Update README.md
Browse files
README.md
CHANGED
@@ -15,71 +15,21 @@ language:
|
|
15 |
---
|
16 |
|
17 |
# Model description
|
18 |
-
MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
[More Information Needed]
|
23 |
-
|
24 |
-
## Training Procedure
|
25 |
-
|
26 |
-
### Hyperparameters
|
27 |
-
|
28 |
-
The model is trained with below hyperparameters.
|
29 |
-
|
30 |
-
<details>
|
31 |
-
<summary> Click to expand </summary>
|
32 |
-
|
33 |
-
| Hyperparameter | Value |
|
34 |
-
|-------------------------|-----------------|
|
35 |
-
| objective | binary:logistic |
|
36 |
-
| use_label_encoder | True |
|
37 |
-
| base_score | 0.5 |
|
38 |
-
| booster | gbtree |
|
39 |
-
| colsample_bylevel | 1 |
|
40 |
-
| colsample_bynode | 1 |
|
41 |
-
| colsample_bytree | 1 |
|
42 |
-
| enable_categorical | False |
|
43 |
-
| gamma | 0 |
|
44 |
-
| gpu_id | -1 |
|
45 |
-
| importance_type | |
|
46 |
-
| interaction_constraints | |
|
47 |
-
| learning_rate | 0.300000012 |
|
48 |
-
| max_delta_step | 0 |
|
49 |
-
| max_depth | 6 |
|
50 |
-
| min_child_weight | 1 |
|
51 |
-
| missing | nan |
|
52 |
-
| monotone_constraints | () |
|
53 |
-
| n_estimators | 100 |
|
54 |
-
| n_jobs | 8 |
|
55 |
-
| num_parallel_tree | 1 |
|
56 |
-
| predictor | auto |
|
57 |
-
| random_state | 0 |
|
58 |
-
| reg_alpha | 0 |
|
59 |
-
| reg_lambda | 1 |
|
60 |
-
| scale_pos_weight | |
|
61 |
-
| subsample | 1 |
|
62 |
-
| tree_method | auto |
|
63 |
-
| validate_parameters | 1 |
|
64 |
-
| verbosity | |
|
65 |
-
|
66 |
-
</details>
|
67 |
-
|
68 |
-
### Model Plot
|
69 |
-
|
70 |
-
The model plot is below.
|
71 |
-
|
72 |
-
<style>#sk-f64fd6a0-a686-4957-adf1-8209c466f428 {color: black;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 pre{padding: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable {background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-item {z-index: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:only-child::after {width: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-text-repr-fallback {display: none;}</style><div id="sk-f64fd6a0-a686-4957-adf1-8209c466f428" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e5865982-53b6-475b-9bbf-6ee40514c813" type="checkbox" checked><label for="e5865982-53b6-475b-9bbf-6ee40514c813" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
|
73 |
|
74 |
## Evaluation Results
|
75 |
|
|
|
|
|
|
|
|
|
76 |
We evaluate this model based an accuracy and to test the robustness of MLstructureMining, we deploy zeroth-order optimization (ZOO)
|
77 |
from the [Adversarial Robustness Toolbox](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (ART) library to perform adversarial attacks.
|
78 |
|
79 |
-
You can find the details about evaluation process and the evaluation results.
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
| Metric | Value |
|
84 |
|----------|---------|
|
85 |
| Accuracy | 91% |
|
|
|
15 |
---
|
16 |
|
17 |
# Model description
|
18 |
+
MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype
|
19 |
+
patterns from a large database of crystal structures, providing real-time structure characterization by screening vast quantities of data in seconds.
|
20 |
|
21 |
+
The code used to train the model can be found [HERE](https://github.com/EmilSkaaning/MLstructureMining-workflow), and the Python implementation can be found
|
22 |
+
[HERE](https://github.com/EmilSkaaning/MLstructureMining/tree/main) or the wheel file ´mlstructuremining-4.1.0-py3-none-any.whl´.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Evaluation Results
|
25 |
|
26 |
+
MLstructureMining has been trained PDFs from on 10,833 crystal structures obtained from [Crystallography Open Database](https://www.crystallography.net/cod/) (COD).
|
27 |
+
The Pearson Correlation Coefficient (PCC) was used to cluster structures with similar PDF, resulting in a total of 6,062 labels. 100 PDFs were simluated per structures,
|
28 |
+
and the data were split into training, validation and testing set with a 80/10/10 ratio.
|
29 |
+
|
30 |
We evaluate this model based an accuracy and to test the robustness of MLstructureMining, we deploy zeroth-order optimization (ZOO)
|
31 |
from the [Adversarial Robustness Toolbox](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (ART) library to perform adversarial attacks.
|
32 |
|
|
|
|
|
|
|
|
|
33 |
| Metric | Value |
|
34 |
|----------|---------|
|
35 |
| Accuracy | 91% |
|