Ekjaer commited on
Commit
5a496e5
·
verified ·
1 Parent(s): 157e700

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -58
README.md CHANGED
@@ -15,71 +15,21 @@ language:
15
  ---
16
 
17
  # Model description
18
- MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype patterns from a large database of crystal structures, providing real-time structure characterization by screening vast quantities of data in seconds.
 
19
 
20
- ## Intended uses & limitations
21
-
22
- [More Information Needed]
23
-
24
- ## Training Procedure
25
-
26
- ### Hyperparameters
27
-
28
- The model is trained with below hyperparameters.
29
-
30
- <details>
31
- <summary> Click to expand </summary>
32
-
33
- | Hyperparameter | Value |
34
- |-------------------------|-----------------|
35
- | objective | binary:logistic |
36
- | use_label_encoder | True |
37
- | base_score | 0.5 |
38
- | booster | gbtree |
39
- | colsample_bylevel | 1 |
40
- | colsample_bynode | 1 |
41
- | colsample_bytree | 1 |
42
- | enable_categorical | False |
43
- | gamma | 0 |
44
- | gpu_id | -1 |
45
- | importance_type | |
46
- | interaction_constraints | |
47
- | learning_rate | 0.300000012 |
48
- | max_delta_step | 0 |
49
- | max_depth | 6 |
50
- | min_child_weight | 1 |
51
- | missing | nan |
52
- | monotone_constraints | () |
53
- | n_estimators | 100 |
54
- | n_jobs | 8 |
55
- | num_parallel_tree | 1 |
56
- | predictor | auto |
57
- | random_state | 0 |
58
- | reg_alpha | 0 |
59
- | reg_lambda | 1 |
60
- | scale_pos_weight | |
61
- | subsample | 1 |
62
- | tree_method | auto |
63
- | validate_parameters | 1 |
64
- | verbosity | |
65
-
66
- </details>
67
-
68
- ### Model Plot
69
-
70
- The model plot is below.
71
-
72
- <style>#sk-f64fd6a0-a686-4957-adf1-8209c466f428 {color: black;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 pre{padding: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable {background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-estimator:hover {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-item {z-index: 1;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-parallel-item:only-child::after {width: 0;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-f64fd6a0-a686-4957-adf1-8209c466f428 div.sk-text-repr-fallback {display: none;}</style><div id="sk-f64fd6a0-a686-4957-adf1-8209c466f428" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e5865982-53b6-475b-9bbf-6ee40514c813" type="checkbox" checked><label for="e5865982-53b6-475b-9bbf-6ee40514c813" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints=&#x27;&#x27;, learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints=&#x27;()&#x27;, n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method=&#x27;auto&#x27;, validate_parameters=1, verbosity=None)</pre></div></div></div></div></div>
73
 
74
  ## Evaluation Results
75
 
 
 
 
 
76
  We evaluate this model based an accuracy and to test the robustness of MLstructureMining, we deploy zeroth-order optimization (ZOO)
77
  from the [Adversarial Robustness Toolbox](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (ART) library to perform adversarial attacks.
78
 
79
- You can find the details about evaluation process and the evaluation results.
80
-
81
-
82
-
83
  | Metric | Value |
84
  |----------|---------|
85
  | Accuracy | 91% |
 
15
  ---
16
 
17
  # Model description
18
+ MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype
19
+ patterns from a large database of crystal structures, providing real-time structure characterization by screening vast quantities of data in seconds.
20
 
21
+ The code used to train the model can be found [HERE](https://github.com/EmilSkaaning/MLstructureMining-workflow), and the Python implementation can be found
22
+ [HERE](https://github.com/EmilSkaaning/MLstructureMining/tree/main) or the wheel file ´mlstructuremining-4.1.0-py3-none-any.whl´.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Evaluation Results
25
 
26
+ MLstructureMining has been trained PDFs from on 10,833 crystal structures obtained from [Crystallography Open Database](https://www.crystallography.net/cod/) (COD).
27
+ The Pearson Correlation Coefficient (PCC) was used to cluster structures with similar PDF, resulting in a total of 6,062 labels. 100 PDFs were simluated per structures,
28
+ and the data were split into training, validation and testing set with a 80/10/10 ratio.
29
+
30
  We evaluate this model based an accuracy and to test the robustness of MLstructureMining, we deploy zeroth-order optimization (ZOO)
31
  from the [Adversarial Robustness Toolbox](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (ART) library to perform adversarial attacks.
32
 
 
 
 
 
33
  | Metric | Value |
34
  |----------|---------|
35
  | Accuracy | 91% |