Upload di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md
Browse files
di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS_model_card.md
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS
|
| 11 |
+
|
| 12 |
+
<!-- Provide a quick summary of what the model is/does. [Optional] -->
|
| 13 |
+
di.FFUSION.ai-tXe-FXAA
|
| 14 |
+
Trained on "121361" images.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
| 18 |
+
|
| 19 |
+
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
| 20 |
+
|
| 21 |
+
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
| 22 |
+
|
| 23 |
+
Large size due to Lyco CONV 256
|
| 24 |
+
|
| 25 |
+
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
|
| 26 |
+
|
| 27 |
+
Note: This is not the text encoder used in the official FFUSION AI model.
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Table of Contents
|
| 33 |
+
|
| 34 |
+
- [Model Card for di.FFUSION.ai Text Encoder - SD 2.1 LyCORIS](#model-card-for--model_id-)
|
| 35 |
+
- [Table of Contents](#table-of-contents)
|
| 36 |
+
- [Table of Contents](#table-of-contents-1)
|
| 37 |
+
- [Model Details](#model-details)
|
| 38 |
+
- [Model Description](#model-description)
|
| 39 |
+
- [Uses](#uses)
|
| 40 |
+
- [Direct Use](#direct-use)
|
| 41 |
+
- [Downstream Use [Optional]](#downstream-use-optional)
|
| 42 |
+
- [Out-of-Scope Use](#out-of-scope-use)
|
| 43 |
+
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
| 44 |
+
- [Recommendations](#recommendations)
|
| 45 |
+
- [Training Details](#training-details)
|
| 46 |
+
- [Training Data](#training-data)
|
| 47 |
+
- [Training Procedure](#training-procedure)
|
| 48 |
+
- [Preprocessing](#preprocessing)
|
| 49 |
+
- [Speeds, Sizes, Times](#speeds-sizes-times)
|
| 50 |
+
- [Evaluation](#evaluation)
|
| 51 |
+
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
|
| 52 |
+
- [Testing Data](#testing-data)
|
| 53 |
+
- [Factors](#factors)
|
| 54 |
+
- [Metrics](#metrics)
|
| 55 |
+
- [Results](#results)
|
| 56 |
+
- [Model Examination](#model-examination)
|
| 57 |
+
- [Environmental Impact](#environmental-impact)
|
| 58 |
+
- [Technical Specifications [optional]](#technical-specifications-optional)
|
| 59 |
+
- [Model Architecture and Objective](#model-architecture-and-objective)
|
| 60 |
+
- [Compute Infrastructure](#compute-infrastructure)
|
| 61 |
+
- [Hardware](#hardware)
|
| 62 |
+
- [Software](#software)
|
| 63 |
+
- [Citation](#citation)
|
| 64 |
+
- [Glossary [optional]](#glossary-optional)
|
| 65 |
+
- [More Information [optional]](#more-information-optional)
|
| 66 |
+
- [Model Card Authors [optional]](#model-card-authors-optional)
|
| 67 |
+
- [Model Card Contact](#model-card-contact)
|
| 68 |
+
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Model Details
|
| 72 |
+
|
| 73 |
+
## Model Description
|
| 74 |
+
|
| 75 |
+
<!-- Provide a longer summary of what this model is/does. -->
|
| 76 |
+
di.FFUSION.ai-tXe-FXAA
|
| 77 |
+
Trained on "121361" images.
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
| 81 |
+
|
| 82 |
+
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
| 83 |
+
|
| 84 |
+
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
| 85 |
+
|
| 86 |
+
Large size due to Lyco CONV 256
|
| 87 |
+
|
| 88 |
+
This is a heavy experimental version we used to test even with sloppy captions (quick WD tags and terrible clip), yet the results were satisfying.
|
| 89 |
+
|
| 90 |
+
Note: This is not the text encoder used in the official FFUSION AI model.
|
| 91 |
+
|
| 92 |
+
- **Developed by:** F, F, u, s, i, o, n, ., a, i
|
| 93 |
+
- **Shared by [Optional]:** i, d, l, e, , s, t, o, e, v
|
| 94 |
+
- **Model type:** Language model
|
| 95 |
+
- **Language(s) (NLP):** en
|
| 96 |
+
- **License:** creativeml-openrail-m
|
| 97 |
+
- **Parent Model:** More information needed
|
| 98 |
+
- **Resources for more information:** More information needed
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Uses
|
| 103 |
+
|
| 104 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 105 |
+
|
| 106 |
+
## Direct Use
|
| 107 |
+
|
| 108 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 109 |
+
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
| 110 |
+
|
| 111 |
+
The text encoder (without UNET) is wrapped in LyCORIS. Optimizer: torch.optim.adamw.AdamW(weight_decay=0.01, betas=(0.9, 0.99))
|
| 112 |
+
|
| 113 |
+
Network dimension/rank: 768.0 Alpha: 768.0 Module: lycoris.kohya {'conv_dim': '256', 'conv_alpha': '256', 'algo': 'loha'}
|
| 114 |
+
|
| 115 |
+
Large size due to Lyco CONV 256
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
## Downstream Use [Optional]
|
| 119 |
+
|
| 120 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 121 |
+
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
## Out-of-Scope Use
|
| 127 |
+
|
| 128 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 129 |
+
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# Bias, Risks, and Limitations
|
| 135 |
+
|
| 136 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 137 |
+
|
| 138 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
## Recommendations
|
| 142 |
+
|
| 143 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# Training Details
|
| 150 |
+
|
| 151 |
+
## Training Data
|
| 152 |
+
|
| 153 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 154 |
+
|
| 155 |
+
Trained on "121361" images.
|
| 156 |
+
|
| 157 |
+
ss_caption_tag_dropout_rate: "0.0",
|
| 158 |
+
ss_multires_noise_discount: "0.3",
|
| 159 |
+
ss_mixed_precision: "bf16",
|
| 160 |
+
ss_text_encoder_lr: "1e-07",
|
| 161 |
+
ss_keep_tokens: "3",
|
| 162 |
+
ss_network_args: "{"conv_dim": "256", "conv_alpha": "256", "algo": "loha"}",
|
| 163 |
+
ss_caption_dropout_rate: "0.02",
|
| 164 |
+
ss_flip_aug: "False",
|
| 165 |
+
ss_learning_rate: "2e-07",
|
| 166 |
+
ss_sd_model_name: "stabilityai/stable-diffusion-2-1-base",
|
| 167 |
+
ss_max_grad_norm: "1.0",
|
| 168 |
+
ss_num_epochs: "2",
|
| 169 |
+
ss_gradient_checkpointing: "False",
|
| 170 |
+
ss_face_crop_aug_range: "None",
|
| 171 |
+
ss_epoch: "2",
|
| 172 |
+
ss_num_train_images: "121361",
|
| 173 |
+
ss_color_aug: "False",
|
| 174 |
+
ss_gradient_accumulation_steps: "1",
|
| 175 |
+
ss_total_batch_size: "100",
|
| 176 |
+
ss_prior_loss_weight: "1.0",
|
| 177 |
+
ss_training_comment: "None",
|
| 178 |
+
ss_network_dim: "768",
|
| 179 |
+
ss_output_name: "FusionaMEGA1tX",
|
| 180 |
+
ss_max_bucket_reso: "1024",
|
| 181 |
+
ss_network_alpha: "768.0",
|
| 182 |
+
ss_steps: "2444",
|
| 183 |
+
ss_shuffle_caption: "True",
|
| 184 |
+
ss_training_finished_at: "1684158038.0763328",
|
| 185 |
+
ss_min_bucket_reso: "256",
|
| 186 |
+
ss_noise_offset: "0.09",
|
| 187 |
+
ss_enable_bucket: "True",
|
| 188 |
+
ss_batch_size_per_device: "20",
|
| 189 |
+
ss_max_train_steps: "2444",
|
| 190 |
+
ss_network_module: "lycoris.kohya",
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
## Training Procedure
|
| 194 |
+
|
| 195 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 196 |
+
|
| 197 |
+
### Preprocessing
|
| 198 |
+
|
| 199 |
+
"{"buckets": {"0": {"resolution": [192, 256], "count": 1}, "1": {"resolution": [192, 320], "count": 1}, "2": {"resolution": [256, 384], "count": 1}, "3": {"resolution": [256, 512], "count": 1}, "4": {"resolution": [384, 576], "count": 2}, "5": {"resolution": [384, 640], "count": 2}, "6": {"resolution": [384, 704], "count": 1}, "7": {"resolution": [384, 1088], "count": 15}, "8": {"resolution": [448, 448], "count": 5}, "9": {"resolution": [448, 576], "count": 1}, "10": {"resolution": [448, 640], "count": 1}, "11": {"resolution": [448, 768], "count": 1}, "12": {"resolution": [448, 832], "count": 1}, "13": {"resolution": [448, 1088], "count": 25}, "14": {"resolution": [448, 1216], "count": 1}, "15": {"resolution": [512, 640], "count": 2}, "16": {"resolution": [512, 768], "count": 10}, "17": {"resolution": [512, 832], "count": 3}, "18": {"resolution": [512, 896], "count": 1525}, "19": {"resolution": [512, 960], "count": 2}, "20": {"resolution": [512, 1024], "count": 665}, "21": {"resolution": [512, 1088], "count": 8}, "22": {"resolution": [576, 576], "count": 5}, "23": {"resolution": [576, 768], "count": 1}, "24": {"resolution": [576, 832], "count": 667}, "25": {"resolution": [576, 896], "count": 9601}, "26": {"resolution": [576, 960], "count": 872}, "27": {"resolution": [576, 1024], "count": 17}, "28": {"resolution": [640, 640], "count": 3}, "29": {"resolution": [640, 768], "count": 7}, "30": {"resolution": [640, 832], "count": 608}, "31": {"resolution": [640, 896], "count": 90}, "32": {"resolution": [704, 640], "count": 1}, "33": {"resolution": [704, 704], "count": 11}, "34": {"resolution": [704, 768], "count": 1}, "35": {"resolution": [704, 832], "count": 1}, "36": {"resolution": [768, 640], "count": 225}, "37": {"resolution": [768, 704], "count": 6}, "38": {"resolution": [768, 768], "count": 74442}, "39": {"resolution": [832, 576], "count": 23784}, "40": {"resolution": [832, 640], "count": 554}, "41": {"resolution": [896, 512], "count": 1235}, "42": {"resolution": [896, 576], "count": 50}, "43": {"resolution": [896, 640], "count": 88}, "44": {"resolution": [960, 512], "count": 165}, "45": {"resolution": [960, 576], "count": 5246}, "46": {"resolution": [1024, 448], "count": 5}, "47": {"resolution": [1024, 512], "count": 1187}, "48": {"resolution": [1024, 576], "count": 40}, "49": {"resolution": [1088, 384], "count": 70}, "50": {"resolution": [1088, 448], "count": 36}, "51": {"resolution": [1088, 512], "count": 3}, "52": {"resolution": [1216, 448], "count": 36}, "53": {"resolution": [1344, 320], "count": 29}, "54": {"resolution": [1536, 384], "count": 1}}, "mean_img_ar_error": 0.01693107810697896}",
|
| 200 |
+
|
| 201 |
+
### Speeds, Sizes, Times
|
| 202 |
+
|
| 203 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 204 |
+
|
| 205 |
+
ss_resolution: "(768, 768)",
|
| 206 |
+
ss_v2: "True",
|
| 207 |
+
ss_cache_latents: "False",
|
| 208 |
+
ss_unet_lr: "2e-07",
|
| 209 |
+
ss_num_reg_images: "0",
|
| 210 |
+
ss_max_token_length: "225",
|
| 211 |
+
ss_lr_scheduler: "linear",
|
| 212 |
+
ss_reg_dataset_dirs: "{}",
|
| 213 |
+
ss_lr_warmup_steps: "303",
|
| 214 |
+
ss_num_batches_per_epoch: "1222",
|
| 215 |
+
ss_lowram: "False",
|
| 216 |
+
ss_multires_noise_iterations: "None",
|
| 217 |
+
ss_optimizer: "torch.optim.adamw.AdamW(weight_decay=0.01,betas=(0.9, 0.99))",
|
| 218 |
+
|
| 219 |
+
# Evaluation
|
| 220 |
+
|
| 221 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 222 |
+
|
| 223 |
+
## Testing Data, Factors & Metrics
|
| 224 |
+
|
| 225 |
+
### Testing Data
|
| 226 |
+
|
| 227 |
+
<!-- This should link to a Data Card if possible. -->
|
| 228 |
+
|
| 229 |
+
More information needed
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
### Factors
|
| 233 |
+
|
| 234 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 235 |
+
|
| 236 |
+
More information needed
|
| 237 |
+
|
| 238 |
+
### Metrics
|
| 239 |
+
|
| 240 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 241 |
+
|
| 242 |
+
More information needed
|
| 243 |
+
|
| 244 |
+
## Results
|
| 245 |
+
|
| 246 |
+
More information needed
|
| 247 |
+
|
| 248 |
+
# Model Examination
|
| 249 |
+
|
| 250 |
+
More information needed
|
| 251 |
+
|
| 252 |
+
# Environmental Impact
|
| 253 |
+
|
| 254 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 255 |
+
|
| 256 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 257 |
+
|
| 258 |
+
- **Hardware Type:** 8xA100
|
| 259 |
+
- **Hours used:** 64
|
| 260 |
+
- **Cloud Provider:** CoreWeave
|
| 261 |
+
- **Compute Region:** US Main
|
| 262 |
+
- **Carbon Emitted:** 6.72
|
| 263 |
+
|
| 264 |
+
# Technical Specifications [optional]
|
| 265 |
+
|
| 266 |
+
## Model Architecture and Objective
|
| 267 |
+
|
| 268 |
+
Enhance your model's quality and sharpness using your own pre-trained Unet.
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
## Compute Infrastructure
|
| 272 |
+
|
| 273 |
+
More information needed
|
| 274 |
+
|
| 275 |
+
### Hardware
|
| 276 |
+
|
| 277 |
+
8xA100
|
| 278 |
+
|
| 279 |
+
### Software
|
| 280 |
+
|
| 281 |
+
Fully trained only with Kohya S & Shih-Ying Yeh (Kohaku-BlueLeaf)
|
| 282 |
+
https://arxiv.org/abs/2108.06098
|
| 283 |
+
|
| 284 |
+
# Citation
|
| 285 |
+
|
| 286 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 287 |
+
|
| 288 |
+
**BibTeX:**
|
| 289 |
+
|
| 290 |
+
More information needed
|
| 291 |
+
|
| 292 |
+
**APA:**
|
| 293 |
+
|
| 294 |
+
@misc{LyCORIS,
|
| 295 |
+
author = "Shih-Ying Yeh (Kohaku-BlueLeaf), Yu-Guan Hsieh, Zhidong Gao",
|
| 296 |
+
title = "LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion",
|
| 297 |
+
howpublished = "\url{https://github.com/KohakuBlueleaf/LyCORIS}",
|
| 298 |
+
month = "March",
|
| 299 |
+
year = "2023"
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
# Glossary [optional]
|
| 303 |
+
|
| 304 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 305 |
+
|
| 306 |
+
More information needed
|
| 307 |
+
|
| 308 |
+
# More Information [optional]
|
| 309 |
+
|
| 310 |
+
More information needed
|
| 311 |
+
|
| 312 |
+
# Model Card Authors [optional]
|
| 313 |
+
|
| 314 |
+
<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
|
| 315 |
+
|
| 316 |
+
i, d, l, e, , s, t, o, e, v
|
| 317 |
+
|
| 318 |
+
# Model Card Contact
|
| 319 |
+
|
| 320 |
+
d, i, @, f, f, u, s, i, o, n, ., a, i
|
| 321 |
+
|
| 322 |
+
# How to Get Started with the Model
|
| 323 |
+
|
| 324 |
+
Use the code below to get started with the model.
|
| 325 |
+
|
| 326 |
+
<details>
|
| 327 |
+
<summary> Click to expand </summary>
|
| 328 |
+
|
| 329 |
+
More information needed
|
| 330 |
+
|
| 331 |
+
</details>
|