FlamingNeuron commited on
Commit
e8ed5de
·
verified ·
1 Parent(s): 2abf528

Updated readme Example Usage to point to notebook on GitHub

Browse files
Files changed (1) hide show
  1. README.md +5 -23
README.md CHANGED
@@ -19,34 +19,16 @@ This model converts legalese into short, human-readable summaries, based on data
19
 
20
  ## 💡 Example Usage
21
 
22
- ```python
23
- from transformers import AutoModelForCausalLM, AutoTokenizer
24
 
25
- model = AutoModelForCausalLM.from_pretrained(
26
- "FlamingNeuron/llama381binstruct_summarize_short_merged",
27
- device_map="auto"
28
- )
29
 
30
- tokenizer = AutoTokenizer.from_pretrained(
31
- "FlamingNeuron/llama381binstruct_summarize_short_merged"
32
- )
33
 
34
- prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
 
35
 
36
- Please convert the following legal content into a short human-readable summary<|eot_id|><|start_header_id|>user<|end_header_id|>
37
 
38
- [LEGAL_DOC]by using our services you agree to these terms...[END_LEGAL_DOC]<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
39
-
40
- # Tokenize and move to GPU
41
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
42
-
43
- # Generate model response
44
- outputs = model.generate(**inputs, max_new_tokens=128)
45
-
46
- # Decode and print result
47
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
48
-
49
- ```
50
  ## 🏋️ Training Procedure
51
 
52
  This model was trained using **Supervised Fine-Tuning (SFT)** on legal document summaries using the [legal_summarization](https://github.com/lauramanor/legal_summarization) dataset. LoRA adapters were applied during training and merged afterward using `merge_and_unload()`.
 
19
 
20
  ## 💡 Example Usage
21
 
22
+ For complete setup instructions and working inference examples, see:
23
+ 👉 [GitHub Repo: LLaMA3-demo](https://github.com/BQ31X/LLaMA3-demo)
24
 
25
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/BQ31X/LLaMA3-demo/blob/main/FlamingNeuron_ModelTest_20250418.ipynb)
 
 
 
26
 
 
 
 
27
 
28
+ This model expects Meta-style structured prompts with two fields: `original_text` and `reference_summary`.
29
+ The `original_text` contains the input passage, and the model generates a summary in place of the empty `reference_summary`.
30
 
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ## 🏋️ Training Procedure
33
 
34
  This model was trained using **Supervised Fine-Tuning (SFT)** on legal document summaries using the [legal_summarization](https://github.com/lauramanor/legal_summarization) dataset. LoRA adapters were applied during training and merged afterward using `merge_and_unload()`.