_61_cast_fp16)[name = tensor("matrix_bd_63_cast_fp16")]; + tensor var_2735_cast_fp16 = add(x = matrix_ac_31_cast_fp16, y = matrix_bd_63_cast_fp16)[name = tensor("op_2735_cast_fp16")]; + tensor _inversed_scores_61_y_0_to_fp16 = const()[name = tensor("_inversed_scores_61_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_61_cast_fp16 = mul(x = var_2735_cast_fp16, y = _inversed_scores_61_y_0_to_fp16)[name = tensor("_inversed_scores_61_cast_fp16")]; + tensor scores_63_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_61_cast_fp16, cond = mask_3)[name = tensor("scores_63_cast_fp16")]; + tensor var_2741_cast_fp16 = softmax(axis = var_25, x = scores_63_cast_fp16)[name = tensor("op_2741_cast_fp16")]; + tensor input_813_cast_fp16 = select(a = var_6_to_fp16, b = var_2741_cast_fp16, cond = mask_3)[name = tensor("input_813_cast_fp16")]; + tensor x_343_transpose_x_0 = const()[name = tensor("x_343_transpose_x_0"), val = tensor(false)]; + tensor x_343_transpose_y_0 = const()[name = tensor("x_343_transpose_y_0"), val = tensor(false)]; + tensor transpose_183 = transpose(perm = value_31_perm_0, x = v_31_cast_fp16)[name = tensor("transpose_183")]; + tensor x_343_cast_fp16 = matmul(transpose_x = x_343_transpose_x_0, transpose_y = x_343_transpose_y_0, x = input_813_cast_fp16, y = transpose_183)[name = tensor("x_343_cast_fp16")]; + tensor var_2745_perm_0 = const()[name = tensor("op_2745_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2746 = const()[name = tensor("op_2746"), val = tensor([1, -1, 1024])]; + tensor transpose_179 = transpose(perm = var_2745_perm_0, x = x_343_cast_fp16)[name = tensor("transpose_179")]; + tensor input_815_cast_fp16 = reshape(shape = var_2746, x = transpose_179)[name = tensor("input_815_cast_fp16")]; + tensor model_layers_15_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_15_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(764204160)))]; + tensor linear_142_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_self_attn_linear_out_weight_to_fp16, x = input_815_cast_fp16)[name = tensor("linear_142_cast_fp16")]; + tensor input_819_cast_fp16 = add(x = input_811_cast_fp16, y = linear_142_cast_fp16)[name = tensor("input_819_cast_fp16")]; + tensor x_347_axes_0 = const()[name = tensor("x_347_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(766301376)))]; + tensor model_layers_15_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(766303488)))]; + tensor x_347_cast_fp16 = layer_norm(axes = x_347_axes_0, beta = model_layers_15_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_conv_weight_to_fp16, x = input_819_cast_fp16)[name = tensor("x_347_cast_fp16")]; + tensor input_821_perm_0 = const()[name = tensor("input_821_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2762 = const()[name = tensor("op_2762"), val = tensor([1])]; + tensor var_2764 = const()[name = tensor("op_2764"), val = tensor([1])]; + tensor input_823_pad_type_0 = const()[name = tensor("input_823_pad_type_0"), val = tensor("custom")]; + tensor input_823_pad_0 = const()[name = tensor("input_823_pad_0"), val = tensor([0, 0])]; + tensor model_layers_15_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_15_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(766305600)))]; + tensor transpose_178 = transpose(perm = input_821_perm_0, x = x_347_cast_fp16)[name = tensor("transpose_178")]; + tensor input_823_cast_fp16 = conv(dilations = var_2764, groups = var_27, pad = input_823_pad_0, pad_type = input_823_pad_type_0, strides = var_2762, weight = model_layers_15_conv_pointwise_conv1_weight_to_fp16, x = transpose_178)[name = tensor("input_823_cast_fp16")]; + tensor x_349_split_num_splits_0 = const()[name = tensor("x_349_split_num_splits_0"), val = tensor(2)]; + tensor x_349_split_axis_0 = const()[name = tensor("x_349_split_axis_0"), val = tensor(1)]; + tensor x_349_split_cast_fp16_0, tensor x_349_split_cast_fp16_1 = split(axis = x_349_split_axis_0, num_splits = x_349_split_num_splits_0, x = input_823_cast_fp16)[name = tensor("x_349_split_cast_fp16")]; + tensor x_349_split_1_sigmoid_cast_fp16 = sigmoid(x = x_349_split_cast_fp16_1)[name = tensor("x_349_split_1_sigmoid_cast_fp16")]; + tensor x_349_cast_fp16 = mul(x = x_349_split_cast_fp16_0, y = x_349_split_1_sigmoid_cast_fp16)[name = tensor("x_349_cast_fp16")]; + tensor input_825_cast_fp16 = select(a = var_6_to_fp16, b = x_349_cast_fp16, cond = var_323)[name = tensor("input_825_cast_fp16")]; + tensor input_827_pad_0 = const()[name = tensor("input_827_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_827_mode_0 = const()[name = tensor("input_827_mode_0"), val = tensor("constant")]; + tensor const_166_to_fp16 = const()[name = tensor("const_166_to_fp16"), val = tensor(0x0p+0)]; + tensor input_827_cast_fp16 = pad(constant_val = const_166_to_fp16, mode = input_827_mode_0, pad = input_827_pad_0, x = input_825_cast_fp16)[name = tensor("input_827_cast_fp16")]; + tensor var_2773 = const()[name = tensor("op_2773"), val = tensor([1])]; + tensor var_2775 = const()[name = tensor("op_2775"), val = tensor([1])]; + tensor input_829_pad_type_0 = const()[name = tensor("input_829_pad_type_0"), val = tensor("custom")]; + tensor input_829_pad_0 = const()[name = tensor("input_829_pad_0"), val = tensor([0, 0])]; + tensor input_831_weight_0_to_fp16 = const()[name = tensor("input_831_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(770499968)))]; + tensor input_831_bias_0_to_fp16 = const()[name = tensor("input_831_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(770518464)))]; + tensor input_831_cast_fp16 = conv(bias = input_831_bias_0_to_fp16, dilations = var_2775, groups = var_5, pad = input_829_pad_0, pad_type = input_829_pad_type_0, strides = var_2773, weight = input_831_weight_0_to_fp16, x = input_827_cast_fp16)[name = tensor("input_831_cast_fp16")]; + tensor input_833_cast_fp16 = silu(x = input_831_cast_fp16)[name = tensor("input_833_cast_fp16")]; + tensor var_2785 = const()[name = tensor("op_2785"), val = tensor([1])]; + tensor var_2787 = const()[name = tensor("op_2787"), val = tensor([1])]; + tensor x_351_pad_type_0 = const()[name = tensor("x_351_pad_type_0"), val = tensor("custom")]; + tensor x_351_pad_0 = const()[name = tensor("x_351_pad_0"), val = tensor([0, 0])]; + tensor model_layers_15_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_15_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(770520576)))]; + tensor x_351_cast_fp16 = conv(dilations = var_2787, groups = var_27, pad = x_351_pad_0, pad_type = x_351_pad_type_0, strides = var_2785, weight = model_layers_15_conv_pointwise_conv2_weight_to_fp16, x = input_833_cast_fp16)[name = tensor("x_351_cast_fp16")]; + tensor input_835_perm_0 = const()[name = tensor("input_835_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_177 = transpose(perm = input_835_perm_0, x = x_351_cast_fp16)[name = tensor("transpose_177")]; + tensor input_837_cast_fp16 = add(x = input_819_cast_fp16, y = transpose_177)[name = tensor("input_837_cast_fp16")]; + tensor input_839_axes_0 = const()[name = tensor("input_839_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(772617792)))]; + tensor model_layers_15_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(772619904)))]; + tensor input_839_cast_fp16 = layer_norm(axes = input_839_axes_0, beta = model_layers_15_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_feed_forward2_weight_to_fp16, x = input_837_cast_fp16)[name = tensor("input_839_cast_fp16")]; + tensor model_layers_15_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_15_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(772622016)))]; + tensor linear_143_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_15_feed_forward2_linear1_weight_to_fp16, x = input_839_cast_fp16)[name = tensor("linear_143_cast_fp16")]; + tensor input_843_cast_fp16 = silu(x = linear_143_cast_fp16)[name = tensor("input_843_cast_fp16")]; + tensor model_layers_15_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_15_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(781010688)))]; + tensor linear_144_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_15_feed_forward2_linear2_weight_to_fp16, x = input_843_cast_fp16)[name = tensor("linear_144_cast_fp16")]; + tensor var_2806_to_fp16 = const()[name = tensor("op_2806_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2807_cast_fp16 = mul(x = linear_144_cast_fp16, y = var_2806_to_fp16)[name = tensor("op_2807_cast_fp16")]; + tensor input_849_cast_fp16 = add(x = input_837_cast_fp16, y = var_2807_cast_fp16)[name = tensor("input_849_cast_fp16")]; + tensor input_851_axes_0 = const()[name = tensor("input_851_axes_0"), val = tensor([-1])]; + tensor model_layers_15_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_15_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(789399360)))]; + tensor model_layers_15_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_15_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(789401472)))]; + tensor input_851_cast_fp16 = layer_norm(axes = input_851_axes_0, beta = model_layers_15_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_15_norm_out_weight_to_fp16, x = input_849_cast_fp16)[name = tensor("input_851_cast_fp16")]; + tensor input_853_axes_0 = const()[name = tensor("input_853_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(789403584)))]; + tensor model_layers_16_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(789405696)))]; + tensor input_853_cast_fp16 = layer_norm(axes = input_853_axes_0, beta = model_layers_16_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_feed_forward1_weight_to_fp16, x = input_851_cast_fp16)[name = tensor("input_853_cast_fp16")]; + tensor model_layers_16_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_16_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(789407808)))]; + tensor linear_145_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_16_feed_forward1_linear1_weight_to_fp16, x = input_853_cast_fp16)[name = tensor("linear_145_cast_fp16")]; + tensor input_857_cast_fp16 = silu(x = linear_145_cast_fp16)[name = tensor("input_857_cast_fp16")]; + tensor model_layers_16_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_16_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(797796480)))]; + tensor linear_146_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_feed_forward1_linear2_weight_to_fp16, x = input_857_cast_fp16)[name = tensor("linear_146_cast_fp16")]; + tensor var_2835_to_fp16 = const()[name = tensor("op_2835_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2836_cast_fp16 = mul(x = linear_146_cast_fp16, y = var_2835_to_fp16)[name = tensor("op_2836_cast_fp16")]; + tensor input_863_cast_fp16 = add(x = input_851_cast_fp16, y = var_2836_cast_fp16)[name = tensor("input_863_cast_fp16")]; + tensor query_33_axes_0 = const()[name = tensor("query_33_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(806185152)))]; + tensor model_layers_16_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(806187264)))]; + tensor query_33_cast_fp16 = layer_norm(axes = query_33_axes_0, beta = model_layers_16_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_self_att_weight_to_fp16, x = input_863_cast_fp16)[name = tensor("query_33_cast_fp16")]; + tensor model_layers_16_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_16_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(806189376)))]; + tensor linear_147_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_q_weight_to_fp16, x = query_33_cast_fp16)[name = tensor("linear_147_cast_fp16")]; + tensor var_2852 = const()[name = tensor("op_2852"), val = tensor([1, -1, 8, 128])]; + tensor q_97_cast_fp16 = reshape(shape = var_2852, x = linear_147_cast_fp16)[name = tensor("q_97_cast_fp16")]; + tensor model_layers_16_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_16_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(808286592)))]; + tensor linear_148_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_k_weight_to_fp16, x = query_33_cast_fp16)[name = tensor("linear_148_cast_fp16")]; + tensor var_2856 = const()[name = tensor("op_2856"), val = tensor([1, -1, 8, 128])]; + tensor k_65_cast_fp16 = reshape(shape = var_2856, x = linear_148_cast_fp16)[name = tensor("k_65_cast_fp16")]; + tensor model_layers_16_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_16_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(810383808)))]; + tensor linear_149_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_v_weight_to_fp16, x = query_33_cast_fp16)[name = tensor("linear_149_cast_fp16")]; + tensor var_2860 = const()[name = tensor("op_2860"), val = tensor([1, -1, 8, 128])]; + tensor v_33_cast_fp16 = reshape(shape = var_2860, x = linear_149_cast_fp16)[name = tensor("v_33_cast_fp16")]; + tensor value_33_perm_0 = const()[name = tensor("value_33_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_16_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_16_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(812481024)))]; + tensor var_2872_cast_fp16 = add(x = q_97_cast_fp16, y = model_layers_16_self_attn_pos_bias_u_to_fp16)[name = tensor("op_2872_cast_fp16")]; + tensor model_layers_16_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_16_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(812483136)))]; + tensor var_2874_cast_fp16 = add(x = q_97_cast_fp16, y = model_layers_16_self_attn_pos_bias_v_to_fp16)[name = tensor("op_2874_cast_fp16")]; + tensor q_with_bias_v_33_perm_0 = const()[name = tensor("q_with_bias_v_33_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_359_transpose_x_0 = const()[name = tensor("x_359_transpose_x_0"), val = tensor(false)]; + tensor x_359_transpose_y_0 = const()[name = tensor("x_359_transpose_y_0"), val = tensor(false)]; + tensor var_2876_to_fp16 = const()[name = tensor("op_2876_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(812485248)))]; + tensor transpose_175 = transpose(perm = q_with_bias_v_33_perm_0, x = var_2874_cast_fp16)[name = tensor("transpose_175")]; + tensor x_359_cast_fp16 = matmul(transpose_x = x_359_transpose_x_0, transpose_y = x_359_transpose_y_0, x = transpose_175, y = var_2876_to_fp16)[name = tensor("x_359_cast_fp16")]; + tensor x_361_pad_0 = const()[name = tensor("x_361_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_361_mode_0 = const()[name = tensor("x_361_mode_0"), val = tensor("constant")]; + tensor const_173_to_fp16 = const()[name = tensor("const_173_to_fp16"), val = tensor(0x0p+0)]; + tensor x_361_cast_fp16 = pad(constant_val = const_173_to_fp16, mode = x_361_mode_0, pad = x_361_pad_0, x = x_359_cast_fp16)[name = tensor("x_361_cast_fp16")]; + tensor var_2884 = const()[name = tensor("op_2884"), val = tensor([1, 8, -1, 126])]; + tensor x_363_cast_fp16 = reshape(shape = var_2884, x = x_361_cast_fp16)[name = tensor("x_363_cast_fp16")]; + tensor var_2888_begin_0 = const()[name = tensor("op_2888_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_2888_end_0 = const()[name = tensor("op_2888_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_2888_end_mask_0 = const()[name = tensor("op_2888_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_2888_cast_fp16 = slice_by_index(begin = var_2888_begin_0, end = var_2888_end_0, end_mask = var_2888_end_mask_0, x = x_363_cast_fp16)[name = tensor("op_2888_cast_fp16")]; + tensor var_2889 = const()[name = tensor("op_2889"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_65_cast_fp16 = reshape(shape = var_2889, x = var_2888_cast_fp16)[name = tensor("matrix_bd_65_cast_fp16")]; + tensor matrix_ac_33_transpose_x_0 = const()[name = tensor("matrix_ac_33_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_33_transpose_y_0 = const()[name = tensor("matrix_ac_33_transpose_y_0"), val = tensor(false)]; + tensor transpose_104_perm_0 = const()[name = tensor("transpose_104_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_105_perm_0 = const()[name = tensor("transpose_105_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_173 = transpose(perm = transpose_105_perm_0, x = k_65_cast_fp16)[name = tensor("transpose_173")]; + tensor transpose_174 = transpose(perm = transpose_104_perm_0, x = var_2872_cast_fp16)[name = tensor("transpose_174")]; + tensor matrix_ac_33_cast_fp16 = matmul(transpose_x = matrix_ac_33_transpose_x_0, transpose_y = matrix_ac_33_transpose_y_0, x = transpose_174, y = transpose_173)[name = tensor("matrix_ac_33_cast_fp16")]; + tensor matrix_bd_67_begin_0 = const()[name = tensor("matrix_bd_67_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_67_end_0 = const()[name = tensor("matrix_bd_67_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_67_end_mask_0 = const()[name = tensor("matrix_bd_67_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_67_cast_fp16 = slice_by_index(begin = matrix_bd_67_begin_0, end = matrix_bd_67_end_0, end_mask = matrix_bd_67_end_mask_0, x = matrix_bd_65_cast_fp16)[name = tensor("matrix_bd_67_cast_fp16")]; + tensor var_2898_cast_fp16 = add(x = matrix_ac_33_cast_fp16, y = matrix_bd_67_cast_fp16)[name = tensor("op_2898_cast_fp16")]; + tensor _inversed_scores_65_y_0_to_fp16 = const()[name = tensor("_inversed_scores_65_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_65_cast_fp16 = mul(x = var_2898_cast_fp16, y = _inversed_scores_65_y_0_to_fp16)[name = tensor("_inversed_scores_65_cast_fp16")]; + tensor scores_67_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_65_cast_fp16, cond = mask_3)[name = tensor("scores_67_cast_fp16")]; + tensor var_2904_cast_fp16 = softmax(axis = var_25, x = scores_67_cast_fp16)[name = tensor("op_2904_cast_fp16")]; + tensor input_865_cast_fp16 = select(a = var_6_to_fp16, b = var_2904_cast_fp16, cond = mask_3)[name = tensor("input_865_cast_fp16")]; + tensor x_365_transpose_x_0 = const()[name = tensor("x_365_transpose_x_0"), val = tensor(false)]; + tensor x_365_transpose_y_0 = const()[name = tensor("x_365_transpose_y_0"), val = tensor(false)]; + tensor transpose_176 = transpose(perm = value_33_perm_0, x = v_33_cast_fp16)[name = tensor("transpose_176")]; + tensor x_365_cast_fp16 = matmul(transpose_x = x_365_transpose_x_0, transpose_y = x_365_transpose_y_0, x = input_865_cast_fp16, y = transpose_176)[name = tensor("x_365_cast_fp16")]; + tensor var_2908_perm_0 = const()[name = tensor("op_2908_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_2909 = const()[name = tensor("op_2909"), val = tensor([1, -1, 1024])]; + tensor transpose_172 = transpose(perm = var_2908_perm_0, x = x_365_cast_fp16)[name = tensor("transpose_172")]; + tensor input_867_cast_fp16 = reshape(shape = var_2909, x = transpose_172)[name = tensor("input_867_cast_fp16")]; + tensor model_layers_16_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_16_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(812999360)))]; + tensor linear_151_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_self_attn_linear_out_weight_to_fp16, x = input_867_cast_fp16)[name = tensor("linear_151_cast_fp16")]; + tensor input_871_cast_fp16 = add(x = input_863_cast_fp16, y = linear_151_cast_fp16)[name = tensor("input_871_cast_fp16")]; + tensor x_369_axes_0 = const()[name = tensor("x_369_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(815096576)))]; + tensor model_layers_16_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(815098688)))]; + tensor x_369_cast_fp16 = layer_norm(axes = x_369_axes_0, beta = model_layers_16_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_conv_weight_to_fp16, x = input_871_cast_fp16)[name = tensor("x_369_cast_fp16")]; + tensor input_873_perm_0 = const()[name = tensor("input_873_perm_0"), val = tensor([0, 2, 1])]; + tensor var_2925 = const()[name = tensor("op_2925"), val = tensor([1])]; + tensor var_2927 = const()[name = tensor("op_2927"), val = tensor([1])]; + tensor input_875_pad_type_0 = const()[name = tensor("input_875_pad_type_0"), val = tensor("custom")]; + tensor input_875_pad_0 = const()[name = tensor("input_875_pad_0"), val = tensor([0, 0])]; + tensor model_layers_16_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_16_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(815100800)))]; + tensor transpose_171 = transpose(perm = input_873_perm_0, x = x_369_cast_fp16)[name = tensor("transpose_171")]; + tensor input_875_cast_fp16 = conv(dilations = var_2927, groups = var_27, pad = input_875_pad_0, pad_type = input_875_pad_type_0, strides = var_2925, weight = model_layers_16_conv_pointwise_conv1_weight_to_fp16, x = transpose_171)[name = tensor("input_875_cast_fp16")]; + tensor x_371_split_num_splits_0 = const()[name = tensor("x_371_split_num_splits_0"), val = tensor(2)]; + tensor x_371_split_axis_0 = const()[name = tensor("x_371_split_axis_0"), val = tensor(1)]; + tensor x_371_split_cast_fp16_0, tensor x_371_split_cast_fp16_1 = split(axis = x_371_split_axis_0, num_splits = x_371_split_num_splits_0, x = input_875_cast_fp16)[name = tensor("x_371_split_cast_fp16")]; + tensor x_371_split_1_sigmoid_cast_fp16 = sigmoid(x = x_371_split_cast_fp16_1)[name = tensor("x_371_split_1_sigmoid_cast_fp16")]; + tensor x_371_cast_fp16 = mul(x = x_371_split_cast_fp16_0, y = x_371_split_1_sigmoid_cast_fp16)[name = tensor("x_371_cast_fp16")]; + tensor input_877_cast_fp16 = select(a = var_6_to_fp16, b = x_371_cast_fp16, cond = var_323)[name = tensor("input_877_cast_fp16")]; + tensor input_879_pad_0 = const()[name = tensor("input_879_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_879_mode_0 = const()[name = tensor("input_879_mode_0"), val = tensor("constant")]; + tensor const_176_to_fp16 = const()[name = tensor("const_176_to_fp16"), val = tensor(0x0p+0)]; + tensor input_879_cast_fp16 = pad(constant_val = const_176_to_fp16, mode = input_879_mode_0, pad = input_879_pad_0, x = input_877_cast_fp16)[name = tensor("input_879_cast_fp16")]; + tensor var_2936 = const()[name = tensor("op_2936"), val = tensor([1])]; + tensor var_2938 = const()[name = tensor("op_2938"), val = tensor([1])]; + tensor input_881_pad_type_0 = const()[name = tensor("input_881_pad_type_0"), val = tensor("custom")]; + tensor input_881_pad_0 = const()[name = tensor("input_881_pad_0"), val = tensor([0, 0])]; + tensor input_883_weight_0_to_fp16 = const()[name = tensor("input_883_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(819295168)))]; + tensor input_883_bias_0_to_fp16 = const()[name = tensor("input_883_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(819313664)))]; + tensor input_883_cast_fp16 = conv(bias = input_883_bias_0_to_fp16, dilations = var_2938, groups = var_5, pad = input_881_pad_0, pad_type = input_881_pad_type_0, strides = var_2936, weight = input_883_weight_0_to_fp16, x = input_879_cast_fp16)[name = tensor("input_883_cast_fp16")]; + tensor input_885_cast_fp16 = silu(x = input_883_cast_fp16)[name = tensor("input_885_cast_fp16")]; + tensor var_2948 = const()[name = tensor("op_2948"), val = tensor([1])]; + tensor var_2950 = const()[name = tensor("op_2950"), val = tensor([1])]; + tensor x_373_pad_type_0 = const()[name = tensor("x_373_pad_type_0"), val = tensor("custom")]; + tensor x_373_pad_0 = const()[name = tensor("x_373_pad_0"), val = tensor([0, 0])]; + tensor model_layers_16_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_16_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(819315776)))]; + tensor x_373_cast_fp16 = conv(dilations = var_2950, groups = var_27, pad = x_373_pad_0, pad_type = x_373_pad_type_0, strides = var_2948, weight = model_layers_16_conv_pointwise_conv2_weight_to_fp16, x = input_885_cast_fp16)[name = tensor("x_373_cast_fp16")]; + tensor input_887_perm_0 = const()[name = tensor("input_887_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_170 = transpose(perm = input_887_perm_0, x = x_373_cast_fp16)[name = tensor("transpose_170")]; + tensor input_889_cast_fp16 = add(x = input_871_cast_fp16, y = transpose_170)[name = tensor("input_889_cast_fp16")]; + tensor input_891_axes_0 = const()[name = tensor("input_891_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(821412992)))]; + tensor model_layers_16_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(821415104)))]; + tensor input_891_cast_fp16 = layer_norm(axes = input_891_axes_0, beta = model_layers_16_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_feed_forward2_weight_to_fp16, x = input_889_cast_fp16)[name = tensor("input_891_cast_fp16")]; + tensor model_layers_16_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_16_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(821417216)))]; + tensor linear_152_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_16_feed_forward2_linear1_weight_to_fp16, x = input_891_cast_fp16)[name = tensor("linear_152_cast_fp16")]; + tensor input_895_cast_fp16 = silu(x = linear_152_cast_fp16)[name = tensor("input_895_cast_fp16")]; + tensor model_layers_16_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_16_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(829805888)))]; + tensor linear_153_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_16_feed_forward2_linear2_weight_to_fp16, x = input_895_cast_fp16)[name = tensor("linear_153_cast_fp16")]; + tensor var_2969_to_fp16 = const()[name = tensor("op_2969_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2970_cast_fp16 = mul(x = linear_153_cast_fp16, y = var_2969_to_fp16)[name = tensor("op_2970_cast_fp16")]; + tensor input_901_cast_fp16 = add(x = input_889_cast_fp16, y = var_2970_cast_fp16)[name = tensor("input_901_cast_fp16")]; + tensor input_903_axes_0 = const()[name = tensor("input_903_axes_0"), val = tensor([-1])]; + tensor model_layers_16_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_16_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(838194560)))]; + tensor model_layers_16_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_16_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(838196672)))]; + tensor input_903_cast_fp16 = layer_norm(axes = input_903_axes_0, beta = model_layers_16_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_16_norm_out_weight_to_fp16, x = input_901_cast_fp16)[name = tensor("input_903_cast_fp16")]; + tensor input_905_axes_0 = const()[name = tensor("input_905_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(838198784)))]; + tensor model_layers_17_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(838200896)))]; + tensor input_905_cast_fp16 = layer_norm(axes = input_905_axes_0, beta = model_layers_17_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_feed_forward1_weight_to_fp16, x = input_903_cast_fp16)[name = tensor("input_905_cast_fp16")]; + tensor model_layers_17_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_17_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(838203008)))]; + tensor linear_154_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_17_feed_forward1_linear1_weight_to_fp16, x = input_905_cast_fp16)[name = tensor("linear_154_cast_fp16")]; + tensor input_909_cast_fp16 = silu(x = linear_154_cast_fp16)[name = tensor("input_909_cast_fp16")]; + tensor model_layers_17_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_17_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(846591680)))]; + tensor linear_155_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_feed_forward1_linear2_weight_to_fp16, x = input_909_cast_fp16)[name = tensor("linear_155_cast_fp16")]; + tensor var_2998_to_fp16 = const()[name = tensor("op_2998_to_fp16"), val = tensor(0x1p-1)]; + tensor var_2999_cast_fp16 = mul(x = linear_155_cast_fp16, y = var_2998_to_fp16)[name = tensor("op_2999_cast_fp16")]; + tensor input_915_cast_fp16 = add(x = input_903_cast_fp16, y = var_2999_cast_fp16)[name = tensor("input_915_cast_fp16")]; + tensor query_35_axes_0 = const()[name = tensor("query_35_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(854980352)))]; + tensor model_layers_17_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(854982464)))]; + tensor query_35_cast_fp16 = layer_norm(axes = query_35_axes_0, beta = model_layers_17_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_self_att_weight_to_fp16, x = input_915_cast_fp16)[name = tensor("query_35_cast_fp16")]; + tensor model_layers_17_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_17_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(854984576)))]; + tensor linear_156_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_q_weight_to_fp16, x = query_35_cast_fp16)[name = tensor("linear_156_cast_fp16")]; + tensor var_3015 = const()[name = tensor("op_3015"), val = tensor([1, -1, 8, 128])]; + tensor q_103_cast_fp16 = reshape(shape = var_3015, x = linear_156_cast_fp16)[name = tensor("q_103_cast_fp16")]; + tensor model_layers_17_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_17_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(857081792)))]; + tensor linear_157_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_k_weight_to_fp16, x = query_35_cast_fp16)[name = tensor("linear_157_cast_fp16")]; + tensor var_3019 = const()[name = tensor("op_3019"), val = tensor([1, -1, 8, 128])]; + tensor k_69_cast_fp16 = reshape(shape = var_3019, x = linear_157_cast_fp16)[name = tensor("k_69_cast_fp16")]; + tensor model_layers_17_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_17_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(859179008)))]; + tensor linear_158_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_v_weight_to_fp16, x = query_35_cast_fp16)[name = tensor("linear_158_cast_fp16")]; + tensor var_3023 = const()[name = tensor("op_3023"), val = tensor([1, -1, 8, 128])]; + tensor v_35_cast_fp16 = reshape(shape = var_3023, x = linear_158_cast_fp16)[name = tensor("v_35_cast_fp16")]; + tensor value_35_perm_0 = const()[name = tensor("value_35_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_17_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_17_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(861276224)))]; + tensor var_3035_cast_fp16 = add(x = q_103_cast_fp16, y = model_layers_17_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3035_cast_fp16")]; + tensor model_layers_17_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_17_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(861278336)))]; + tensor var_3037_cast_fp16 = add(x = q_103_cast_fp16, y = model_layers_17_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3037_cast_fp16")]; + tensor q_with_bias_v_35_perm_0 = const()[name = tensor("q_with_bias_v_35_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_381_transpose_x_0 = const()[name = tensor("x_381_transpose_x_0"), val = tensor(false)]; + tensor x_381_transpose_y_0 = const()[name = tensor("x_381_transpose_y_0"), val = tensor(false)]; + tensor var_3039_to_fp16 = const()[name = tensor("op_3039_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(861280448)))]; + tensor transpose_168 = transpose(perm = q_with_bias_v_35_perm_0, x = var_3037_cast_fp16)[name = tensor("transpose_168")]; + tensor x_381_cast_fp16 = matmul(transpose_x = x_381_transpose_x_0, transpose_y = x_381_transpose_y_0, x = transpose_168, y = var_3039_to_fp16)[name = tensor("x_381_cast_fp16")]; + tensor x_383_pad_0 = const()[name = tensor("x_383_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_383_mode_0 = const()[name = tensor("x_383_mode_0"), val = tensor("constant")]; + tensor const_183_to_fp16 = const()[name = tensor("const_183_to_fp16"), val = tensor(0x0p+0)]; + tensor x_383_cast_fp16 = pad(constant_val = const_183_to_fp16, mode = x_383_mode_0, pad = x_383_pad_0, x = x_381_cast_fp16)[name = tensor("x_383_cast_fp16")]; + tensor var_3047 = const()[name = tensor("op_3047"), val = tensor([1, 8, -1, 126])]; + tensor x_385_cast_fp16 = reshape(shape = var_3047, x = x_383_cast_fp16)[name = tensor("x_385_cast_fp16")]; + tensor var_3051_begin_0 = const()[name = tensor("op_3051_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3051_end_0 = const()[name = tensor("op_3051_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3051_end_mask_0 = const()[name = tensor("op_3051_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3051_cast_fp16 = slice_by_index(begin = var_3051_begin_0, end = var_3051_end_0, end_mask = var_3051_end_mask_0, x = x_385_cast_fp16)[name = tensor("op_3051_cast_fp16")]; + tensor var_3052 = const()[name = tensor("op_3052"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_69_cast_fp16 = reshape(shape = var_3052, x = var_3051_cast_fp16)[name = tensor("matrix_bd_69_cast_fp16")]; + tensor matrix_ac_35_transpose_x_0 = const()[name = tensor("matrix_ac_35_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_35_transpose_y_0 = const()[name = tensor("matrix_ac_35_transpose_y_0"), val = tensor(false)]; + tensor transpose_106_perm_0 = const()[name = tensor("transpose_106_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_107_perm_0 = const()[name = tensor("transpose_107_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_166 = transpose(perm = transpose_107_perm_0, x = k_69_cast_fp16)[name = tensor("transpose_166")]; + tensor transpose_167 = transpose(perm = transpose_106_perm_0, x = var_3035_cast_fp16)[name = tensor("transpose_167")]; + tensor matrix_ac_35_cast_fp16 = matmul(transpose_x = matrix_ac_35_transpose_x_0, transpose_y = matrix_ac_35_transpose_y_0, x = transpose_167, y = transpose_166)[name = tensor("matrix_ac_35_cast_fp16")]; + tensor matrix_bd_71_begin_0 = const()[name = tensor("matrix_bd_71_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_71_end_0 = const()[name = tensor("matrix_bd_71_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_71_end_mask_0 = const()[name = tensor("matrix_bd_71_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_71_cast_fp16 = slice_by_index(begin = matrix_bd_71_begin_0, end = matrix_bd_71_end_0, end_mask = matrix_bd_71_end_mask_0, x = matrix_bd_69_cast_fp16)[name = tensor("matrix_bd_71_cast_fp16")]; + tensor var_3061_cast_fp16 = add(x = matrix_ac_35_cast_fp16, y = matrix_bd_71_cast_fp16)[name = tensor("op_3061_cast_fp16")]; + tensor _inversed_scores_69_y_0_to_fp16 = const()[name = tensor("_inversed_scores_69_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_69_cast_fp16 = mul(x = var_3061_cast_fp16, y = _inversed_scores_69_y_0_to_fp16)[name = tensor("_inversed_scores_69_cast_fp16")]; + tensor scores_71_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_69_cast_fp16, cond = mask_3)[name = tensor("scores_71_cast_fp16")]; + tensor var_3067_cast_fp16 = softmax(axis = var_25, x = scores_71_cast_fp16)[name = tensor("op_3067_cast_fp16")]; + tensor input_917_cast_fp16 = select(a = var_6_to_fp16, b = var_3067_cast_fp16, cond = mask_3)[name = tensor("input_917_cast_fp16")]; + tensor x_387_transpose_x_0 = const()[name = tensor("x_387_transpose_x_0"), val = tensor(false)]; + tensor x_387_transpose_y_0 = const()[name = tensor("x_387_transpose_y_0"), val = tensor(false)]; + tensor transpose_169 = transpose(perm = value_35_perm_0, x = v_35_cast_fp16)[name = tensor("transpose_169")]; + tensor x_387_cast_fp16 = matmul(transpose_x = x_387_transpose_x_0, transpose_y = x_387_transpose_y_0, x = input_917_cast_fp16, y = transpose_169)[name = tensor("x_387_cast_fp16")]; + tensor var_3071_perm_0 = const()[name = tensor("op_3071_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3072 = const()[name = tensor("op_3072"), val = tensor([1, -1, 1024])]; + tensor transpose_165 = transpose(perm = var_3071_perm_0, x = x_387_cast_fp16)[name = tensor("transpose_165")]; + tensor input_919_cast_fp16 = reshape(shape = var_3072, x = transpose_165)[name = tensor("input_919_cast_fp16")]; + tensor model_layers_17_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_17_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(861794560)))]; + tensor linear_160_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_self_attn_linear_out_weight_to_fp16, x = input_919_cast_fp16)[name = tensor("linear_160_cast_fp16")]; + tensor input_923_cast_fp16 = add(x = input_915_cast_fp16, y = linear_160_cast_fp16)[name = tensor("input_923_cast_fp16")]; + tensor x_391_axes_0 = const()[name = tensor("x_391_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(863891776)))]; + tensor model_layers_17_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(863893888)))]; + tensor x_391_cast_fp16 = layer_norm(axes = x_391_axes_0, beta = model_layers_17_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_conv_weight_to_fp16, x = input_923_cast_fp16)[name = tensor("x_391_cast_fp16")]; + tensor input_925_perm_0 = const()[name = tensor("input_925_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3088 = const()[name = tensor("op_3088"), val = tensor([1])]; + tensor var_3090 = const()[name = tensor("op_3090"), val = tensor([1])]; + tensor input_927_pad_type_0 = const()[name = tensor("input_927_pad_type_0"), val = tensor("custom")]; + tensor input_927_pad_0 = const()[name = tensor("input_927_pad_0"), val = tensor([0, 0])]; + tensor model_layers_17_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_17_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(863896000)))]; + tensor transpose_164 = transpose(perm = input_925_perm_0, x = x_391_cast_fp16)[name = tensor("transpose_164")]; + tensor input_927_cast_fp16 = conv(dilations = var_3090, groups = var_27, pad = input_927_pad_0, pad_type = input_927_pad_type_0, strides = var_3088, weight = model_layers_17_conv_pointwise_conv1_weight_to_fp16, x = transpose_164)[name = tensor("input_927_cast_fp16")]; + tensor x_393_split_num_splits_0 = const()[name = tensor("x_393_split_num_splits_0"), val = tensor(2)]; + tensor x_393_split_axis_0 = const()[name = tensor("x_393_split_axis_0"), val = tensor(1)]; + tensor x_393_split_cast_fp16_0, tensor x_393_split_cast_fp16_1 = split(axis = x_393_split_axis_0, num_splits = x_393_split_num_splits_0, x = input_927_cast_fp16)[name = tensor("x_393_split_cast_fp16")]; + tensor x_393_split_1_sigmoid_cast_fp16 = sigmoid(x = x_393_split_cast_fp16_1)[name = tensor("x_393_split_1_sigmoid_cast_fp16")]; + tensor x_393_cast_fp16 = mul(x = x_393_split_cast_fp16_0, y = x_393_split_1_sigmoid_cast_fp16)[name = tensor("x_393_cast_fp16")]; + tensor input_929_cast_fp16 = select(a = var_6_to_fp16, b = x_393_cast_fp16, cond = var_323)[name = tensor("input_929_cast_fp16")]; + tensor input_931_pad_0 = const()[name = tensor("input_931_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_931_mode_0 = const()[name = tensor("input_931_mode_0"), val = tensor("constant")]; + tensor const_186_to_fp16 = const()[name = tensor("const_186_to_fp16"), val = tensor(0x0p+0)]; + tensor input_931_cast_fp16 = pad(constant_val = const_186_to_fp16, mode = input_931_mode_0, pad = input_931_pad_0, x = input_929_cast_fp16)[name = tensor("input_931_cast_fp16")]; + tensor var_3099 = const()[name = tensor("op_3099"), val = tensor([1])]; + tensor var_3101 = const()[name = tensor("op_3101"), val = tensor([1])]; + tensor input_933_pad_type_0 = const()[name = tensor("input_933_pad_type_0"), val = tensor("custom")]; + tensor input_933_pad_0 = const()[name = tensor("input_933_pad_0"), val = tensor([0, 0])]; + tensor input_935_weight_0_to_fp16 = const()[name = tensor("input_935_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(868090368)))]; + tensor input_935_bias_0_to_fp16 = const()[name = tensor("input_935_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(868108864)))]; + tensor input_935_cast_fp16 = conv(bias = input_935_bias_0_to_fp16, dilations = var_3101, groups = var_5, pad = input_933_pad_0, pad_type = input_933_pad_type_0, strides = var_3099, weight = input_935_weight_0_to_fp16, x = input_931_cast_fp16)[name = tensor("input_935_cast_fp16")]; + tensor input_937_cast_fp16 = silu(x = input_935_cast_fp16)[name = tensor("input_937_cast_fp16")]; + tensor var_3111 = const()[name = tensor("op_3111"), val = tensor([1])]; + tensor var_3113 = const()[name = tensor("op_3113"), val = tensor([1])]; + tensor x_395_pad_type_0 = const()[name = tensor("x_395_pad_type_0"), val = tensor("custom")]; + tensor x_395_pad_0 = const()[name = tensor("x_395_pad_0"), val = tensor([0, 0])]; + tensor model_layers_17_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_17_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(868110976)))]; + tensor x_395_cast_fp16 = conv(dilations = var_3113, groups = var_27, pad = x_395_pad_0, pad_type = x_395_pad_type_0, strides = var_3111, weight = model_layers_17_conv_pointwise_conv2_weight_to_fp16, x = input_937_cast_fp16)[name = tensor("x_395_cast_fp16")]; + tensor input_939_perm_0 = const()[name = tensor("input_939_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_163 = transpose(perm = input_939_perm_0, x = x_395_cast_fp16)[name = tensor("transpose_163")]; + tensor input_941_cast_fp16 = add(x = input_923_cast_fp16, y = transpose_163)[name = tensor("input_941_cast_fp16")]; + tensor input_943_axes_0 = const()[name = tensor("input_943_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(870208192)))]; + tensor model_layers_17_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(870210304)))]; + tensor input_943_cast_fp16 = layer_norm(axes = input_943_axes_0, beta = model_layers_17_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_feed_forward2_weight_to_fp16, x = input_941_cast_fp16)[name = tensor("input_943_cast_fp16")]; + tensor model_layers_17_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_17_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(870212416)))]; + tensor linear_161_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_17_feed_forward2_linear1_weight_to_fp16, x = input_943_cast_fp16)[name = tensor("linear_161_cast_fp16")]; + tensor input_947_cast_fp16 = silu(x = linear_161_cast_fp16)[name = tensor("input_947_cast_fp16")]; + tensor model_layers_17_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_17_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(878601088)))]; + tensor linear_162_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_17_feed_forward2_linear2_weight_to_fp16, x = input_947_cast_fp16)[name = tensor("linear_162_cast_fp16")]; + tensor var_3132_to_fp16 = const()[name = tensor("op_3132_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3133_cast_fp16 = mul(x = linear_162_cast_fp16, y = var_3132_to_fp16)[name = tensor("op_3133_cast_fp16")]; + tensor input_953_cast_fp16 = add(x = input_941_cast_fp16, y = var_3133_cast_fp16)[name = tensor("input_953_cast_fp16")]; + tensor input_955_axes_0 = const()[name = tensor("input_955_axes_0"), val = tensor([-1])]; + tensor model_layers_17_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_17_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(886989760)))]; + tensor model_layers_17_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_17_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(886991872)))]; + tensor input_955_cast_fp16 = layer_norm(axes = input_955_axes_0, beta = model_layers_17_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_17_norm_out_weight_to_fp16, x = input_953_cast_fp16)[name = tensor("input_955_cast_fp16")]; + tensor input_957_axes_0 = const()[name = tensor("input_957_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(886993984)))]; + tensor model_layers_18_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(886996096)))]; + tensor input_957_cast_fp16 = layer_norm(axes = input_957_axes_0, beta = model_layers_18_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_feed_forward1_weight_to_fp16, x = input_955_cast_fp16)[name = tensor("input_957_cast_fp16")]; + tensor model_layers_18_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_18_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(886998208)))]; + tensor linear_163_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_18_feed_forward1_linear1_weight_to_fp16, x = input_957_cast_fp16)[name = tensor("linear_163_cast_fp16")]; + tensor input_961_cast_fp16 = silu(x = linear_163_cast_fp16)[name = tensor("input_961_cast_fp16")]; + tensor model_layers_18_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_18_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(895386880)))]; + tensor linear_164_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_feed_forward1_linear2_weight_to_fp16, x = input_961_cast_fp16)[name = tensor("linear_164_cast_fp16")]; + tensor var_3161_to_fp16 = const()[name = tensor("op_3161_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3162_cast_fp16 = mul(x = linear_164_cast_fp16, y = var_3161_to_fp16)[name = tensor("op_3162_cast_fp16")]; + tensor input_967_cast_fp16 = add(x = input_955_cast_fp16, y = var_3162_cast_fp16)[name = tensor("input_967_cast_fp16")]; + tensor query_37_axes_0 = const()[name = tensor("query_37_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(903775552)))]; + tensor model_layers_18_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(903777664)))]; + tensor query_37_cast_fp16 = layer_norm(axes = query_37_axes_0, beta = model_layers_18_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_self_att_weight_to_fp16, x = input_967_cast_fp16)[name = tensor("query_37_cast_fp16")]; + tensor model_layers_18_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_18_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(903779776)))]; + tensor linear_165_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_q_weight_to_fp16, x = query_37_cast_fp16)[name = tensor("linear_165_cast_fp16")]; + tensor var_3178 = const()[name = tensor("op_3178"), val = tensor([1, -1, 8, 128])]; + tensor q_109_cast_fp16 = reshape(shape = var_3178, x = linear_165_cast_fp16)[name = tensor("q_109_cast_fp16")]; + tensor model_layers_18_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_18_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(905876992)))]; + tensor linear_166_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_k_weight_to_fp16, x = query_37_cast_fp16)[name = tensor("linear_166_cast_fp16")]; + tensor var_3182 = const()[name = tensor("op_3182"), val = tensor([1, -1, 8, 128])]; + tensor k_73_cast_fp16 = reshape(shape = var_3182, x = linear_166_cast_fp16)[name = tensor("k_73_cast_fp16")]; + tensor model_layers_18_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_18_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(907974208)))]; + tensor linear_167_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_v_weight_to_fp16, x = query_37_cast_fp16)[name = tensor("linear_167_cast_fp16")]; + tensor var_3186 = const()[name = tensor("op_3186"), val = tensor([1, -1, 8, 128])]; + tensor v_37_cast_fp16 = reshape(shape = var_3186, x = linear_167_cast_fp16)[name = tensor("v_37_cast_fp16")]; + tensor value_37_perm_0 = const()[name = tensor("value_37_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_18_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_18_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(910071424)))]; + tensor var_3198_cast_fp16 = add(x = q_109_cast_fp16, y = model_layers_18_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3198_cast_fp16")]; + tensor model_layers_18_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_18_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(910073536)))]; + tensor var_3200_cast_fp16 = add(x = q_109_cast_fp16, y = model_layers_18_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3200_cast_fp16")]; + tensor q_with_bias_v_37_perm_0 = const()[name = tensor("q_with_bias_v_37_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_403_transpose_x_0 = const()[name = tensor("x_403_transpose_x_0"), val = tensor(false)]; + tensor x_403_transpose_y_0 = const()[name = tensor("x_403_transpose_y_0"), val = tensor(false)]; + tensor var_3202_to_fp16 = const()[name = tensor("op_3202_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(910075648)))]; + tensor transpose_161 = transpose(perm = q_with_bias_v_37_perm_0, x = var_3200_cast_fp16)[name = tensor("transpose_161")]; + tensor x_403_cast_fp16 = matmul(transpose_x = x_403_transpose_x_0, transpose_y = x_403_transpose_y_0, x = transpose_161, y = var_3202_to_fp16)[name = tensor("x_403_cast_fp16")]; + tensor x_405_pad_0 = const()[name = tensor("x_405_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_405_mode_0 = const()[name = tensor("x_405_mode_0"), val = tensor("constant")]; + tensor const_193_to_fp16 = const()[name = tensor("const_193_to_fp16"), val = tensor(0x0p+0)]; + tensor x_405_cast_fp16 = pad(constant_val = const_193_to_fp16, mode = x_405_mode_0, pad = x_405_pad_0, x = x_403_cast_fp16)[name = tensor("x_405_cast_fp16")]; + tensor var_3210 = const()[name = tensor("op_3210"), val = tensor([1, 8, -1, 126])]; + tensor x_407_cast_fp16 = reshape(shape = var_3210, x = x_405_cast_fp16)[name = tensor("x_407_cast_fp16")]; + tensor var_3214_begin_0 = const()[name = tensor("op_3214_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3214_end_0 = const()[name = tensor("op_3214_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3214_end_mask_0 = const()[name = tensor("op_3214_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3214_cast_fp16 = slice_by_index(begin = var_3214_begin_0, end = var_3214_end_0, end_mask = var_3214_end_mask_0, x = x_407_cast_fp16)[name = tensor("op_3214_cast_fp16")]; + tensor var_3215 = const()[name = tensor("op_3215"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_73_cast_fp16 = reshape(shape = var_3215, x = var_3214_cast_fp16)[name = tensor("matrix_bd_73_cast_fp16")]; + tensor matrix_ac_37_transpose_x_0 = const()[name = tensor("matrix_ac_37_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_37_transpose_y_0 = const()[name = tensor("matrix_ac_37_transpose_y_0"), val = tensor(false)]; + tensor transpose_108_perm_0 = const()[name = tensor("transpose_108_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_109_perm_0 = const()[name = tensor("transpose_109_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_159 = transpose(perm = transpose_109_perm_0, x = k_73_cast_fp16)[name = tensor("transpose_159")]; + tensor transpose_160 = transpose(perm = transpose_108_perm_0, x = var_3198_cast_fp16)[name = tensor("transpose_160")]; + tensor matrix_ac_37_cast_fp16 = matmul(transpose_x = matrix_ac_37_transpose_x_0, transpose_y = matrix_ac_37_transpose_y_0, x = transpose_160, y = transpose_159)[name = tensor("matrix_ac_37_cast_fp16")]; + tensor matrix_bd_75_begin_0 = const()[name = tensor("matrix_bd_75_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_75_end_0 = const()[name = tensor("matrix_bd_75_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_75_end_mask_0 = const()[name = tensor("matrix_bd_75_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_75_cast_fp16 = slice_by_index(begin = matrix_bd_75_begin_0, end = matrix_bd_75_end_0, end_mask = matrix_bd_75_end_mask_0, x = matrix_bd_73_cast_fp16)[name = tensor("matrix_bd_75_cast_fp16")]; + tensor var_3224_cast_fp16 = add(x = matrix_ac_37_cast_fp16, y = matrix_bd_75_cast_fp16)[name = tensor("op_3224_cast_fp16")]; + tensor _inversed_scores_73_y_0_to_fp16 = const()[name = tensor("_inversed_scores_73_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_73_cast_fp16 = mul(x = var_3224_cast_fp16, y = _inversed_scores_73_y_0_to_fp16)[name = tensor("_inversed_scores_73_cast_fp16")]; + tensor scores_75_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_73_cast_fp16, cond = mask_3)[name = tensor("scores_75_cast_fp16")]; + tensor var_3230_cast_fp16 = softmax(axis = var_25, x = scores_75_cast_fp16)[name = tensor("op_3230_cast_fp16")]; + tensor input_969_cast_fp16 = select(a = var_6_to_fp16, b = var_3230_cast_fp16, cond = mask_3)[name = tensor("input_969_cast_fp16")]; + tensor x_409_transpose_x_0 = const()[name = tensor("x_409_transpose_x_0"), val = tensor(false)]; + tensor x_409_transpose_y_0 = const()[name = tensor("x_409_transpose_y_0"), val = tensor(false)]; + tensor transpose_162 = transpose(perm = value_37_perm_0, x = v_37_cast_fp16)[name = tensor("transpose_162")]; + tensor x_409_cast_fp16 = matmul(transpose_x = x_409_transpose_x_0, transpose_y = x_409_transpose_y_0, x = input_969_cast_fp16, y = transpose_162)[name = tensor("x_409_cast_fp16")]; + tensor var_3234_perm_0 = const()[name = tensor("op_3234_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3235 = const()[name = tensor("op_3235"), val = tensor([1, -1, 1024])]; + tensor transpose_158 = transpose(perm = var_3234_perm_0, x = x_409_cast_fp16)[name = tensor("transpose_158")]; + tensor input_971_cast_fp16 = reshape(shape = var_3235, x = transpose_158)[name = tensor("input_971_cast_fp16")]; + tensor model_layers_18_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_18_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(910589760)))]; + tensor linear_169_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_self_attn_linear_out_weight_to_fp16, x = input_971_cast_fp16)[name = tensor("linear_169_cast_fp16")]; + tensor input_975_cast_fp16 = add(x = input_967_cast_fp16, y = linear_169_cast_fp16)[name = tensor("input_975_cast_fp16")]; + tensor x_413_axes_0 = const()[name = tensor("x_413_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(912686976)))]; + tensor model_layers_18_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(912689088)))]; + tensor x_413_cast_fp16 = layer_norm(axes = x_413_axes_0, beta = model_layers_18_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_conv_weight_to_fp16, x = input_975_cast_fp16)[name = tensor("x_413_cast_fp16")]; + tensor input_977_perm_0 = const()[name = tensor("input_977_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3251 = const()[name = tensor("op_3251"), val = tensor([1])]; + tensor var_3253 = const()[name = tensor("op_3253"), val = tensor([1])]; + tensor input_979_pad_type_0 = const()[name = tensor("input_979_pad_type_0"), val = tensor("custom")]; + tensor input_979_pad_0 = const()[name = tensor("input_979_pad_0"), val = tensor([0, 0])]; + tensor model_layers_18_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_18_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(912691200)))]; + tensor transpose_157 = transpose(perm = input_977_perm_0, x = x_413_cast_fp16)[name = tensor("transpose_157")]; + tensor input_979_cast_fp16 = conv(dilations = var_3253, groups = var_27, pad = input_979_pad_0, pad_type = input_979_pad_type_0, strides = var_3251, weight = model_layers_18_conv_pointwise_conv1_weight_to_fp16, x = transpose_157)[name = tensor("input_979_cast_fp16")]; + tensor x_415_split_num_splits_0 = const()[name = tensor("x_415_split_num_splits_0"), val = tensor(2)]; + tensor x_415_split_axis_0 = const()[name = tensor("x_415_split_axis_0"), val = tensor(1)]; + tensor x_415_split_cast_fp16_0, tensor x_415_split_cast_fp16_1 = split(axis = x_415_split_axis_0, num_splits = x_415_split_num_splits_0, x = input_979_cast_fp16)[name = tensor("x_415_split_cast_fp16")]; + tensor x_415_split_1_sigmoid_cast_fp16 = sigmoid(x = x_415_split_cast_fp16_1)[name = tensor("x_415_split_1_sigmoid_cast_fp16")]; + tensor x_415_cast_fp16 = mul(x = x_415_split_cast_fp16_0, y = x_415_split_1_sigmoid_cast_fp16)[name = tensor("x_415_cast_fp16")]; + tensor input_981_cast_fp16 = select(a = var_6_to_fp16, b = x_415_cast_fp16, cond = var_323)[name = tensor("input_981_cast_fp16")]; + tensor input_983_pad_0 = const()[name = tensor("input_983_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_983_mode_0 = const()[name = tensor("input_983_mode_0"), val = tensor("constant")]; + tensor const_196_to_fp16 = const()[name = tensor("const_196_to_fp16"), val = tensor(0x0p+0)]; + tensor input_983_cast_fp16 = pad(constant_val = const_196_to_fp16, mode = input_983_mode_0, pad = input_983_pad_0, x = input_981_cast_fp16)[name = tensor("input_983_cast_fp16")]; + tensor var_3262 = const()[name = tensor("op_3262"), val = tensor([1])]; + tensor var_3264 = const()[name = tensor("op_3264"), val = tensor([1])]; + tensor input_985_pad_type_0 = const()[name = tensor("input_985_pad_type_0"), val = tensor("custom")]; + tensor input_985_pad_0 = const()[name = tensor("input_985_pad_0"), val = tensor([0, 0])]; + tensor input_987_weight_0_to_fp16 = const()[name = tensor("input_987_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(916885568)))]; + tensor input_987_bias_0_to_fp16 = const()[name = tensor("input_987_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(916904064)))]; + tensor input_987_cast_fp16 = conv(bias = input_987_bias_0_to_fp16, dilations = var_3264, groups = var_5, pad = input_985_pad_0, pad_type = input_985_pad_type_0, strides = var_3262, weight = input_987_weight_0_to_fp16, x = input_983_cast_fp16)[name = tensor("input_987_cast_fp16")]; + tensor input_989_cast_fp16 = silu(x = input_987_cast_fp16)[name = tensor("input_989_cast_fp16")]; + tensor var_3274 = const()[name = tensor("op_3274"), val = tensor([1])]; + tensor var_3276 = const()[name = tensor("op_3276"), val = tensor([1])]; + tensor x_417_pad_type_0 = const()[name = tensor("x_417_pad_type_0"), val = tensor("custom")]; + tensor x_417_pad_0 = const()[name = tensor("x_417_pad_0"), val = tensor([0, 0])]; + tensor model_layers_18_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_18_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(916906176)))]; + tensor x_417_cast_fp16 = conv(dilations = var_3276, groups = var_27, pad = x_417_pad_0, pad_type = x_417_pad_type_0, strides = var_3274, weight = model_layers_18_conv_pointwise_conv2_weight_to_fp16, x = input_989_cast_fp16)[name = tensor("x_417_cast_fp16")]; + tensor input_991_perm_0 = const()[name = tensor("input_991_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_156 = transpose(perm = input_991_perm_0, x = x_417_cast_fp16)[name = tensor("transpose_156")]; + tensor input_993_cast_fp16 = add(x = input_975_cast_fp16, y = transpose_156)[name = tensor("input_993_cast_fp16")]; + tensor input_995_axes_0 = const()[name = tensor("input_995_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(919003392)))]; + tensor model_layers_18_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(919005504)))]; + tensor input_995_cast_fp16 = layer_norm(axes = input_995_axes_0, beta = model_layers_18_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_feed_forward2_weight_to_fp16, x = input_993_cast_fp16)[name = tensor("input_995_cast_fp16")]; + tensor model_layers_18_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_18_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(919007616)))]; + tensor linear_170_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_18_feed_forward2_linear1_weight_to_fp16, x = input_995_cast_fp16)[name = tensor("linear_170_cast_fp16")]; + tensor input_999_cast_fp16 = silu(x = linear_170_cast_fp16)[name = tensor("input_999_cast_fp16")]; + tensor model_layers_18_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_18_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(927396288)))]; + tensor linear_171_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_18_feed_forward2_linear2_weight_to_fp16, x = input_999_cast_fp16)[name = tensor("linear_171_cast_fp16")]; + tensor var_3295_to_fp16 = const()[name = tensor("op_3295_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3296_cast_fp16 = mul(x = linear_171_cast_fp16, y = var_3295_to_fp16)[name = tensor("op_3296_cast_fp16")]; + tensor input_1005_cast_fp16 = add(x = input_993_cast_fp16, y = var_3296_cast_fp16)[name = tensor("input_1005_cast_fp16")]; + tensor input_1007_axes_0 = const()[name = tensor("input_1007_axes_0"), val = tensor([-1])]; + tensor model_layers_18_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_18_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(935784960)))]; + tensor model_layers_18_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_18_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(935787072)))]; + tensor input_1007_cast_fp16 = layer_norm(axes = input_1007_axes_0, beta = model_layers_18_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_18_norm_out_weight_to_fp16, x = input_1005_cast_fp16)[name = tensor("input_1007_cast_fp16")]; + tensor input_1009_axes_0 = const()[name = tensor("input_1009_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(935789184)))]; + tensor model_layers_19_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(935791296)))]; + tensor input_1009_cast_fp16 = layer_norm(axes = input_1009_axes_0, beta = model_layers_19_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_feed_forward1_weight_to_fp16, x = input_1007_cast_fp16)[name = tensor("input_1009_cast_fp16")]; + tensor model_layers_19_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_19_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(935793408)))]; + tensor linear_172_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_19_feed_forward1_linear1_weight_to_fp16, x = input_1009_cast_fp16)[name = tensor("linear_172_cast_fp16")]; + tensor input_1013_cast_fp16 = silu(x = linear_172_cast_fp16)[name = tensor("input_1013_cast_fp16")]; + tensor model_layers_19_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_19_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(944182080)))]; + tensor linear_173_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_feed_forward1_linear2_weight_to_fp16, x = input_1013_cast_fp16)[name = tensor("linear_173_cast_fp16")]; + tensor var_3324_to_fp16 = const()[name = tensor("op_3324_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3325_cast_fp16 = mul(x = linear_173_cast_fp16, y = var_3324_to_fp16)[name = tensor("op_3325_cast_fp16")]; + tensor input_1019_cast_fp16 = add(x = input_1007_cast_fp16, y = var_3325_cast_fp16)[name = tensor("input_1019_cast_fp16")]; + tensor query_39_axes_0 = const()[name = tensor("query_39_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(952570752)))]; + tensor model_layers_19_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(952572864)))]; + tensor query_39_cast_fp16 = layer_norm(axes = query_39_axes_0, beta = model_layers_19_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_self_att_weight_to_fp16, x = input_1019_cast_fp16)[name = tensor("query_39_cast_fp16")]; + tensor model_layers_19_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_19_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(952574976)))]; + tensor linear_174_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_q_weight_to_fp16, x = query_39_cast_fp16)[name = tensor("linear_174_cast_fp16")]; + tensor var_3341 = const()[name = tensor("op_3341"), val = tensor([1, -1, 8, 128])]; + tensor q_115_cast_fp16 = reshape(shape = var_3341, x = linear_174_cast_fp16)[name = tensor("q_115_cast_fp16")]; + tensor model_layers_19_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_19_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(954672192)))]; + tensor linear_175_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_k_weight_to_fp16, x = query_39_cast_fp16)[name = tensor("linear_175_cast_fp16")]; + tensor var_3345 = const()[name = tensor("op_3345"), val = tensor([1, -1, 8, 128])]; + tensor k_77_cast_fp16 = reshape(shape = var_3345, x = linear_175_cast_fp16)[name = tensor("k_77_cast_fp16")]; + tensor model_layers_19_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_19_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(956769408)))]; + tensor linear_176_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_v_weight_to_fp16, x = query_39_cast_fp16)[name = tensor("linear_176_cast_fp16")]; + tensor var_3349 = const()[name = tensor("op_3349"), val = tensor([1, -1, 8, 128])]; + tensor v_39_cast_fp16 = reshape(shape = var_3349, x = linear_176_cast_fp16)[name = tensor("v_39_cast_fp16")]; + tensor value_39_perm_0 = const()[name = tensor("value_39_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_19_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_19_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(958866624)))]; + tensor var_3361_cast_fp16 = add(x = q_115_cast_fp16, y = model_layers_19_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3361_cast_fp16")]; + tensor model_layers_19_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_19_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(958868736)))]; + tensor var_3363_cast_fp16 = add(x = q_115_cast_fp16, y = model_layers_19_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3363_cast_fp16")]; + tensor q_with_bias_v_39_perm_0 = const()[name = tensor("q_with_bias_v_39_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_425_transpose_x_0 = const()[name = tensor("x_425_transpose_x_0"), val = tensor(false)]; + tensor x_425_transpose_y_0 = const()[name = tensor("x_425_transpose_y_0"), val = tensor(false)]; + tensor var_3365_to_fp16 = const()[name = tensor("op_3365_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(958870848)))]; + tensor transpose_154 = transpose(perm = q_with_bias_v_39_perm_0, x = var_3363_cast_fp16)[name = tensor("transpose_154")]; + tensor x_425_cast_fp16 = matmul(transpose_x = x_425_transpose_x_0, transpose_y = x_425_transpose_y_0, x = transpose_154, y = var_3365_to_fp16)[name = tensor("x_425_cast_fp16")]; + tensor x_427_pad_0 = const()[name = tensor("x_427_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_427_mode_0 = const()[name = tensor("x_427_mode_0"), val = tensor("constant")]; + tensor const_203_to_fp16 = const()[name = tensor("const_203_to_fp16"), val = tensor(0x0p+0)]; + tensor x_427_cast_fp16 = pad(constant_val = const_203_to_fp16, mode = x_427_mode_0, pad = x_427_pad_0, x = x_425_cast_fp16)[name = tensor("x_427_cast_fp16")]; + tensor var_3373 = const()[name = tensor("op_3373"), val = tensor([1, 8, -1, 126])]; + tensor x_429_cast_fp16 = reshape(shape = var_3373, x = x_427_cast_fp16)[name = tensor("x_429_cast_fp16")]; + tensor var_3377_begin_0 = const()[name = tensor("op_3377_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3377_end_0 = const()[name = tensor("op_3377_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3377_end_mask_0 = const()[name = tensor("op_3377_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3377_cast_fp16 = slice_by_index(begin = var_3377_begin_0, end = var_3377_end_0, end_mask = var_3377_end_mask_0, x = x_429_cast_fp16)[name = tensor("op_3377_cast_fp16")]; + tensor var_3378 = const()[name = tensor("op_3378"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_77_cast_fp16 = reshape(shape = var_3378, x = var_3377_cast_fp16)[name = tensor("matrix_bd_77_cast_fp16")]; + tensor matrix_ac_39_transpose_x_0 = const()[name = tensor("matrix_ac_39_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_39_transpose_y_0 = const()[name = tensor("matrix_ac_39_transpose_y_0"), val = tensor(false)]; + tensor transpose_110_perm_0 = const()[name = tensor("transpose_110_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_111_perm_0 = const()[name = tensor("transpose_111_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_152 = transpose(perm = transpose_111_perm_0, x = k_77_cast_fp16)[name = tensor("transpose_152")]; + tensor transpose_153 = transpose(perm = transpose_110_perm_0, x = var_3361_cast_fp16)[name = tensor("transpose_153")]; + tensor matrix_ac_39_cast_fp16 = matmul(transpose_x = matrix_ac_39_transpose_x_0, transpose_y = matrix_ac_39_transpose_y_0, x = transpose_153, y = transpose_152)[name = tensor("matrix_ac_39_cast_fp16")]; + tensor matrix_bd_79_begin_0 = const()[name = tensor("matrix_bd_79_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_79_end_0 = const()[name = tensor("matrix_bd_79_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_79_end_mask_0 = const()[name = tensor("matrix_bd_79_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_79_cast_fp16 = slice_by_index(begin = matrix_bd_79_begin_0, end = matrix_bd_79_end_0, end_mask = matrix_bd_79_end_mask_0, x = matrix_bd_77_cast_fp16)[name = tensor("matrix_bd_79_cast_fp16")]; + tensor var_3387_cast_fp16 = add(x = matrix_ac_39_cast_fp16, y = matrix_bd_79_cast_fp16)[name = tensor("op_3387_cast_fp16")]; + tensor _inversed_scores_77_y_0_to_fp16 = const()[name = tensor("_inversed_scores_77_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_77_cast_fp16 = mul(x = var_3387_cast_fp16, y = _inversed_scores_77_y_0_to_fp16)[name = tensor("_inversed_scores_77_cast_fp16")]; + tensor scores_79_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_77_cast_fp16, cond = mask_3)[name = tensor("scores_79_cast_fp16")]; + tensor var_3393_cast_fp16 = softmax(axis = var_25, x = scores_79_cast_fp16)[name = tensor("op_3393_cast_fp16")]; + tensor input_1021_cast_fp16 = select(a = var_6_to_fp16, b = var_3393_cast_fp16, cond = mask_3)[name = tensor("input_1021_cast_fp16")]; + tensor x_431_transpose_x_0 = const()[name = tensor("x_431_transpose_x_0"), val = tensor(false)]; + tensor x_431_transpose_y_0 = const()[name = tensor("x_431_transpose_y_0"), val = tensor(false)]; + tensor transpose_155 = transpose(perm = value_39_perm_0, x = v_39_cast_fp16)[name = tensor("transpose_155")]; + tensor x_431_cast_fp16 = matmul(transpose_x = x_431_transpose_x_0, transpose_y = x_431_transpose_y_0, x = input_1021_cast_fp16, y = transpose_155)[name = tensor("x_431_cast_fp16")]; + tensor var_3397_perm_0 = const()[name = tensor("op_3397_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3398 = const()[name = tensor("op_3398"), val = tensor([1, -1, 1024])]; + tensor transpose_151 = transpose(perm = var_3397_perm_0, x = x_431_cast_fp16)[name = tensor("transpose_151")]; + tensor input_1023_cast_fp16 = reshape(shape = var_3398, x = transpose_151)[name = tensor("input_1023_cast_fp16")]; + tensor model_layers_19_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_19_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(959384960)))]; + tensor linear_178_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_self_attn_linear_out_weight_to_fp16, x = input_1023_cast_fp16)[name = tensor("linear_178_cast_fp16")]; + tensor input_1027_cast_fp16 = add(x = input_1019_cast_fp16, y = linear_178_cast_fp16)[name = tensor("input_1027_cast_fp16")]; + tensor x_435_axes_0 = const()[name = tensor("x_435_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(961482176)))]; + tensor model_layers_19_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(961484288)))]; + tensor x_435_cast_fp16 = layer_norm(axes = x_435_axes_0, beta = model_layers_19_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_conv_weight_to_fp16, x = input_1027_cast_fp16)[name = tensor("x_435_cast_fp16")]; + tensor input_1029_perm_0 = const()[name = tensor("input_1029_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3414 = const()[name = tensor("op_3414"), val = tensor([1])]; + tensor var_3416 = const()[name = tensor("op_3416"), val = tensor([1])]; + tensor input_1031_pad_type_0 = const()[name = tensor("input_1031_pad_type_0"), val = tensor("custom")]; + tensor input_1031_pad_0 = const()[name = tensor("input_1031_pad_0"), val = tensor([0, 0])]; + tensor model_layers_19_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_19_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(961486400)))]; + tensor transpose_150 = transpose(perm = input_1029_perm_0, x = x_435_cast_fp16)[name = tensor("transpose_150")]; + tensor input_1031_cast_fp16 = conv(dilations = var_3416, groups = var_27, pad = input_1031_pad_0, pad_type = input_1031_pad_type_0, strides = var_3414, weight = model_layers_19_conv_pointwise_conv1_weight_to_fp16, x = transpose_150)[name = tensor("input_1031_cast_fp16")]; + tensor x_437_split_num_splits_0 = const()[name = tensor("x_437_split_num_splits_0"), val = tensor(2)]; + tensor x_437_split_axis_0 = const()[name = tensor("x_437_split_axis_0"), val = tensor(1)]; + tensor x_437_split_cast_fp16_0, tensor x_437_split_cast_fp16_1 = split(axis = x_437_split_axis_0, num_splits = x_437_split_num_splits_0, x = input_1031_cast_fp16)[name = tensor("x_437_split_cast_fp16")]; + tensor x_437_split_1_sigmoid_cast_fp16 = sigmoid(x = x_437_split_cast_fp16_1)[name = tensor("x_437_split_1_sigmoid_cast_fp16")]; + tensor x_437_cast_fp16 = mul(x = x_437_split_cast_fp16_0, y = x_437_split_1_sigmoid_cast_fp16)[name = tensor("x_437_cast_fp16")]; + tensor input_1033_cast_fp16 = select(a = var_6_to_fp16, b = x_437_cast_fp16, cond = var_323)[name = tensor("input_1033_cast_fp16")]; + tensor input_1035_pad_0 = const()[name = tensor("input_1035_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1035_mode_0 = const()[name = tensor("input_1035_mode_0"), val = tensor("constant")]; + tensor const_206_to_fp16 = const()[name = tensor("const_206_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1035_cast_fp16 = pad(constant_val = const_206_to_fp16, mode = input_1035_mode_0, pad = input_1035_pad_0, x = input_1033_cast_fp16)[name = tensor("input_1035_cast_fp16")]; + tensor var_3425 = const()[name = tensor("op_3425"), val = tensor([1])]; + tensor var_3427 = const()[name = tensor("op_3427"), val = tensor([1])]; + tensor input_1037_pad_type_0 = const()[name = tensor("input_1037_pad_type_0"), val = tensor("custom")]; + tensor input_1037_pad_0 = const()[name = tensor("input_1037_pad_0"), val = tensor([0, 0])]; + tensor input_1039_weight_0_to_fp16 = const()[name = tensor("input_1039_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(965680768)))]; + tensor input_1039_bias_0_to_fp16 = const()[name = tensor("input_1039_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(965699264)))]; + tensor input_1039_cast_fp16 = conv(bias = input_1039_bias_0_to_fp16, dilations = var_3427, groups = var_5, pad = input_1037_pad_0, pad_type = input_1037_pad_type_0, strides = var_3425, weight = input_1039_weight_0_to_fp16, x = input_1035_cast_fp16)[name = tensor("input_1039_cast_fp16")]; + tensor input_1041_cast_fp16 = silu(x = input_1039_cast_fp16)[name = tensor("input_1041_cast_fp16")]; + tensor var_3437 = const()[name = tensor("op_3437"), val = tensor([1])]; + tensor var_3439 = const()[name = tensor("op_3439"), val = tensor([1])]; + tensor x_439_pad_type_0 = const()[name = tensor("x_439_pad_type_0"), val = tensor("custom")]; + tensor x_439_pad_0 = const()[name = tensor("x_439_pad_0"), val = tensor([0, 0])]; + tensor model_layers_19_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_19_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(965701376)))]; + tensor x_439_cast_fp16 = conv(dilations = var_3439, groups = var_27, pad = x_439_pad_0, pad_type = x_439_pad_type_0, strides = var_3437, weight = model_layers_19_conv_pointwise_conv2_weight_to_fp16, x = input_1041_cast_fp16)[name = tensor("x_439_cast_fp16")]; + tensor input_1043_perm_0 = const()[name = tensor("input_1043_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_149 = transpose(perm = input_1043_perm_0, x = x_439_cast_fp16)[name = tensor("transpose_149")]; + tensor input_1045_cast_fp16 = add(x = input_1027_cast_fp16, y = transpose_149)[name = tensor("input_1045_cast_fp16")]; + tensor input_1047_axes_0 = const()[name = tensor("input_1047_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(967798592)))]; + tensor model_layers_19_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(967800704)))]; + tensor input_1047_cast_fp16 = layer_norm(axes = input_1047_axes_0, beta = model_layers_19_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_feed_forward2_weight_to_fp16, x = input_1045_cast_fp16)[name = tensor("input_1047_cast_fp16")]; + tensor model_layers_19_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_19_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(967802816)))]; + tensor linear_179_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_19_feed_forward2_linear1_weight_to_fp16, x = input_1047_cast_fp16)[name = tensor("linear_179_cast_fp16")]; + tensor input_1051_cast_fp16 = silu(x = linear_179_cast_fp16)[name = tensor("input_1051_cast_fp16")]; + tensor model_layers_19_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_19_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(976191488)))]; + tensor linear_180_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_19_feed_forward2_linear2_weight_to_fp16, x = input_1051_cast_fp16)[name = tensor("linear_180_cast_fp16")]; + tensor var_3458_to_fp16 = const()[name = tensor("op_3458_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3459_cast_fp16 = mul(x = linear_180_cast_fp16, y = var_3458_to_fp16)[name = tensor("op_3459_cast_fp16")]; + tensor input_1057_cast_fp16 = add(x = input_1045_cast_fp16, y = var_3459_cast_fp16)[name = tensor("input_1057_cast_fp16")]; + tensor input_1059_axes_0 = const()[name = tensor("input_1059_axes_0"), val = tensor([-1])]; + tensor model_layers_19_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_19_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(984580160)))]; + tensor model_layers_19_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_19_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(984582272)))]; + tensor input_1059_cast_fp16 = layer_norm(axes = input_1059_axes_0, beta = model_layers_19_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_19_norm_out_weight_to_fp16, x = input_1057_cast_fp16)[name = tensor("input_1059_cast_fp16")]; + tensor input_1061_axes_0 = const()[name = tensor("input_1061_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(984584384)))]; + tensor model_layers_20_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(984586496)))]; + tensor input_1061_cast_fp16 = layer_norm(axes = input_1061_axes_0, beta = model_layers_20_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_feed_forward1_weight_to_fp16, x = input_1059_cast_fp16)[name = tensor("input_1061_cast_fp16")]; + tensor model_layers_20_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_20_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(984588608)))]; + tensor linear_181_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_20_feed_forward1_linear1_weight_to_fp16, x = input_1061_cast_fp16)[name = tensor("linear_181_cast_fp16")]; + tensor input_1065_cast_fp16 = silu(x = linear_181_cast_fp16)[name = tensor("input_1065_cast_fp16")]; + tensor model_layers_20_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_20_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(992977280)))]; + tensor linear_182_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_feed_forward1_linear2_weight_to_fp16, x = input_1065_cast_fp16)[name = tensor("linear_182_cast_fp16")]; + tensor var_3487_to_fp16 = const()[name = tensor("op_3487_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3488_cast_fp16 = mul(x = linear_182_cast_fp16, y = var_3487_to_fp16)[name = tensor("op_3488_cast_fp16")]; + tensor input_1071_cast_fp16 = add(x = input_1059_cast_fp16, y = var_3488_cast_fp16)[name = tensor("input_1071_cast_fp16")]; + tensor query_41_axes_0 = const()[name = tensor("query_41_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1001365952)))]; + tensor model_layers_20_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1001368064)))]; + tensor query_41_cast_fp16 = layer_norm(axes = query_41_axes_0, beta = model_layers_20_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_self_att_weight_to_fp16, x = input_1071_cast_fp16)[name = tensor("query_41_cast_fp16")]; + tensor model_layers_20_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_20_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1001370176)))]; + tensor linear_183_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_q_weight_to_fp16, x = query_41_cast_fp16)[name = tensor("linear_183_cast_fp16")]; + tensor var_3504 = const()[name = tensor("op_3504"), val = tensor([1, -1, 8, 128])]; + tensor q_121_cast_fp16 = reshape(shape = var_3504, x = linear_183_cast_fp16)[name = tensor("q_121_cast_fp16")]; + tensor model_layers_20_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_20_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1003467392)))]; + tensor linear_184_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_k_weight_to_fp16, x = query_41_cast_fp16)[name = tensor("linear_184_cast_fp16")]; + tensor var_3508 = const()[name = tensor("op_3508"), val = tensor([1, -1, 8, 128])]; + tensor k_81_cast_fp16 = reshape(shape = var_3508, x = linear_184_cast_fp16)[name = tensor("k_81_cast_fp16")]; + tensor model_layers_20_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_20_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1005564608)))]; + tensor linear_185_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_v_weight_to_fp16, x = query_41_cast_fp16)[name = tensor("linear_185_cast_fp16")]; + tensor var_3512 = const()[name = tensor("op_3512"), val = tensor([1, -1, 8, 128])]; + tensor v_41_cast_fp16 = reshape(shape = var_3512, x = linear_185_cast_fp16)[name = tensor("v_41_cast_fp16")]; + tensor value_41_perm_0 = const()[name = tensor("value_41_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_20_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_20_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1007661824)))]; + tensor var_3524_cast_fp16 = add(x = q_121_cast_fp16, y = model_layers_20_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3524_cast_fp16")]; + tensor model_layers_20_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_20_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1007663936)))]; + tensor var_3526_cast_fp16 = add(x = q_121_cast_fp16, y = model_layers_20_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3526_cast_fp16")]; + tensor q_with_bias_v_41_perm_0 = const()[name = tensor("q_with_bias_v_41_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_447_transpose_x_0 = const()[name = tensor("x_447_transpose_x_0"), val = tensor(false)]; + tensor x_447_transpose_y_0 = const()[name = tensor("x_447_transpose_y_0"), val = tensor(false)]; + tensor var_3528_to_fp16 = const()[name = tensor("op_3528_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1007666048)))]; + tensor transpose_147 = transpose(perm = q_with_bias_v_41_perm_0, x = var_3526_cast_fp16)[name = tensor("transpose_147")]; + tensor x_447_cast_fp16 = matmul(transpose_x = x_447_transpose_x_0, transpose_y = x_447_transpose_y_0, x = transpose_147, y = var_3528_to_fp16)[name = tensor("x_447_cast_fp16")]; + tensor x_449_pad_0 = const()[name = tensor("x_449_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_449_mode_0 = const()[name = tensor("x_449_mode_0"), val = tensor("constant")]; + tensor const_213_to_fp16 = const()[name = tensor("const_213_to_fp16"), val = tensor(0x0p+0)]; + tensor x_449_cast_fp16 = pad(constant_val = const_213_to_fp16, mode = x_449_mode_0, pad = x_449_pad_0, x = x_447_cast_fp16)[name = tensor("x_449_cast_fp16")]; + tensor var_3536 = const()[name = tensor("op_3536"), val = tensor([1, 8, -1, 126])]; + tensor x_451_cast_fp16 = reshape(shape = var_3536, x = x_449_cast_fp16)[name = tensor("x_451_cast_fp16")]; + tensor var_3540_begin_0 = const()[name = tensor("op_3540_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3540_end_0 = const()[name = tensor("op_3540_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3540_end_mask_0 = const()[name = tensor("op_3540_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3540_cast_fp16 = slice_by_index(begin = var_3540_begin_0, end = var_3540_end_0, end_mask = var_3540_end_mask_0, x = x_451_cast_fp16)[name = tensor("op_3540_cast_fp16")]; + tensor var_3541 = const()[name = tensor("op_3541"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_81_cast_fp16 = reshape(shape = var_3541, x = var_3540_cast_fp16)[name = tensor("matrix_bd_81_cast_fp16")]; + tensor matrix_ac_41_transpose_x_0 = const()[name = tensor("matrix_ac_41_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_41_transpose_y_0 = const()[name = tensor("matrix_ac_41_transpose_y_0"), val = tensor(false)]; + tensor transpose_112_perm_0 = const()[name = tensor("transpose_112_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_113_perm_0 = const()[name = tensor("transpose_113_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_145 = transpose(perm = transpose_113_perm_0, x = k_81_cast_fp16)[name = tensor("transpose_145")]; + tensor transpose_146 = transpose(perm = transpose_112_perm_0, x = var_3524_cast_fp16)[name = tensor("transpose_146")]; + tensor matrix_ac_41_cast_fp16 = matmul(transpose_x = matrix_ac_41_transpose_x_0, transpose_y = matrix_ac_41_transpose_y_0, x = transpose_146, y = transpose_145)[name = tensor("matrix_ac_41_cast_fp16")]; + tensor matrix_bd_83_begin_0 = const()[name = tensor("matrix_bd_83_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_83_end_0 = const()[name = tensor("matrix_bd_83_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_83_end_mask_0 = const()[name = tensor("matrix_bd_83_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_83_cast_fp16 = slice_by_index(begin = matrix_bd_83_begin_0, end = matrix_bd_83_end_0, end_mask = matrix_bd_83_end_mask_0, x = matrix_bd_81_cast_fp16)[name = tensor("matrix_bd_83_cast_fp16")]; + tensor var_3550_cast_fp16 = add(x = matrix_ac_41_cast_fp16, y = matrix_bd_83_cast_fp16)[name = tensor("op_3550_cast_fp16")]; + tensor _inversed_scores_81_y_0_to_fp16 = const()[name = tensor("_inversed_scores_81_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_81_cast_fp16 = mul(x = var_3550_cast_fp16, y = _inversed_scores_81_y_0_to_fp16)[name = tensor("_inversed_scores_81_cast_fp16")]; + tensor scores_83_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_81_cast_fp16, cond = mask_3)[name = tensor("scores_83_cast_fp16")]; + tensor var_3556_cast_fp16 = softmax(axis = var_25, x = scores_83_cast_fp16)[name = tensor("op_3556_cast_fp16")]; + tensor input_1073_cast_fp16 = select(a = var_6_to_fp16, b = var_3556_cast_fp16, cond = mask_3)[name = tensor("input_1073_cast_fp16")]; + tensor x_453_transpose_x_0 = const()[name = tensor("x_453_transpose_x_0"), val = tensor(false)]; + tensor x_453_transpose_y_0 = const()[name = tensor("x_453_transpose_y_0"), val = tensor(false)]; + tensor transpose_148 = transpose(perm = value_41_perm_0, x = v_41_cast_fp16)[name = tensor("transpose_148")]; + tensor x_453_cast_fp16 = matmul(transpose_x = x_453_transpose_x_0, transpose_y = x_453_transpose_y_0, x = input_1073_cast_fp16, y = transpose_148)[name = tensor("x_453_cast_fp16")]; + tensor var_3560_perm_0 = const()[name = tensor("op_3560_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3561 = const()[name = tensor("op_3561"), val = tensor([1, -1, 1024])]; + tensor transpose_144 = transpose(perm = var_3560_perm_0, x = x_453_cast_fp16)[name = tensor("transpose_144")]; + tensor input_1075_cast_fp16 = reshape(shape = var_3561, x = transpose_144)[name = tensor("input_1075_cast_fp16")]; + tensor model_layers_20_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_20_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1008180160)))]; + tensor linear_187_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_self_attn_linear_out_weight_to_fp16, x = input_1075_cast_fp16)[name = tensor("linear_187_cast_fp16")]; + tensor input_1079_cast_fp16 = add(x = input_1071_cast_fp16, y = linear_187_cast_fp16)[name = tensor("input_1079_cast_fp16")]; + tensor x_457_axes_0 = const()[name = tensor("x_457_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1010277376)))]; + tensor model_layers_20_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1010279488)))]; + tensor x_457_cast_fp16 = layer_norm(axes = x_457_axes_0, beta = model_layers_20_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_conv_weight_to_fp16, x = input_1079_cast_fp16)[name = tensor("x_457_cast_fp16")]; + tensor input_1081_perm_0 = const()[name = tensor("input_1081_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3577 = const()[name = tensor("op_3577"), val = tensor([1])]; + tensor var_3579 = const()[name = tensor("op_3579"), val = tensor([1])]; + tensor input_1083_pad_type_0 = const()[name = tensor("input_1083_pad_type_0"), val = tensor("custom")]; + tensor input_1083_pad_0 = const()[name = tensor("input_1083_pad_0"), val = tensor([0, 0])]; + tensor model_layers_20_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_20_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1010281600)))]; + tensor transpose_143 = transpose(perm = input_1081_perm_0, x = x_457_cast_fp16)[name = tensor("transpose_143")]; + tensor input_1083_cast_fp16 = conv(dilations = var_3579, groups = var_27, pad = input_1083_pad_0, pad_type = input_1083_pad_type_0, strides = var_3577, weight = model_layers_20_conv_pointwise_conv1_weight_to_fp16, x = transpose_143)[name = tensor("input_1083_cast_fp16")]; + tensor x_459_split_num_splits_0 = const()[name = tensor("x_459_split_num_splits_0"), val = tensor(2)]; + tensor x_459_split_axis_0 = const()[name = tensor("x_459_split_axis_0"), val = tensor(1)]; + tensor x_459_split_cast_fp16_0, tensor x_459_split_cast_fp16_1 = split(axis = x_459_split_axis_0, num_splits = x_459_split_num_splits_0, x = input_1083_cast_fp16)[name = tensor("x_459_split_cast_fp16")]; + tensor x_459_split_1_sigmoid_cast_fp16 = sigmoid(x = x_459_split_cast_fp16_1)[name = tensor("x_459_split_1_sigmoid_cast_fp16")]; + tensor x_459_cast_fp16 = mul(x = x_459_split_cast_fp16_0, y = x_459_split_1_sigmoid_cast_fp16)[name = tensor("x_459_cast_fp16")]; + tensor input_1085_cast_fp16 = select(a = var_6_to_fp16, b = x_459_cast_fp16, cond = var_323)[name = tensor("input_1085_cast_fp16")]; + tensor input_1087_pad_0 = const()[name = tensor("input_1087_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1087_mode_0 = const()[name = tensor("input_1087_mode_0"), val = tensor("constant")]; + tensor const_216_to_fp16 = const()[name = tensor("const_216_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1087_cast_fp16 = pad(constant_val = const_216_to_fp16, mode = input_1087_mode_0, pad = input_1087_pad_0, x = input_1085_cast_fp16)[name = tensor("input_1087_cast_fp16")]; + tensor var_3588 = const()[name = tensor("op_3588"), val = tensor([1])]; + tensor var_3590 = const()[name = tensor("op_3590"), val = tensor([1])]; + tensor input_1089_pad_type_0 = const()[name = tensor("input_1089_pad_type_0"), val = tensor("custom")]; + tensor input_1089_pad_0 = const()[name = tensor("input_1089_pad_0"), val = tensor([0, 0])]; + tensor input_1091_weight_0_to_fp16 = const()[name = tensor("input_1091_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1014475968)))]; + tensor input_1091_bias_0_to_fp16 = const()[name = tensor("input_1091_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1014494464)))]; + tensor input_1091_cast_fp16 = conv(bias = input_1091_bias_0_to_fp16, dilations = var_3590, groups = var_5, pad = input_1089_pad_0, pad_type = input_1089_pad_type_0, strides = var_3588, weight = input_1091_weight_0_to_fp16, x = input_1087_cast_fp16)[name = tensor("input_1091_cast_fp16")]; + tensor input_1093_cast_fp16 = silu(x = input_1091_cast_fp16)[name = tensor("input_1093_cast_fp16")]; + tensor var_3600 = const()[name = tensor("op_3600"), val = tensor([1])]; + tensor var_3602 = const()[name = tensor("op_3602"), val = tensor([1])]; + tensor x_461_pad_type_0 = const()[name = tensor("x_461_pad_type_0"), val = tensor("custom")]; + tensor x_461_pad_0 = const()[name = tensor("x_461_pad_0"), val = tensor([0, 0])]; + tensor model_layers_20_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_20_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1014496576)))]; + tensor x_461_cast_fp16 = conv(dilations = var_3602, groups = var_27, pad = x_461_pad_0, pad_type = x_461_pad_type_0, strides = var_3600, weight = model_layers_20_conv_pointwise_conv2_weight_to_fp16, x = input_1093_cast_fp16)[name = tensor("x_461_cast_fp16")]; + tensor input_1095_perm_0 = const()[name = tensor("input_1095_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_142 = transpose(perm = input_1095_perm_0, x = x_461_cast_fp16)[name = tensor("transpose_142")]; + tensor input_1097_cast_fp16 = add(x = input_1079_cast_fp16, y = transpose_142)[name = tensor("input_1097_cast_fp16")]; + tensor input_1099_axes_0 = const()[name = tensor("input_1099_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1016593792)))]; + tensor model_layers_20_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1016595904)))]; + tensor input_1099_cast_fp16 = layer_norm(axes = input_1099_axes_0, beta = model_layers_20_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_feed_forward2_weight_to_fp16, x = input_1097_cast_fp16)[name = tensor("input_1099_cast_fp16")]; + tensor model_layers_20_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_20_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1016598016)))]; + tensor linear_188_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_20_feed_forward2_linear1_weight_to_fp16, x = input_1099_cast_fp16)[name = tensor("linear_188_cast_fp16")]; + tensor input_1103_cast_fp16 = silu(x = linear_188_cast_fp16)[name = tensor("input_1103_cast_fp16")]; + tensor model_layers_20_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_20_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1024986688)))]; + tensor linear_189_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_20_feed_forward2_linear2_weight_to_fp16, x = input_1103_cast_fp16)[name = tensor("linear_189_cast_fp16")]; + tensor var_3621_to_fp16 = const()[name = tensor("op_3621_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3622_cast_fp16 = mul(x = linear_189_cast_fp16, y = var_3621_to_fp16)[name = tensor("op_3622_cast_fp16")]; + tensor input_1109_cast_fp16 = add(x = input_1097_cast_fp16, y = var_3622_cast_fp16)[name = tensor("input_1109_cast_fp16")]; + tensor input_1111_axes_0 = const()[name = tensor("input_1111_axes_0"), val = tensor([-1])]; + tensor model_layers_20_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_20_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1033375360)))]; + tensor model_layers_20_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_20_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1033377472)))]; + tensor input_1111_cast_fp16 = layer_norm(axes = input_1111_axes_0, beta = model_layers_20_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_20_norm_out_weight_to_fp16, x = input_1109_cast_fp16)[name = tensor("input_1111_cast_fp16")]; + tensor input_1113_axes_0 = const()[name = tensor("input_1113_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1033379584)))]; + tensor model_layers_21_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1033381696)))]; + tensor input_1113_cast_fp16 = layer_norm(axes = input_1113_axes_0, beta = model_layers_21_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_feed_forward1_weight_to_fp16, x = input_1111_cast_fp16)[name = tensor("input_1113_cast_fp16")]; + tensor model_layers_21_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_21_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1033383808)))]; + tensor linear_190_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_21_feed_forward1_linear1_weight_to_fp16, x = input_1113_cast_fp16)[name = tensor("linear_190_cast_fp16")]; + tensor input_1117_cast_fp16 = silu(x = linear_190_cast_fp16)[name = tensor("input_1117_cast_fp16")]; + tensor model_layers_21_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_21_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1041772480)))]; + tensor linear_191_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_feed_forward1_linear2_weight_to_fp16, x = input_1117_cast_fp16)[name = tensor("linear_191_cast_fp16")]; + tensor var_3650_to_fp16 = const()[name = tensor("op_3650_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3651_cast_fp16 = mul(x = linear_191_cast_fp16, y = var_3650_to_fp16)[name = tensor("op_3651_cast_fp16")]; + tensor input_1123_cast_fp16 = add(x = input_1111_cast_fp16, y = var_3651_cast_fp16)[name = tensor("input_1123_cast_fp16")]; + tensor query_43_axes_0 = const()[name = tensor("query_43_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1050161152)))]; + tensor model_layers_21_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1050163264)))]; + tensor query_43_cast_fp16 = layer_norm(axes = query_43_axes_0, beta = model_layers_21_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_self_att_weight_to_fp16, x = input_1123_cast_fp16)[name = tensor("query_43_cast_fp16")]; + tensor model_layers_21_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_21_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1050165376)))]; + tensor linear_192_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_q_weight_to_fp16, x = query_43_cast_fp16)[name = tensor("linear_192_cast_fp16")]; + tensor var_3667 = const()[name = tensor("op_3667"), val = tensor([1, -1, 8, 128])]; + tensor q_127_cast_fp16 = reshape(shape = var_3667, x = linear_192_cast_fp16)[name = tensor("q_127_cast_fp16")]; + tensor model_layers_21_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_21_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1052262592)))]; + tensor linear_193_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_k_weight_to_fp16, x = query_43_cast_fp16)[name = tensor("linear_193_cast_fp16")]; + tensor var_3671 = const()[name = tensor("op_3671"), val = tensor([1, -1, 8, 128])]; + tensor k_85_cast_fp16 = reshape(shape = var_3671, x = linear_193_cast_fp16)[name = tensor("k_85_cast_fp16")]; + tensor model_layers_21_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_21_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1054359808)))]; + tensor linear_194_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_v_weight_to_fp16, x = query_43_cast_fp16)[name = tensor("linear_194_cast_fp16")]; + tensor var_3675 = const()[name = tensor("op_3675"), val = tensor([1, -1, 8, 128])]; + tensor v_43_cast_fp16 = reshape(shape = var_3675, x = linear_194_cast_fp16)[name = tensor("v_43_cast_fp16")]; + tensor value_43_perm_0 = const()[name = tensor("value_43_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_21_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_21_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1056457024)))]; + tensor var_3687_cast_fp16 = add(x = q_127_cast_fp16, y = model_layers_21_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3687_cast_fp16")]; + tensor model_layers_21_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_21_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1056459136)))]; + tensor var_3689_cast_fp16 = add(x = q_127_cast_fp16, y = model_layers_21_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3689_cast_fp16")]; + tensor q_with_bias_v_43_perm_0 = const()[name = tensor("q_with_bias_v_43_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_469_transpose_x_0 = const()[name = tensor("x_469_transpose_x_0"), val = tensor(false)]; + tensor x_469_transpose_y_0 = const()[name = tensor("x_469_transpose_y_0"), val = tensor(false)]; + tensor var_3691_to_fp16 = const()[name = tensor("op_3691_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1056461248)))]; + tensor transpose_140 = transpose(perm = q_with_bias_v_43_perm_0, x = var_3689_cast_fp16)[name = tensor("transpose_140")]; + tensor x_469_cast_fp16 = matmul(transpose_x = x_469_transpose_x_0, transpose_y = x_469_transpose_y_0, x = transpose_140, y = var_3691_to_fp16)[name = tensor("x_469_cast_fp16")]; + tensor x_471_pad_0 = const()[name = tensor("x_471_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_471_mode_0 = const()[name = tensor("x_471_mode_0"), val = tensor("constant")]; + tensor const_223_to_fp16 = const()[name = tensor("const_223_to_fp16"), val = tensor(0x0p+0)]; + tensor x_471_cast_fp16 = pad(constant_val = const_223_to_fp16, mode = x_471_mode_0, pad = x_471_pad_0, x = x_469_cast_fp16)[name = tensor("x_471_cast_fp16")]; + tensor var_3699 = const()[name = tensor("op_3699"), val = tensor([1, 8, -1, 126])]; + tensor x_473_cast_fp16 = reshape(shape = var_3699, x = x_471_cast_fp16)[name = tensor("x_473_cast_fp16")]; + tensor var_3703_begin_0 = const()[name = tensor("op_3703_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3703_end_0 = const()[name = tensor("op_3703_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3703_end_mask_0 = const()[name = tensor("op_3703_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3703_cast_fp16 = slice_by_index(begin = var_3703_begin_0, end = var_3703_end_0, end_mask = var_3703_end_mask_0, x = x_473_cast_fp16)[name = tensor("op_3703_cast_fp16")]; + tensor var_3704 = const()[name = tensor("op_3704"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_85_cast_fp16 = reshape(shape = var_3704, x = var_3703_cast_fp16)[name = tensor("matrix_bd_85_cast_fp16")]; + tensor matrix_ac_43_transpose_x_0 = const()[name = tensor("matrix_ac_43_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_43_transpose_y_0 = const()[name = tensor("matrix_ac_43_transpose_y_0"), val = tensor(false)]; + tensor transpose_114_perm_0 = const()[name = tensor("transpose_114_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_115_perm_0 = const()[name = tensor("transpose_115_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_138 = transpose(perm = transpose_115_perm_0, x = k_85_cast_fp16)[name = tensor("transpose_138")]; + tensor transpose_139 = transpose(perm = transpose_114_perm_0, x = var_3687_cast_fp16)[name = tensor("transpose_139")]; + tensor matrix_ac_43_cast_fp16 = matmul(transpose_x = matrix_ac_43_transpose_x_0, transpose_y = matrix_ac_43_transpose_y_0, x = transpose_139, y = transpose_138)[name = tensor("matrix_ac_43_cast_fp16")]; + tensor matrix_bd_87_begin_0 = const()[name = tensor("matrix_bd_87_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_87_end_0 = const()[name = tensor("matrix_bd_87_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_87_end_mask_0 = const()[name = tensor("matrix_bd_87_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_87_cast_fp16 = slice_by_index(begin = matrix_bd_87_begin_0, end = matrix_bd_87_end_0, end_mask = matrix_bd_87_end_mask_0, x = matrix_bd_85_cast_fp16)[name = tensor("matrix_bd_87_cast_fp16")]; + tensor var_3713_cast_fp16 = add(x = matrix_ac_43_cast_fp16, y = matrix_bd_87_cast_fp16)[name = tensor("op_3713_cast_fp16")]; + tensor _inversed_scores_85_y_0_to_fp16 = const()[name = tensor("_inversed_scores_85_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_85_cast_fp16 = mul(x = var_3713_cast_fp16, y = _inversed_scores_85_y_0_to_fp16)[name = tensor("_inversed_scores_85_cast_fp16")]; + tensor scores_87_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_85_cast_fp16, cond = mask_3)[name = tensor("scores_87_cast_fp16")]; + tensor var_3719_cast_fp16 = softmax(axis = var_25, x = scores_87_cast_fp16)[name = tensor("op_3719_cast_fp16")]; + tensor input_1125_cast_fp16 = select(a = var_6_to_fp16, b = var_3719_cast_fp16, cond = mask_3)[name = tensor("input_1125_cast_fp16")]; + tensor x_475_transpose_x_0 = const()[name = tensor("x_475_transpose_x_0"), val = tensor(false)]; + tensor x_475_transpose_y_0 = const()[name = tensor("x_475_transpose_y_0"), val = tensor(false)]; + tensor transpose_141 = transpose(perm = value_43_perm_0, x = v_43_cast_fp16)[name = tensor("transpose_141")]; + tensor x_475_cast_fp16 = matmul(transpose_x = x_475_transpose_x_0, transpose_y = x_475_transpose_y_0, x = input_1125_cast_fp16, y = transpose_141)[name = tensor("x_475_cast_fp16")]; + tensor var_3723_perm_0 = const()[name = tensor("op_3723_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3724 = const()[name = tensor("op_3724"), val = tensor([1, -1, 1024])]; + tensor transpose_137 = transpose(perm = var_3723_perm_0, x = x_475_cast_fp16)[name = tensor("transpose_137")]; + tensor input_1127_cast_fp16 = reshape(shape = var_3724, x = transpose_137)[name = tensor("input_1127_cast_fp16")]; + tensor model_layers_21_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_21_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1056975360)))]; + tensor linear_196_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_self_attn_linear_out_weight_to_fp16, x = input_1127_cast_fp16)[name = tensor("linear_196_cast_fp16")]; + tensor input_1131_cast_fp16 = add(x = input_1123_cast_fp16, y = linear_196_cast_fp16)[name = tensor("input_1131_cast_fp16")]; + tensor x_479_axes_0 = const()[name = tensor("x_479_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1059072576)))]; + tensor model_layers_21_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1059074688)))]; + tensor x_479_cast_fp16 = layer_norm(axes = x_479_axes_0, beta = model_layers_21_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_conv_weight_to_fp16, x = input_1131_cast_fp16)[name = tensor("x_479_cast_fp16")]; + tensor input_1133_perm_0 = const()[name = tensor("input_1133_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3740 = const()[name = tensor("op_3740"), val = tensor([1])]; + tensor var_3742 = const()[name = tensor("op_3742"), val = tensor([1])]; + tensor input_1135_pad_type_0 = const()[name = tensor("input_1135_pad_type_0"), val = tensor("custom")]; + tensor input_1135_pad_0 = const()[name = tensor("input_1135_pad_0"), val = tensor([0, 0])]; + tensor model_layers_21_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_21_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1059076800)))]; + tensor transpose_136 = transpose(perm = input_1133_perm_0, x = x_479_cast_fp16)[name = tensor("transpose_136")]; + tensor input_1135_cast_fp16 = conv(dilations = var_3742, groups = var_27, pad = input_1135_pad_0, pad_type = input_1135_pad_type_0, strides = var_3740, weight = model_layers_21_conv_pointwise_conv1_weight_to_fp16, x = transpose_136)[name = tensor("input_1135_cast_fp16")]; + tensor x_481_split_num_splits_0 = const()[name = tensor("x_481_split_num_splits_0"), val = tensor(2)]; + tensor x_481_split_axis_0 = const()[name = tensor("x_481_split_axis_0"), val = tensor(1)]; + tensor x_481_split_cast_fp16_0, tensor x_481_split_cast_fp16_1 = split(axis = x_481_split_axis_0, num_splits = x_481_split_num_splits_0, x = input_1135_cast_fp16)[name = tensor("x_481_split_cast_fp16")]; + tensor x_481_split_1_sigmoid_cast_fp16 = sigmoid(x = x_481_split_cast_fp16_1)[name = tensor("x_481_split_1_sigmoid_cast_fp16")]; + tensor x_481_cast_fp16 = mul(x = x_481_split_cast_fp16_0, y = x_481_split_1_sigmoid_cast_fp16)[name = tensor("x_481_cast_fp16")]; + tensor input_1137_cast_fp16 = select(a = var_6_to_fp16, b = x_481_cast_fp16, cond = var_323)[name = tensor("input_1137_cast_fp16")]; + tensor input_1139_pad_0 = const()[name = tensor("input_1139_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1139_mode_0 = const()[name = tensor("input_1139_mode_0"), val = tensor("constant")]; + tensor const_226_to_fp16 = const()[name = tensor("const_226_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1139_cast_fp16 = pad(constant_val = const_226_to_fp16, mode = input_1139_mode_0, pad = input_1139_pad_0, x = input_1137_cast_fp16)[name = tensor("input_1139_cast_fp16")]; + tensor var_3751 = const()[name = tensor("op_3751"), val = tensor([1])]; + tensor var_3753 = const()[name = tensor("op_3753"), val = tensor([1])]; + tensor input_1141_pad_type_0 = const()[name = tensor("input_1141_pad_type_0"), val = tensor("custom")]; + tensor input_1141_pad_0 = const()[name = tensor("input_1141_pad_0"), val = tensor([0, 0])]; + tensor input_1143_weight_0_to_fp16 = const()[name = tensor("input_1143_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1063271168)))]; + tensor input_1143_bias_0_to_fp16 = const()[name = tensor("input_1143_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1063289664)))]; + tensor input_1143_cast_fp16 = conv(bias = input_1143_bias_0_to_fp16, dilations = var_3753, groups = var_5, pad = input_1141_pad_0, pad_type = input_1141_pad_type_0, strides = var_3751, weight = input_1143_weight_0_to_fp16, x = input_1139_cast_fp16)[name = tensor("input_1143_cast_fp16")]; + tensor input_1145_cast_fp16 = silu(x = input_1143_cast_fp16)[name = tensor("input_1145_cast_fp16")]; + tensor var_3763 = const()[name = tensor("op_3763"), val = tensor([1])]; + tensor var_3765 = const()[name = tensor("op_3765"), val = tensor([1])]; + tensor x_483_pad_type_0 = const()[name = tensor("x_483_pad_type_0"), val = tensor("custom")]; + tensor x_483_pad_0 = const()[name = tensor("x_483_pad_0"), val = tensor([0, 0])]; + tensor model_layers_21_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_21_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1063291776)))]; + tensor x_483_cast_fp16 = conv(dilations = var_3765, groups = var_27, pad = x_483_pad_0, pad_type = x_483_pad_type_0, strides = var_3763, weight = model_layers_21_conv_pointwise_conv2_weight_to_fp16, x = input_1145_cast_fp16)[name = tensor("x_483_cast_fp16")]; + tensor input_1147_perm_0 = const()[name = tensor("input_1147_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_135 = transpose(perm = input_1147_perm_0, x = x_483_cast_fp16)[name = tensor("transpose_135")]; + tensor input_1149_cast_fp16 = add(x = input_1131_cast_fp16, y = transpose_135)[name = tensor("input_1149_cast_fp16")]; + tensor input_1151_axes_0 = const()[name = tensor("input_1151_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1065388992)))]; + tensor model_layers_21_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1065391104)))]; + tensor input_1151_cast_fp16 = layer_norm(axes = input_1151_axes_0, beta = model_layers_21_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_feed_forward2_weight_to_fp16, x = input_1149_cast_fp16)[name = tensor("input_1151_cast_fp16")]; + tensor model_layers_21_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_21_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1065393216)))]; + tensor linear_197_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_21_feed_forward2_linear1_weight_to_fp16, x = input_1151_cast_fp16)[name = tensor("linear_197_cast_fp16")]; + tensor input_1155_cast_fp16 = silu(x = linear_197_cast_fp16)[name = tensor("input_1155_cast_fp16")]; + tensor model_layers_21_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_21_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1073781888)))]; + tensor linear_198_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_21_feed_forward2_linear2_weight_to_fp16, x = input_1155_cast_fp16)[name = tensor("linear_198_cast_fp16")]; + tensor var_3784_to_fp16 = const()[name = tensor("op_3784_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3785_cast_fp16 = mul(x = linear_198_cast_fp16, y = var_3784_to_fp16)[name = tensor("op_3785_cast_fp16")]; + tensor input_1161_cast_fp16 = add(x = input_1149_cast_fp16, y = var_3785_cast_fp16)[name = tensor("input_1161_cast_fp16")]; + tensor input_1163_axes_0 = const()[name = tensor("input_1163_axes_0"), val = tensor([-1])]; + tensor model_layers_21_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_21_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1082170560)))]; + tensor model_layers_21_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_21_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1082172672)))]; + tensor input_1163_cast_fp16 = layer_norm(axes = input_1163_axes_0, beta = model_layers_21_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_21_norm_out_weight_to_fp16, x = input_1161_cast_fp16)[name = tensor("input_1163_cast_fp16")]; + tensor input_1165_axes_0 = const()[name = tensor("input_1165_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1082174784)))]; + tensor model_layers_22_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1082176896)))]; + tensor input_1165_cast_fp16 = layer_norm(axes = input_1165_axes_0, beta = model_layers_22_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_feed_forward1_weight_to_fp16, x = input_1163_cast_fp16)[name = tensor("input_1165_cast_fp16")]; + tensor model_layers_22_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_22_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1082179008)))]; + tensor linear_199_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_22_feed_forward1_linear1_weight_to_fp16, x = input_1165_cast_fp16)[name = tensor("linear_199_cast_fp16")]; + tensor input_1169_cast_fp16 = silu(x = linear_199_cast_fp16)[name = tensor("input_1169_cast_fp16")]; + tensor model_layers_22_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_22_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1090567680)))]; + tensor linear_200_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_feed_forward1_linear2_weight_to_fp16, x = input_1169_cast_fp16)[name = tensor("linear_200_cast_fp16")]; + tensor var_3813_to_fp16 = const()[name = tensor("op_3813_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3814_cast_fp16 = mul(x = linear_200_cast_fp16, y = var_3813_to_fp16)[name = tensor("op_3814_cast_fp16")]; + tensor input_1175_cast_fp16 = add(x = input_1163_cast_fp16, y = var_3814_cast_fp16)[name = tensor("input_1175_cast_fp16")]; + tensor query_45_axes_0 = const()[name = tensor("query_45_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1098956352)))]; + tensor model_layers_22_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1098958464)))]; + tensor query_45_cast_fp16 = layer_norm(axes = query_45_axes_0, beta = model_layers_22_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_self_att_weight_to_fp16, x = input_1175_cast_fp16)[name = tensor("query_45_cast_fp16")]; + tensor model_layers_22_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_22_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1098960576)))]; + tensor linear_201_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_q_weight_to_fp16, x = query_45_cast_fp16)[name = tensor("linear_201_cast_fp16")]; + tensor var_3830 = const()[name = tensor("op_3830"), val = tensor([1, -1, 8, 128])]; + tensor q_133_cast_fp16 = reshape(shape = var_3830, x = linear_201_cast_fp16)[name = tensor("q_133_cast_fp16")]; + tensor model_layers_22_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_22_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1101057792)))]; + tensor linear_202_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_k_weight_to_fp16, x = query_45_cast_fp16)[name = tensor("linear_202_cast_fp16")]; + tensor var_3834 = const()[name = tensor("op_3834"), val = tensor([1, -1, 8, 128])]; + tensor k_89_cast_fp16 = reshape(shape = var_3834, x = linear_202_cast_fp16)[name = tensor("k_89_cast_fp16")]; + tensor model_layers_22_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_22_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1103155008)))]; + tensor linear_203_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_v_weight_to_fp16, x = query_45_cast_fp16)[name = tensor("linear_203_cast_fp16")]; + tensor var_3838 = const()[name = tensor("op_3838"), val = tensor([1, -1, 8, 128])]; + tensor v_45_cast_fp16 = reshape(shape = var_3838, x = linear_203_cast_fp16)[name = tensor("v_45_cast_fp16")]; + tensor value_45_perm_0 = const()[name = tensor("value_45_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_22_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_22_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1105252224)))]; + tensor var_3850_cast_fp16 = add(x = q_133_cast_fp16, y = model_layers_22_self_attn_pos_bias_u_to_fp16)[name = tensor("op_3850_cast_fp16")]; + tensor model_layers_22_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_22_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1105254336)))]; + tensor var_3852_cast_fp16 = add(x = q_133_cast_fp16, y = model_layers_22_self_attn_pos_bias_v_to_fp16)[name = tensor("op_3852_cast_fp16")]; + tensor q_with_bias_v_45_perm_0 = const()[name = tensor("q_with_bias_v_45_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_491_transpose_x_0 = const()[name = tensor("x_491_transpose_x_0"), val = tensor(false)]; + tensor x_491_transpose_y_0 = const()[name = tensor("x_491_transpose_y_0"), val = tensor(false)]; + tensor var_3854_to_fp16 = const()[name = tensor("op_3854_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1105256448)))]; + tensor transpose_133 = transpose(perm = q_with_bias_v_45_perm_0, x = var_3852_cast_fp16)[name = tensor("transpose_133")]; + tensor x_491_cast_fp16 = matmul(transpose_x = x_491_transpose_x_0, transpose_y = x_491_transpose_y_0, x = transpose_133, y = var_3854_to_fp16)[name = tensor("x_491_cast_fp16")]; + tensor x_493_pad_0 = const()[name = tensor("x_493_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_493_mode_0 = const()[name = tensor("x_493_mode_0"), val = tensor("constant")]; + tensor const_233_to_fp16 = const()[name = tensor("const_233_to_fp16"), val = tensor(0x0p+0)]; + tensor x_493_cast_fp16 = pad(constant_val = const_233_to_fp16, mode = x_493_mode_0, pad = x_493_pad_0, x = x_491_cast_fp16)[name = tensor("x_493_cast_fp16")]; + tensor var_3862 = const()[name = tensor("op_3862"), val = tensor([1, 8, -1, 126])]; + tensor x_495_cast_fp16 = reshape(shape = var_3862, x = x_493_cast_fp16)[name = tensor("x_495_cast_fp16")]; + tensor var_3866_begin_0 = const()[name = tensor("op_3866_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_3866_end_0 = const()[name = tensor("op_3866_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_3866_end_mask_0 = const()[name = tensor("op_3866_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_3866_cast_fp16 = slice_by_index(begin = var_3866_begin_0, end = var_3866_end_0, end_mask = var_3866_end_mask_0, x = x_495_cast_fp16)[name = tensor("op_3866_cast_fp16")]; + tensor var_3867 = const()[name = tensor("op_3867"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_89_cast_fp16 = reshape(shape = var_3867, x = var_3866_cast_fp16)[name = tensor("matrix_bd_89_cast_fp16")]; + tensor matrix_ac_45_transpose_x_0 = const()[name = tensor("matrix_ac_45_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_45_transpose_y_0 = const()[name = tensor("matrix_ac_45_transpose_y_0"), val = tensor(false)]; + tensor transpose_116_perm_0 = const()[name = tensor("transpose_116_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_117_perm_0 = const()[name = tensor("transpose_117_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_131 = transpose(perm = transpose_117_perm_0, x = k_89_cast_fp16)[name = tensor("transpose_131")]; + tensor transpose_132 = transpose(perm = transpose_116_perm_0, x = var_3850_cast_fp16)[name = tensor("transpose_132")]; + tensor matrix_ac_45_cast_fp16 = matmul(transpose_x = matrix_ac_45_transpose_x_0, transpose_y = matrix_ac_45_transpose_y_0, x = transpose_132, y = transpose_131)[name = tensor("matrix_ac_45_cast_fp16")]; + tensor matrix_bd_91_begin_0 = const()[name = tensor("matrix_bd_91_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_91_end_0 = const()[name = tensor("matrix_bd_91_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_91_end_mask_0 = const()[name = tensor("matrix_bd_91_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_91_cast_fp16 = slice_by_index(begin = matrix_bd_91_begin_0, end = matrix_bd_91_end_0, end_mask = matrix_bd_91_end_mask_0, x = matrix_bd_89_cast_fp16)[name = tensor("matrix_bd_91_cast_fp16")]; + tensor var_3876_cast_fp16 = add(x = matrix_ac_45_cast_fp16, y = matrix_bd_91_cast_fp16)[name = tensor("op_3876_cast_fp16")]; + tensor _inversed_scores_89_y_0_to_fp16 = const()[name = tensor("_inversed_scores_89_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_89_cast_fp16 = mul(x = var_3876_cast_fp16, y = _inversed_scores_89_y_0_to_fp16)[name = tensor("_inversed_scores_89_cast_fp16")]; + tensor scores_91_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_89_cast_fp16, cond = mask_3)[name = tensor("scores_91_cast_fp16")]; + tensor var_3882_cast_fp16 = softmax(axis = var_25, x = scores_91_cast_fp16)[name = tensor("op_3882_cast_fp16")]; + tensor input_1177_cast_fp16 = select(a = var_6_to_fp16, b = var_3882_cast_fp16, cond = mask_3)[name = tensor("input_1177_cast_fp16")]; + tensor x_497_transpose_x_0 = const()[name = tensor("x_497_transpose_x_0"), val = tensor(false)]; + tensor x_497_transpose_y_0 = const()[name = tensor("x_497_transpose_y_0"), val = tensor(false)]; + tensor transpose_134 = transpose(perm = value_45_perm_0, x = v_45_cast_fp16)[name = tensor("transpose_134")]; + tensor x_497_cast_fp16 = matmul(transpose_x = x_497_transpose_x_0, transpose_y = x_497_transpose_y_0, x = input_1177_cast_fp16, y = transpose_134)[name = tensor("x_497_cast_fp16")]; + tensor var_3886_perm_0 = const()[name = tensor("op_3886_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_3887 = const()[name = tensor("op_3887"), val = tensor([1, -1, 1024])]; + tensor transpose_130 = transpose(perm = var_3886_perm_0, x = x_497_cast_fp16)[name = tensor("transpose_130")]; + tensor input_1179_cast_fp16 = reshape(shape = var_3887, x = transpose_130)[name = tensor("input_1179_cast_fp16")]; + tensor model_layers_22_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_22_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1105770560)))]; + tensor linear_205_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_self_attn_linear_out_weight_to_fp16, x = input_1179_cast_fp16)[name = tensor("linear_205_cast_fp16")]; + tensor input_1183_cast_fp16 = add(x = input_1175_cast_fp16, y = linear_205_cast_fp16)[name = tensor("input_1183_cast_fp16")]; + tensor x_501_axes_0 = const()[name = tensor("x_501_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1107867776)))]; + tensor model_layers_22_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1107869888)))]; + tensor x_501_cast_fp16 = layer_norm(axes = x_501_axes_0, beta = model_layers_22_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_conv_weight_to_fp16, x = input_1183_cast_fp16)[name = tensor("x_501_cast_fp16")]; + tensor input_1185_perm_0 = const()[name = tensor("input_1185_perm_0"), val = tensor([0, 2, 1])]; + tensor var_3903 = const()[name = tensor("op_3903"), val = tensor([1])]; + tensor var_3905 = const()[name = tensor("op_3905"), val = tensor([1])]; + tensor input_1187_pad_type_0 = const()[name = tensor("input_1187_pad_type_0"), val = tensor("custom")]; + tensor input_1187_pad_0 = const()[name = tensor("input_1187_pad_0"), val = tensor([0, 0])]; + tensor model_layers_22_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_22_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1107872000)))]; + tensor transpose_129 = transpose(perm = input_1185_perm_0, x = x_501_cast_fp16)[name = tensor("transpose_129")]; + tensor input_1187_cast_fp16 = conv(dilations = var_3905, groups = var_27, pad = input_1187_pad_0, pad_type = input_1187_pad_type_0, strides = var_3903, weight = model_layers_22_conv_pointwise_conv1_weight_to_fp16, x = transpose_129)[name = tensor("input_1187_cast_fp16")]; + tensor x_503_split_num_splits_0 = const()[name = tensor("x_503_split_num_splits_0"), val = tensor(2)]; + tensor x_503_split_axis_0 = const()[name = tensor("x_503_split_axis_0"), val = tensor(1)]; + tensor x_503_split_cast_fp16_0, tensor x_503_split_cast_fp16_1 = split(axis = x_503_split_axis_0, num_splits = x_503_split_num_splits_0, x = input_1187_cast_fp16)[name = tensor("x_503_split_cast_fp16")]; + tensor x_503_split_1_sigmoid_cast_fp16 = sigmoid(x = x_503_split_cast_fp16_1)[name = tensor("x_503_split_1_sigmoid_cast_fp16")]; + tensor x_503_cast_fp16 = mul(x = x_503_split_cast_fp16_0, y = x_503_split_1_sigmoid_cast_fp16)[name = tensor("x_503_cast_fp16")]; + tensor input_1189_cast_fp16 = select(a = var_6_to_fp16, b = x_503_cast_fp16, cond = var_323)[name = tensor("input_1189_cast_fp16")]; + tensor input_1191_pad_0 = const()[name = tensor("input_1191_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1191_mode_0 = const()[name = tensor("input_1191_mode_0"), val = tensor("constant")]; + tensor const_236_to_fp16 = const()[name = tensor("const_236_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1191_cast_fp16 = pad(constant_val = const_236_to_fp16, mode = input_1191_mode_0, pad = input_1191_pad_0, x = input_1189_cast_fp16)[name = tensor("input_1191_cast_fp16")]; + tensor var_3914 = const()[name = tensor("op_3914"), val = tensor([1])]; + tensor var_3916 = const()[name = tensor("op_3916"), val = tensor([1])]; + tensor input_1193_pad_type_0 = const()[name = tensor("input_1193_pad_type_0"), val = tensor("custom")]; + tensor input_1193_pad_0 = const()[name = tensor("input_1193_pad_0"), val = tensor([0, 0])]; + tensor input_1195_weight_0_to_fp16 = const()[name = tensor("input_1195_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1112066368)))]; + tensor input_1195_bias_0_to_fp16 = const()[name = tensor("input_1195_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1112084864)))]; + tensor input_1195_cast_fp16 = conv(bias = input_1195_bias_0_to_fp16, dilations = var_3916, groups = var_5, pad = input_1193_pad_0, pad_type = input_1193_pad_type_0, strides = var_3914, weight = input_1195_weight_0_to_fp16, x = input_1191_cast_fp16)[name = tensor("input_1195_cast_fp16")]; + tensor input_1197_cast_fp16 = silu(x = input_1195_cast_fp16)[name = tensor("input_1197_cast_fp16")]; + tensor var_3926 = const()[name = tensor("op_3926"), val = tensor([1])]; + tensor var_3928 = const()[name = tensor("op_3928"), val = tensor([1])]; + tensor x_505_pad_type_0 = const()[name = tensor("x_505_pad_type_0"), val = tensor("custom")]; + tensor x_505_pad_0 = const()[name = tensor("x_505_pad_0"), val = tensor([0, 0])]; + tensor model_layers_22_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_22_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1112086976)))]; + tensor x_505_cast_fp16 = conv(dilations = var_3928, groups = var_27, pad = x_505_pad_0, pad_type = x_505_pad_type_0, strides = var_3926, weight = model_layers_22_conv_pointwise_conv2_weight_to_fp16, x = input_1197_cast_fp16)[name = tensor("x_505_cast_fp16")]; + tensor input_1199_perm_0 = const()[name = tensor("input_1199_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_128 = transpose(perm = input_1199_perm_0, x = x_505_cast_fp16)[name = tensor("transpose_128")]; + tensor input_1201_cast_fp16 = add(x = input_1183_cast_fp16, y = transpose_128)[name = tensor("input_1201_cast_fp16")]; + tensor input_1203_axes_0 = const()[name = tensor("input_1203_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1114184192)))]; + tensor model_layers_22_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1114186304)))]; + tensor input_1203_cast_fp16 = layer_norm(axes = input_1203_axes_0, beta = model_layers_22_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_feed_forward2_weight_to_fp16, x = input_1201_cast_fp16)[name = tensor("input_1203_cast_fp16")]; + tensor model_layers_22_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_22_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1114188416)))]; + tensor linear_206_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_22_feed_forward2_linear1_weight_to_fp16, x = input_1203_cast_fp16)[name = tensor("linear_206_cast_fp16")]; + tensor input_1207_cast_fp16 = silu(x = linear_206_cast_fp16)[name = tensor("input_1207_cast_fp16")]; + tensor model_layers_22_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_22_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1122577088)))]; + tensor linear_207_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_22_feed_forward2_linear2_weight_to_fp16, x = input_1207_cast_fp16)[name = tensor("linear_207_cast_fp16")]; + tensor var_3947_to_fp16 = const()[name = tensor("op_3947_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3948_cast_fp16 = mul(x = linear_207_cast_fp16, y = var_3947_to_fp16)[name = tensor("op_3948_cast_fp16")]; + tensor input_1213_cast_fp16 = add(x = input_1201_cast_fp16, y = var_3948_cast_fp16)[name = tensor("input_1213_cast_fp16")]; + tensor input_1215_axes_0 = const()[name = tensor("input_1215_axes_0"), val = tensor([-1])]; + tensor model_layers_22_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_22_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1130965760)))]; + tensor model_layers_22_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_22_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1130967872)))]; + tensor input_1215_cast_fp16 = layer_norm(axes = input_1215_axes_0, beta = model_layers_22_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_22_norm_out_weight_to_fp16, x = input_1213_cast_fp16)[name = tensor("input_1215_cast_fp16")]; + tensor input_1217_axes_0 = const()[name = tensor("input_1217_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_feed_forward1_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1130969984)))]; + tensor model_layers_23_norm_feed_forward1_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1130972096)))]; + tensor input_1217_cast_fp16 = layer_norm(axes = input_1217_axes_0, beta = model_layers_23_norm_feed_forward1_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_feed_forward1_weight_to_fp16, x = input_1215_cast_fp16)[name = tensor("input_1217_cast_fp16")]; + tensor model_layers_23_feed_forward1_linear1_weight_to_fp16 = const()[name = tensor("model_layers_23_feed_forward1_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1130974208)))]; + tensor linear_208_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_23_feed_forward1_linear1_weight_to_fp16, x = input_1217_cast_fp16)[name = tensor("linear_208_cast_fp16")]; + tensor input_1221_cast_fp16 = silu(x = linear_208_cast_fp16)[name = tensor("input_1221_cast_fp16")]; + tensor model_layers_23_feed_forward1_linear2_weight_to_fp16 = const()[name = tensor("model_layers_23_feed_forward1_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1139362880)))]; + tensor linear_209_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_feed_forward1_linear2_weight_to_fp16, x = input_1221_cast_fp16)[name = tensor("linear_209_cast_fp16")]; + tensor var_3976_to_fp16 = const()[name = tensor("op_3976_to_fp16"), val = tensor(0x1p-1)]; + tensor var_3977_cast_fp16 = mul(x = linear_209_cast_fp16, y = var_3976_to_fp16)[name = tensor("op_3977_cast_fp16")]; + tensor input_1227_cast_fp16 = add(x = input_1215_cast_fp16, y = var_3977_cast_fp16)[name = tensor("input_1227_cast_fp16")]; + tensor query_axes_0 = const()[name = tensor("query_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_self_att_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_self_att_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1147751552)))]; + tensor model_layers_23_norm_self_att_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_self_att_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1147753664)))]; + tensor query_cast_fp16 = layer_norm(axes = query_axes_0, beta = model_layers_23_norm_self_att_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_self_att_weight_to_fp16, x = input_1227_cast_fp16)[name = tensor("query_cast_fp16")]; + tensor model_layers_23_self_attn_linear_q_weight_to_fp16 = const()[name = tensor("model_layers_23_self_attn_linear_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1147755776)))]; + tensor linear_210_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_q_weight_to_fp16, x = query_cast_fp16)[name = tensor("linear_210_cast_fp16")]; + tensor var_3993 = const()[name = tensor("op_3993"), val = tensor([1, -1, 8, 128])]; + tensor q_139_cast_fp16 = reshape(shape = var_3993, x = linear_210_cast_fp16)[name = tensor("q_139_cast_fp16")]; + tensor model_layers_23_self_attn_linear_k_weight_to_fp16 = const()[name = tensor("model_layers_23_self_attn_linear_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1149852992)))]; + tensor linear_211_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_k_weight_to_fp16, x = query_cast_fp16)[name = tensor("linear_211_cast_fp16")]; + tensor var_3997 = const()[name = tensor("op_3997"), val = tensor([1, -1, 8, 128])]; + tensor k_93_cast_fp16 = reshape(shape = var_3997, x = linear_211_cast_fp16)[name = tensor("k_93_cast_fp16")]; + tensor model_layers_23_self_attn_linear_v_weight_to_fp16 = const()[name = tensor("model_layers_23_self_attn_linear_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1151950208)))]; + tensor linear_212_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_v_weight_to_fp16, x = query_cast_fp16)[name = tensor("linear_212_cast_fp16")]; + tensor var_4001 = const()[name = tensor("op_4001"), val = tensor([1, -1, 8, 128])]; + tensor v_cast_fp16 = reshape(shape = var_4001, x = linear_212_cast_fp16)[name = tensor("v_cast_fp16")]; + tensor value_perm_0 = const()[name = tensor("value_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor model_layers_23_self_attn_pos_bias_u_to_fp16 = const()[name = tensor("model_layers_23_self_attn_pos_bias_u_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1154047424)))]; + tensor var_4013_cast_fp16 = add(x = q_139_cast_fp16, y = model_layers_23_self_attn_pos_bias_u_to_fp16)[name = tensor("op_4013_cast_fp16")]; + tensor model_layers_23_self_attn_pos_bias_v_to_fp16 = const()[name = tensor("model_layers_23_self_attn_pos_bias_v_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1154049536)))]; + tensor var_4015_cast_fp16 = add(x = q_139_cast_fp16, y = model_layers_23_self_attn_pos_bias_v_to_fp16)[name = tensor("op_4015_cast_fp16")]; + tensor q_with_bias_v_perm_0 = const()[name = tensor("q_with_bias_v_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor x_513_transpose_x_0 = const()[name = tensor("x_513_transpose_x_0"), val = tensor(false)]; + tensor x_513_transpose_y_0 = const()[name = tensor("x_513_transpose_y_0"), val = tensor(false)]; + tensor var_4017_to_fp16 = const()[name = tensor("op_4017_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1154051648)))]; + tensor transpose_126 = transpose(perm = q_with_bias_v_perm_0, x = var_4015_cast_fp16)[name = tensor("transpose_126")]; + tensor x_513_cast_fp16 = matmul(transpose_x = x_513_transpose_x_0, transpose_y = x_513_transpose_y_0, x = transpose_126, y = var_4017_to_fp16)[name = tensor("x_513_cast_fp16")]; + tensor x_515_pad_0 = const()[name = tensor("x_515_pad_0"), val = tensor([0, 0, 0, 0, 0, 0, 1, 0])]; + tensor x_515_mode_0 = const()[name = tensor("x_515_mode_0"), val = tensor("constant")]; + tensor const_243_to_fp16 = const()[name = tensor("const_243_to_fp16"), val = tensor(0x0p+0)]; + tensor x_515_cast_fp16 = pad(constant_val = const_243_to_fp16, mode = x_515_mode_0, pad = x_515_pad_0, x = x_513_cast_fp16)[name = tensor("x_515_cast_fp16")]; + tensor var_4025 = const()[name = tensor("op_4025"), val = tensor([1, 8, -1, 126])]; + tensor x_517_cast_fp16 = reshape(shape = var_4025, x = x_515_cast_fp16)[name = tensor("x_517_cast_fp16")]; + tensor var_4029_begin_0 = const()[name = tensor("op_4029_begin_0"), val = tensor([0, 0, 1, 0])]; + tensor var_4029_end_0 = const()[name = tensor("op_4029_end_0"), val = tensor([1, 8, 252, 126])]; + tensor var_4029_end_mask_0 = const()[name = tensor("op_4029_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_4029_cast_fp16 = slice_by_index(begin = var_4029_begin_0, end = var_4029_end_0, end_mask = var_4029_end_mask_0, x = x_517_cast_fp16)[name = tensor("op_4029_cast_fp16")]; + tensor var_4030 = const()[name = tensor("op_4030"), val = tensor([1, 8, 126, 251])]; + tensor matrix_bd_93_cast_fp16 = reshape(shape = var_4030, x = var_4029_cast_fp16)[name = tensor("matrix_bd_93_cast_fp16")]; + tensor matrix_ac_transpose_x_0 = const()[name = tensor("matrix_ac_transpose_x_0"), val = tensor(false)]; + tensor matrix_ac_transpose_y_0 = const()[name = tensor("matrix_ac_transpose_y_0"), val = tensor(false)]; + tensor transpose_118_perm_0 = const()[name = tensor("transpose_118_perm_0"), val = tensor([0, 2, -3, -1])]; + tensor transpose_119_perm_0 = const()[name = tensor("transpose_119_perm_0"), val = tensor([0, 2, -1, -3])]; + tensor transpose_124 = transpose(perm = transpose_119_perm_0, x = k_93_cast_fp16)[name = tensor("transpose_124")]; + tensor transpose_125 = transpose(perm = transpose_118_perm_0, x = var_4013_cast_fp16)[name = tensor("transpose_125")]; + tensor matrix_ac_cast_fp16 = matmul(transpose_x = matrix_ac_transpose_x_0, transpose_y = matrix_ac_transpose_y_0, x = transpose_125, y = transpose_124)[name = tensor("matrix_ac_cast_fp16")]; + tensor matrix_bd_begin_0 = const()[name = tensor("matrix_bd_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor matrix_bd_end_0 = const()[name = tensor("matrix_bd_end_0"), val = tensor([1, 8, 126, 126])]; + tensor matrix_bd_end_mask_0 = const()[name = tensor("matrix_bd_end_mask_0"), val = tensor([true, true, true, false])]; + tensor matrix_bd_cast_fp16 = slice_by_index(begin = matrix_bd_begin_0, end = matrix_bd_end_0, end_mask = matrix_bd_end_mask_0, x = matrix_bd_93_cast_fp16)[name = tensor("matrix_bd_cast_fp16")]; + tensor var_4039_cast_fp16 = add(x = matrix_ac_cast_fp16, y = matrix_bd_cast_fp16)[name = tensor("op_4039_cast_fp16")]; + tensor _inversed_scores_93_y_0_to_fp16 = const()[name = tensor("_inversed_scores_93_y_0_to_fp16"), val = tensor(0x1.6ap-4)]; + tensor _inversed_scores_93_cast_fp16 = mul(x = var_4039_cast_fp16, y = _inversed_scores_93_y_0_to_fp16)[name = tensor("_inversed_scores_93_cast_fp16")]; + tensor scores_cast_fp16 = select(a = var_7_to_fp16, b = _inversed_scores_93_cast_fp16, cond = mask_3)[name = tensor("scores_cast_fp16")]; + tensor var_4045_cast_fp16 = softmax(axis = var_25, x = scores_cast_fp16)[name = tensor("op_4045_cast_fp16")]; + tensor input_1229_cast_fp16 = select(a = var_6_to_fp16, b = var_4045_cast_fp16, cond = mask_3)[name = tensor("input_1229_cast_fp16")]; + tensor x_519_transpose_x_0 = const()[name = tensor("x_519_transpose_x_0"), val = tensor(false)]; + tensor x_519_transpose_y_0 = const()[name = tensor("x_519_transpose_y_0"), val = tensor(false)]; + tensor transpose_127 = transpose(perm = value_perm_0, x = v_cast_fp16)[name = tensor("transpose_127")]; + tensor x_519_cast_fp16 = matmul(transpose_x = x_519_transpose_x_0, transpose_y = x_519_transpose_y_0, x = input_1229_cast_fp16, y = transpose_127)[name = tensor("x_519_cast_fp16")]; + tensor var_4049_perm_0 = const()[name = tensor("op_4049_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_4050 = const()[name = tensor("op_4050"), val = tensor([1, -1, 1024])]; + tensor transpose_123 = transpose(perm = var_4049_perm_0, x = x_519_cast_fp16)[name = tensor("transpose_123")]; + tensor input_1231_cast_fp16 = reshape(shape = var_4050, x = transpose_123)[name = tensor("input_1231_cast_fp16")]; + tensor model_layers_23_self_attn_linear_out_weight_to_fp16 = const()[name = tensor("model_layers_23_self_attn_linear_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1154565760)))]; + tensor linear_214_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_self_attn_linear_out_weight_to_fp16, x = input_1231_cast_fp16)[name = tensor("linear_214_cast_fp16")]; + tensor input_1235_cast_fp16 = add(x = input_1227_cast_fp16, y = linear_214_cast_fp16)[name = tensor("input_1235_cast_fp16")]; + tensor x_523_axes_0 = const()[name = tensor("x_523_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_conv_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1156662976)))]; + tensor model_layers_23_norm_conv_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1156665088)))]; + tensor x_523_cast_fp16 = layer_norm(axes = x_523_axes_0, beta = model_layers_23_norm_conv_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_conv_weight_to_fp16, x = input_1235_cast_fp16)[name = tensor("x_523_cast_fp16")]; + tensor input_1237_perm_0 = const()[name = tensor("input_1237_perm_0"), val = tensor([0, 2, 1])]; + tensor var_4066 = const()[name = tensor("op_4066"), val = tensor([1])]; + tensor var_4068 = const()[name = tensor("op_4068"), val = tensor([1])]; + tensor input_1239_pad_type_0 = const()[name = tensor("input_1239_pad_type_0"), val = tensor("custom")]; + tensor input_1239_pad_0 = const()[name = tensor("input_1239_pad_0"), val = tensor([0, 0])]; + tensor model_layers_23_conv_pointwise_conv1_weight_to_fp16 = const()[name = tensor("model_layers_23_conv_pointwise_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1156667200)))]; + tensor transpose_122 = transpose(perm = input_1237_perm_0, x = x_523_cast_fp16)[name = tensor("transpose_122")]; + tensor input_1239_cast_fp16 = conv(dilations = var_4068, groups = var_27, pad = input_1239_pad_0, pad_type = input_1239_pad_type_0, strides = var_4066, weight = model_layers_23_conv_pointwise_conv1_weight_to_fp16, x = transpose_122)[name = tensor("input_1239_cast_fp16")]; + tensor x_525_split_num_splits_0 = const()[name = tensor("x_525_split_num_splits_0"), val = tensor(2)]; + tensor x_525_split_axis_0 = const()[name = tensor("x_525_split_axis_0"), val = tensor(1)]; + tensor x_525_split_cast_fp16_0, tensor x_525_split_cast_fp16_1 = split(axis = x_525_split_axis_0, num_splits = x_525_split_num_splits_0, x = input_1239_cast_fp16)[name = tensor("x_525_split_cast_fp16")]; + tensor x_525_split_1_sigmoid_cast_fp16 = sigmoid(x = x_525_split_cast_fp16_1)[name = tensor("x_525_split_1_sigmoid_cast_fp16")]; + tensor x_525_cast_fp16 = mul(x = x_525_split_cast_fp16_0, y = x_525_split_1_sigmoid_cast_fp16)[name = tensor("x_525_cast_fp16")]; + tensor input_1241_cast_fp16 = select(a = var_6_to_fp16, b = x_525_cast_fp16, cond = var_323)[name = tensor("input_1241_cast_fp16")]; + tensor input_1243_pad_0 = const()[name = tensor("input_1243_pad_0"), val = tensor([0, 0, 0, 0, 4, 4])]; + tensor input_1243_mode_0 = const()[name = tensor("input_1243_mode_0"), val = tensor("constant")]; + tensor const_246_to_fp16 = const()[name = tensor("const_246_to_fp16"), val = tensor(0x0p+0)]; + tensor input_1243_cast_fp16 = pad(constant_val = const_246_to_fp16, mode = input_1243_mode_0, pad = input_1243_pad_0, x = input_1241_cast_fp16)[name = tensor("input_1243_cast_fp16")]; + tensor var_4077 = const()[name = tensor("op_4077"), val = tensor([1])]; + tensor var_4079 = const()[name = tensor("op_4079"), val = tensor([1])]; + tensor input_1245_pad_type_0 = const()[name = tensor("input_1245_pad_type_0"), val = tensor("custom")]; + tensor input_1245_pad_0 = const()[name = tensor("input_1245_pad_0"), val = tensor([0, 0])]; + tensor input_1247_weight_0_to_fp16 = const()[name = tensor("input_1247_weight_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1160861568)))]; + tensor input_1247_bias_0_to_fp16 = const()[name = tensor("input_1247_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1160880064)))]; + tensor input_1247_cast_fp16 = conv(bias = input_1247_bias_0_to_fp16, dilations = var_4079, groups = var_5, pad = input_1245_pad_0, pad_type = input_1245_pad_type_0, strides = var_4077, weight = input_1247_weight_0_to_fp16, x = input_1243_cast_fp16)[name = tensor("input_1247_cast_fp16")]; + tensor input_1249_cast_fp16 = silu(x = input_1247_cast_fp16)[name = tensor("input_1249_cast_fp16")]; + tensor var_4089 = const()[name = tensor("op_4089"), val = tensor([1])]; + tensor var_4091 = const()[name = tensor("op_4091"), val = tensor([1])]; + tensor x_527_pad_type_0 = const()[name = tensor("x_527_pad_type_0"), val = tensor("custom")]; + tensor x_527_pad_0 = const()[name = tensor("x_527_pad_0"), val = tensor([0, 0])]; + tensor model_layers_23_conv_pointwise_conv2_weight_to_fp16 = const()[name = tensor("model_layers_23_conv_pointwise_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1160882176)))]; + tensor x_527_cast_fp16 = conv(dilations = var_4091, groups = var_27, pad = x_527_pad_0, pad_type = x_527_pad_type_0, strides = var_4089, weight = model_layers_23_conv_pointwise_conv2_weight_to_fp16, x = input_1249_cast_fp16)[name = tensor("x_527_cast_fp16")]; + tensor input_1251_perm_0 = const()[name = tensor("input_1251_perm_0"), val = tensor([0, 2, 1])]; + tensor transpose_121 = transpose(perm = input_1251_perm_0, x = x_527_cast_fp16)[name = tensor("transpose_121")]; + tensor input_1253_cast_fp16 = add(x = input_1235_cast_fp16, y = transpose_121)[name = tensor("input_1253_cast_fp16")]; + tensor input_1255_axes_0 = const()[name = tensor("input_1255_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_feed_forward2_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1162979392)))]; + tensor model_layers_23_norm_feed_forward2_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_feed_forward2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1162981504)))]; + tensor input_1255_cast_fp16 = layer_norm(axes = input_1255_axes_0, beta = model_layers_23_norm_feed_forward2_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_feed_forward2_weight_to_fp16, x = input_1253_cast_fp16)[name = tensor("input_1255_cast_fp16")]; + tensor model_layers_23_feed_forward2_linear1_weight_to_fp16 = const()[name = tensor("model_layers_23_feed_forward2_linear1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1162983616)))]; + tensor linear_215_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_layers_23_feed_forward2_linear1_weight_to_fp16, x = input_1255_cast_fp16)[name = tensor("linear_215_cast_fp16")]; + tensor input_1259_cast_fp16 = silu(x = linear_215_cast_fp16)[name = tensor("input_1259_cast_fp16")]; + tensor model_layers_23_feed_forward2_linear2_weight_to_fp16 = const()[name = tensor("model_layers_23_feed_forward2_linear2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1171372288)))]; + tensor linear_216_cast_fp16 = linear(bias = linear_2_bias_0_to_fp16, weight = model_layers_23_feed_forward2_linear2_weight_to_fp16, x = input_1259_cast_fp16)[name = tensor("linear_216_cast_fp16")]; + tensor var_4110_to_fp16 = const()[name = tensor("op_4110_to_fp16"), val = tensor(0x1p-1)]; + tensor var_4111_cast_fp16 = mul(x = linear_216_cast_fp16, y = var_4110_to_fp16)[name = tensor("op_4111_cast_fp16")]; + tensor input_cast_fp16 = add(x = input_1253_cast_fp16, y = var_4111_cast_fp16)[name = tensor("input_cast_fp16")]; + tensor audio_signal_axes_0 = const()[name = tensor("audio_signal_axes_0"), val = tensor([-1])]; + tensor model_layers_23_norm_out_weight_to_fp16 = const()[name = tensor("model_layers_23_norm_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1179760960)))]; + tensor model_layers_23_norm_out_bias_to_fp16 = const()[name = tensor("model_layers_23_norm_out_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1179763072)))]; + tensor audio_signal_cast_fp16 = layer_norm(axes = audio_signal_axes_0, beta = model_layers_23_norm_out_bias_to_fp16, epsilon = var_4_to_fp16, gamma = model_layers_23_norm_out_weight_to_fp16, x = input_cast_fp16)[name = tensor("audio_signal_cast_fp16")]; + tensor obj_1_perm_0 = const()[name = tensor("obj_1_perm_0"), val = tensor([0, 2, 1])]; + tensor obj_1_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("obj_1_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; + tensor transpose_120 = transpose(perm = obj_1_perm_0, x = audio_signal_cast_fp16)[name = tensor("transpose_120")]; + tensor encoder_output = cast(dtype = obj_1_cast_fp16_to_fp32_dtype_0, x = transpose_120)[name = tensor("cast_227")]; + } -> (encoder_output, encoder_output_length); +} \ No newline at end of file