|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | 
					
						
						|  | class DeepseekV3Config(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek | 
					
						
						|  | model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | 
					
						
						|  | defaults will yield a similar configuration to that of the DeepSeek-V3. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 129280): | 
					
						
						|  | Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`DeepseekV3Model`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 11008): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | moe_intermediate_size (`int`, *optional*, defaults to 1407): | 
					
						
						|  | Dimension of the MoE representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer decoder. | 
					
						
						|  | num_nextn_predict_layers (`int`, *optional*, defaults to 1): | 
					
						
						|  | Number of nextn predict layers in the DeepSeekV3 Model. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer decoder. | 
					
						
						|  | n_shared_experts (`int`, *optional*, defaults to None): | 
					
						
						|  | Number of shared experts, None means dense model. | 
					
						
						|  | n_routed_experts (`int`, *optional*, defaults to None): | 
					
						
						|  | Number of routed experts, None means dense model. | 
					
						
						|  | routed_scaling_factor (`float`, *optional*, defaults to 1.0): | 
					
						
						|  | Scaling factor or routed experts. | 
					
						
						|  | topk_method (`str`, *optional*, defaults to `gready`): | 
					
						
						|  | Topk method used in routed gate. | 
					
						
						|  | n_group (`int`, *optional*, defaults to None): | 
					
						
						|  | Number of groups for routed experts. | 
					
						
						|  | topk_group (`int`, *optional*, defaults to None): | 
					
						
						|  | Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). | 
					
						
						|  | num_experts_per_tok (`int`, *optional*, defaults to None): | 
					
						
						|  | Number of selected experts, None means dense model. | 
					
						
						|  | moe_layer_freq (`int`, *optional*, defaults to 1): | 
					
						
						|  | The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. | 
					
						
						|  | first_k_dense_replace (`int`, *optional*, defaults to 0): | 
					
						
						|  | Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). | 
					
						
						|  | \--k dense layers--/ | 
					
						
						|  | norm_topk_prob (`bool`, *optional*, defaults to False): | 
					
						
						|  | Whether to normalize the weights of the routed experts. | 
					
						
						|  | scoring_func (`str`, *optional*, defaults to 'softmax'): | 
					
						
						|  | Method of computing expert weights. | 
					
						
						|  | aux_loss_alpha (`float`, *optional*, defaults to 0.001): | 
					
						
						|  | Auxiliary loss weight coefficient. | 
					
						
						|  | seq_aux = (`bool`, *optional*, defaults to True): | 
					
						
						|  | Whether to compute the auxiliary loss for each individual sample. | 
					
						
						|  | num_key_value_heads (`int`, *optional*): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
						
						|  | `num_attention_heads`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | pad_token_id (`int`, *optional*): | 
					
						
						|  | Padding token id. | 
					
						
						|  | bos_token_id (`int`, *optional*, defaults to 1): | 
					
						
						|  | Beginning of stream token id. | 
					
						
						|  | eos_token_id (`int`, *optional*, defaults to 2): | 
					
						
						|  | End of stream token id. | 
					
						
						|  | pretraining_tp (`int`, *optional*, defaults to 1): | 
					
						
						|  | Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | 
					
						
						|  | document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | 
					
						
						|  | necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | 
					
						
						|  | issue](https://github.com/pytorch/pytorch/issues/76232). | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to tie weight embeddings | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | 
					
						
						|  | strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | 
					
						
						|  | `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | 
					
						
						|  | `max_position_embeddings` to the expected new maximum. | 
					
						
						|  | attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import DeepseekV3Model, DeepseekV3Config | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a Deepseek-V3 style configuration | 
					
						
						|  | >>> configuration = DeepseekV3Config() | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "deepseek_v3" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=129280, | 
					
						
						|  | hidden_size=7168, | 
					
						
						|  | intermediate_size=18432, | 
					
						
						|  | moe_intermediate_size = 2048, | 
					
						
						|  | num_hidden_layers=61, | 
					
						
						|  | num_nextn_predict_layers=1, | 
					
						
						|  | num_attention_heads=128, | 
					
						
						|  | num_key_value_heads=128, | 
					
						
						|  | n_shared_experts = 1, | 
					
						
						|  | n_routed_experts = 256, | 
					
						
						|  | ep_size = 1, | 
					
						
						|  | routed_scaling_factor = 2.5, | 
					
						
						|  | kv_lora_rank = 512, | 
					
						
						|  | q_lora_rank = 1536, | 
					
						
						|  | qk_rope_head_dim = 64, | 
					
						
						|  | v_head_dim = 128, | 
					
						
						|  | qk_nope_head_dim = 128, | 
					
						
						|  | topk_method = 'noaux_tc', | 
					
						
						|  | n_group = 8, | 
					
						
						|  | topk_group = 4, | 
					
						
						|  | num_experts_per_tok = 8, | 
					
						
						|  | moe_layer_freq = 1, | 
					
						
						|  | first_k_dense_replace = 3, | 
					
						
						|  | norm_topk_prob = True, | 
					
						
						|  | scoring_func = 'sigmoid', | 
					
						
						|  | aux_loss_alpha = 0.001, | 
					
						
						|  | seq_aux = True, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=4096, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-6, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=None, | 
					
						
						|  | bos_token_id=0, | 
					
						
						|  | eos_token_id=1, | 
					
						
						|  | pretraining_tp=1, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.moe_intermediate_size = moe_intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_nextn_predict_layers = num_nextn_predict_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.n_shared_experts = n_shared_experts | 
					
						
						|  | self.n_routed_experts = n_routed_experts | 
					
						
						|  | self.ep_size = ep_size | 
					
						
						|  | self.routed_scaling_factor = routed_scaling_factor | 
					
						
						|  | self.kv_lora_rank = kv_lora_rank | 
					
						
						|  | self.q_lora_rank = q_lora_rank | 
					
						
						|  | self.qk_rope_head_dim = qk_rope_head_dim | 
					
						
						|  | self.v_head_dim = v_head_dim | 
					
						
						|  | self.qk_nope_head_dim = qk_nope_head_dim | 
					
						
						|  | self.topk_method = topk_method | 
					
						
						|  | self.n_group = n_group | 
					
						
						|  | self.topk_group = topk_group | 
					
						
						|  | self.num_experts_per_tok = num_experts_per_tok | 
					
						
						|  | self.moe_layer_freq = moe_layer_freq | 
					
						
						|  | self.first_k_dense_replace = first_k_dense_replace | 
					
						
						|  | self.norm_topk_prob = norm_topk_prob | 
					
						
						|  | self.scoring_func = scoring_func | 
					
						
						|  | self.aux_loss_alpha = aux_loss_alpha | 
					
						
						|  | self.seq_aux = seq_aux | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.pretraining_tp = pretraining_tp | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) |