Diffusers
Safetensors
WanDMDPipeline
PY007 commited on
Commit
9f5bf86
·
verified ·
1 Parent(s): d6758c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -2
README.md CHANGED
@@ -32,11 +32,37 @@ FastWan2.1-T2V-14B-480P-Diffuserss is built upon Wan-AI/Wan2.1-T2V-14B-Diffusers
32
  ## Model Overview
33
 
34
  - 3-step inference is supported and achieves up to **50x speed up** for denoising loop on a single **H100** GPU.
35
- - Our model is trained on **61×448×832** resolution, but it supports generating videos with any resolution.(quality may degrade)
36
  - Finetuning and inference scripts are available in the [FastVideo](https://github.com/hao-ai-lab/FastVideo) repository:
37
  - [1 Node/GPU debugging finetuning script](https://github.com/hao-ai-lab/FastVideo/blob/main/scripts/distill/v1_distill_dmd_wan_VSA.sh)
38
  - [Slurm training example script](https://github.com/hao-ai-lab/FastVideo/blob/main/examples/distill/Wan2.1-T2V/Wan-Syn-Data-480P/distill_dmd_VSA_t2v_14B.slurm)
39
- - [Inference script](https://github.com/hao-ai-lab/FastVideo/blob/main/scripts/inference/v1_inference_wan_dmd.sh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  - Try it out on **FastVideo** — we support a wide range of GPUs from **H100** to **4090**, and also support **Mac** users!
41
 
42
  ### Training Infrastructure
 
32
  ## Model Overview
33
 
34
  - 3-step inference is supported and achieves up to **50x speed up** for denoising loop on a single **H100** GPU.
35
+ - Our model is trained on **61×448×832** resolution, but it supports generating videos with any resolution.(480P, 720P, quality may degrade)
36
  - Finetuning and inference scripts are available in the [FastVideo](https://github.com/hao-ai-lab/FastVideo) repository:
37
  - [1 Node/GPU debugging finetuning script](https://github.com/hao-ai-lab/FastVideo/blob/main/scripts/distill/v1_distill_dmd_wan_VSA.sh)
38
  - [Slurm training example script](https://github.com/hao-ai-lab/FastVideo/blob/main/examples/distill/Wan2.1-T2V/Wan-Syn-Data-480P/distill_dmd_VSA_t2v_14B.slurm)
39
+ - Inference script in FastVideo:
40
+ ```python
41
+ #!/bin/bash
42
+
43
+ num_gpus=1
44
+ export FASTVIDEO_ATTENTION_BACKEND=VIDEO_SPARSE_ATTN
45
+ export MODEL_BASE=FastVideo/FastWan2.1-T2V-14B-480P-Diffusers
46
+
47
+ # export MODEL_BASE=hunyuanvideo-community/HunyuanVideo
48
+ # You can either use --prompt or --prompt-txt, but not both.
49
+ fastvideo generate \
50
+ --model-path $MODEL_BASE \
51
+ --sp-size $num_gpus \
52
+ --tp-size 1 \
53
+ --num-gpus $num_gpus \
54
+ --height 720 \
55
+ --width 1280 \
56
+ --num-frames 81 \
57
+ --num-inference-steps 3 \
58
+ --fps 16 \
59
+ --prompt-txt assets/prompt.txt \
60
+ --negative-prompt "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards" \
61
+ --seed 1024 \
62
+ --output-path outputs_video_dmd/ \
63
+ --VSA-sparsity 0.9 \
64
+ --dmd-denoising-steps "1000,757,522"
65
+ ```
66
  - Try it out on **FastVideo** — we support a wide range of GPUs from **H100** to **4090**, and also support **Mac** users!
67
 
68
  ### Training Infrastructure