Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# === CONFIG ===
|
| 8 |
+
DATA_PATH = "data/transcriptions.csv"
|
| 9 |
+
AUDIO_DIR = "data"
|
| 10 |
+
MODEL_PATH = "model/clone_tts_model.h5"
|
| 11 |
+
SAMPLE_RATE = 22050
|
| 12 |
+
TEXT_MAX_LEN = 100 # Max characters per text
|
| 13 |
+
|
| 14 |
+
# === Load and preprocess dataset ===
|
| 15 |
+
def load_data():
|
| 16 |
+
data = pd.read_csv(DATA_PATH)
|
| 17 |
+
texts = data['text'].values
|
| 18 |
+
audio_arrays = []
|
| 19 |
+
|
| 20 |
+
for file in data['file']:
|
| 21 |
+
audio_path = os.path.join(AUDIO_DIR, file)
|
| 22 |
+
y, _ = librosa.load(audio_path, sr=SAMPLE_RATE)
|
| 23 |
+
audio_arrays.append(y)
|
| 24 |
+
|
| 25 |
+
max_audio_len = max(len(a) for a in audio_arrays)
|
| 26 |
+
padded_audios = np.array([np.pad(a, (0, max_audio_len - len(a))) for a in audio_arrays])
|
| 27 |
+
|
| 28 |
+
padded_texts = np.array([
|
| 29 |
+
[ord(c) for c in text.ljust(TEXT_MAX_LEN)[:TEXT_MAX_LEN]] for text in texts
|
| 30 |
+
])
|
| 31 |
+
|
| 32 |
+
return padded_texts, padded_audios, max_audio_len
|
| 33 |
+
|
| 34 |
+
# === Build and train model ===
|
| 35 |
+
def train_model():
|
| 36 |
+
print("Loading and preparing data...")
|
| 37 |
+
X, y, audio_len = load_data()
|
| 38 |
+
|
| 39 |
+
print("Building model...")
|
| 40 |
+
model = tf.keras.Sequential([
|
| 41 |
+
tf.keras.layers.Input(shape=(TEXT_MAX_LEN,)),
|
| 42 |
+
tf.keras.layers.Dense(256, activation='relu'),
|
| 43 |
+
tf.keras.layers.Dense(audio_len)
|
| 44 |
+
])
|
| 45 |
+
|
| 46 |
+
model.compile(optimizer='adam', loss='mse')
|
| 47 |
+
print("Training...")
|
| 48 |
+
model.fit(X, y, epochs=10, batch_size=4)
|
| 49 |
+
|
| 50 |
+
os.makedirs(os.path.dirname(MODEL_PATH), exist_ok=True)
|
| 51 |
+
model.save(MODEL_PATH)
|
| 52 |
+
print(f"Model saved to {MODEL_PATH}")
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
train_model()
|