Chengyue Wu
commited on
Commit
·
5040112
1
Parent(s):
0858c80
init
Browse files- .gitattributes +1 -0
- added_tokens.json +25 -0
- chat_template.jinja +54 -0
- config.json +66 -0
- configuration.py +98 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +347 -0
- modeling.py +681 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +204 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652,
|
24 |
+
"|<MASK>|": 151665
|
25 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Fast_dLLM_QwenForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration.Fast_dLLM_QwenConfig",
|
8 |
+
"AutoModel": "modeling.Fast_dLLM_QwenModel",
|
9 |
+
"AutoModelForCausalLM": "modeling.Fast_dLLM_QwenForCausalLM"
|
10 |
+
},
|
11 |
+
"bd_size": 32,
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"conplemenrary_mask": true,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 3584,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 18944,
|
19 |
+
"layer_types": [
|
20 |
+
"full_attention",
|
21 |
+
"full_attention",
|
22 |
+
"full_attention",
|
23 |
+
"full_attention",
|
24 |
+
"full_attention",
|
25 |
+
"full_attention",
|
26 |
+
"full_attention",
|
27 |
+
"full_attention",
|
28 |
+
"full_attention",
|
29 |
+
"full_attention",
|
30 |
+
"full_attention",
|
31 |
+
"full_attention",
|
32 |
+
"full_attention",
|
33 |
+
"full_attention",
|
34 |
+
"full_attention",
|
35 |
+
"full_attention",
|
36 |
+
"full_attention",
|
37 |
+
"full_attention",
|
38 |
+
"full_attention",
|
39 |
+
"full_attention",
|
40 |
+
"full_attention",
|
41 |
+
"full_attention",
|
42 |
+
"full_attention",
|
43 |
+
"full_attention",
|
44 |
+
"full_attention",
|
45 |
+
"full_attention",
|
46 |
+
"full_attention",
|
47 |
+
"full_attention"
|
48 |
+
],
|
49 |
+
"max_position_embeddings": 32768,
|
50 |
+
"max_window_layers": 28,
|
51 |
+
"model_type": "Fast_dLLM_Qwen",
|
52 |
+
"num_attention_heads": 28,
|
53 |
+
"num_hidden_layers": 28,
|
54 |
+
"num_key_value_heads": 4,
|
55 |
+
"pad_token_id": 151645,
|
56 |
+
"rms_norm_eps": 1e-06,
|
57 |
+
"rope_scaling": null,
|
58 |
+
"rope_theta": 1000000.0,
|
59 |
+
"sliding_window": null,
|
60 |
+
"tie_word_embeddings": false,
|
61 |
+
"torch_dtype": "bfloat16",
|
62 |
+
"transformers_version": "4.53.1",
|
63 |
+
"use_cache": true,
|
64 |
+
"use_sliding_window": false,
|
65 |
+
"vocab_size": 152064
|
66 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Fast_dLLM_Qwen model configuration"""
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
4 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class Fast_dLLM_QwenConfig(PretrainedConfig):
|
12 |
+
|
13 |
+
model_type = "Fast_dLLM_Qwen"
|
14 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
15 |
+
|
16 |
+
# Default tensor parallel plan for base model `Fast_dLLM_Qwen`
|
17 |
+
base_model_tp_plan = {
|
18 |
+
"layers.*.self_attn.q_proj": "colwise",
|
19 |
+
"layers.*.self_attn.k_proj": "colwise",
|
20 |
+
"layers.*.self_attn.v_proj": "colwise",
|
21 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
22 |
+
"layers.*.mlp.gate_proj": "colwise",
|
23 |
+
"layers.*.mlp.up_proj": "colwise",
|
24 |
+
"layers.*.mlp.down_proj": "rowwise",
|
25 |
+
}
|
26 |
+
base_model_pp_plan = {
|
27 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
28 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
29 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
30 |
+
}
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
vocab_size=151936,
|
35 |
+
hidden_size=4096,
|
36 |
+
intermediate_size=22016,
|
37 |
+
num_hidden_layers=32,
|
38 |
+
num_attention_heads=32,
|
39 |
+
num_key_value_heads=32,
|
40 |
+
hidden_act="silu",
|
41 |
+
max_position_embeddings=32768,
|
42 |
+
initializer_range=0.02,
|
43 |
+
rms_norm_eps=1e-6,
|
44 |
+
use_cache=True,
|
45 |
+
tie_word_embeddings=False,
|
46 |
+
rope_theta=10000.0,
|
47 |
+
rope_scaling=None,
|
48 |
+
use_sliding_window=False,
|
49 |
+
sliding_window=4096,
|
50 |
+
max_window_layers=28,
|
51 |
+
layer_types=None,
|
52 |
+
attention_dropout=0.0,
|
53 |
+
bd_size=32,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
self.max_position_embeddings = max_position_embeddings
|
58 |
+
self.hidden_size = hidden_size
|
59 |
+
self.intermediate_size = intermediate_size
|
60 |
+
self.num_hidden_layers = num_hidden_layers
|
61 |
+
self.num_attention_heads = num_attention_heads
|
62 |
+
self.use_sliding_window = use_sliding_window
|
63 |
+
self.sliding_window = sliding_window if self.use_sliding_window else None
|
64 |
+
self.max_window_layers = max_window_layers
|
65 |
+
|
66 |
+
# for backward compatibility
|
67 |
+
if num_key_value_heads is None:
|
68 |
+
num_key_value_heads = num_attention_heads
|
69 |
+
|
70 |
+
self.num_key_value_heads = num_key_value_heads
|
71 |
+
self.hidden_act = hidden_act
|
72 |
+
self.initializer_range = initializer_range
|
73 |
+
self.rms_norm_eps = rms_norm_eps
|
74 |
+
self.use_cache = use_cache
|
75 |
+
self.rope_theta = rope_theta
|
76 |
+
self.rope_scaling = rope_scaling
|
77 |
+
self.attention_dropout = attention_dropout
|
78 |
+
self.bd_size = bd_size
|
79 |
+
# Validate the correctness of rotary position embeddings parameters
|
80 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
81 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
82 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
83 |
+
rope_config_validation(self)
|
84 |
+
|
85 |
+
self.layer_types = layer_types
|
86 |
+
if self.layer_types is None:
|
87 |
+
self.layer_types = [
|
88 |
+
"sliding_attention"
|
89 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
90 |
+
else "full_attention"
|
91 |
+
for i in range(self.num_hidden_layers)
|
92 |
+
]
|
93 |
+
layer_type_validation(self.layer_types)
|
94 |
+
|
95 |
+
super().__init__(
|
96 |
+
tie_word_embeddings=tie_word_embeddings,
|
97 |
+
**kwargs,
|
98 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.53.1"
|
14 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2500
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bdb2f3c33fdb4b5218728b62cb161ca0338ddfda506f34f5369a0cf2d301995
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a7f013295d10e6159b70176a0aeae9b0e9f080ff8c47314a2e495cb28321b5f
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54aafa244d46b6ef6647e9ae66f0f91a007309f0bf4ee770eb974b69e6b83756
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a0e895f36eb942e642fa58977bb33df1a98af15f772c0755057114a9f924496
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_parameters": 333312,
|
4 |
+
"total_size": 15231233024
|
5 |
+
},
|
6 |
+
"weight_map": {
|
7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
165 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
344 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
345 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
346 |
+
}
|
347 |
+
}
|
modeling.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Union
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.cache_utils import Cache, DynamicCache
|
11 |
+
from transformers.generation import GenerationMixin
|
12 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
13 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
14 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPast,
|
17 |
+
CausalLMOutputWithPast,
|
18 |
+
)
|
19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
20 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
21 |
+
from transformers.processing_utils import Unpack
|
22 |
+
from transformers.utils import auto_docstring, can_return_tuple, logging
|
23 |
+
from .configuration import Fast_dLLM_QwenConfig
|
24 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
25 |
+
from einops import rearrange, repeat
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast):
|
32 |
+
block_past_key_values: Optional[Cache] = None
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast):
|
36 |
+
block_past_key_values: Optional[Cache] = None
|
37 |
+
|
38 |
+
|
39 |
+
def eval_block_diff_mask(q_idx, kv_idx, block_size=None):
|
40 |
+
# Compute block indices
|
41 |
+
block_q = q_idx // block_size
|
42 |
+
block_kv = kv_idx // block_size
|
43 |
+
|
44 |
+
return block_q >= block_kv
|
45 |
+
|
46 |
+
class Fast_dLLM_QwenMLP(nn.Module):
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__()
|
49 |
+
self.config = config
|
50 |
+
self.hidden_size = config.hidden_size
|
51 |
+
self.intermediate_size = config.intermediate_size
|
52 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
53 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
54 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
55 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
59 |
+
return down_proj
|
60 |
+
|
61 |
+
|
62 |
+
def rotate_half(x):
|
63 |
+
"""Rotates half the hidden dims of the input."""
|
64 |
+
x1 = x[..., : x.shape[-1] // 2]
|
65 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
66 |
+
return torch.cat((-x2, x1), dim=-1)
|
67 |
+
|
68 |
+
|
69 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
70 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
q (`torch.Tensor`): The query tensor.
|
74 |
+
k (`torch.Tensor`): The key tensor.
|
75 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
76 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
77 |
+
position_ids (`torch.Tensor`, *optional*):
|
78 |
+
Deprecated and unused.
|
79 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
80 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
81 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
82 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
83 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
84 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
85 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
86 |
+
Returns:
|
87 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
88 |
+
"""
|
89 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
90 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
91 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
92 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
93 |
+
return q_embed, k_embed
|
94 |
+
|
95 |
+
|
96 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
97 |
+
"""
|
98 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
99 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
100 |
+
"""
|
101 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
102 |
+
if n_rep == 1:
|
103 |
+
return hidden_states
|
104 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
105 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
106 |
+
|
107 |
+
|
108 |
+
class Fast_dLLM_QwenAttention(nn.Module):
|
109 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
110 |
+
|
111 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
|
112 |
+
super().__init__()
|
113 |
+
self.config = config
|
114 |
+
self.layer_idx = layer_idx
|
115 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
116 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
117 |
+
self.scaling = self.head_dim**-0.5
|
118 |
+
self.attention_dropout = config.attention_dropout
|
119 |
+
self.is_causal = True
|
120 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
|
121 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
122 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
123 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
124 |
+
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
|
125 |
+
|
126 |
+
def forward(
|
127 |
+
self,
|
128 |
+
hidden_states: torch.Tensor,
|
129 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
130 |
+
attention_mask: Optional[torch.Tensor],
|
131 |
+
past_key_value: Optional[Cache] = None,
|
132 |
+
cache_position: Optional[torch.LongTensor] = None,
|
133 |
+
update_past_key_values: Optional[bool] = False,
|
134 |
+
block_past_key_values: Optional[Cache] = None,
|
135 |
+
replace_position: Optional[int] = None,
|
136 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
137 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
138 |
+
input_shape = hidden_states.shape[:-1]
|
139 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
140 |
+
|
141 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
142 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
143 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
144 |
+
|
145 |
+
cos, sin = position_embeddings
|
146 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
147 |
+
if self.training:
|
148 |
+
#split q into two parts
|
149 |
+
q_1 = query_states[:,:,:query_states.shape[2]//2]
|
150 |
+
q_2 = query_states[:,:,query_states.shape[2]//2:]
|
151 |
+
#split k into two parts
|
152 |
+
k_1 = key_states[:,:,:key_states.shape[2]//2]
|
153 |
+
k_2 = key_states[:,:,key_states.shape[2]//2:]
|
154 |
+
q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin)
|
155 |
+
q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin)
|
156 |
+
query_states = torch.cat((q_1, q_2), dim=-2)
|
157 |
+
key_states = torch.cat((k_1, k_2), dim=-2)
|
158 |
+
else:
|
159 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
160 |
+
|
161 |
+
if block_past_key_values is not None:
|
162 |
+
if len(block_past_key_values) <= self.layer_idx:
|
163 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
164 |
+
key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
165 |
+
else:
|
166 |
+
block_cache_key_states = block_past_key_values[self.layer_idx][0]
|
167 |
+
block_cache_value_states = block_past_key_values[self.layer_idx][1]
|
168 |
+
|
169 |
+
block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states
|
170 |
+
block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states
|
171 |
+
key_states = block_cache_key_states
|
172 |
+
value_states = block_cache_value_states
|
173 |
+
|
174 |
+
if past_key_value is not None:
|
175 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
176 |
+
if update_past_key_values:
|
177 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
178 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
179 |
+
elif len(past_key_value) > self.layer_idx:
|
180 |
+
key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2)
|
181 |
+
value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2)
|
182 |
+
|
183 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
|
184 |
+
|
185 |
+
attn_output, attn_weights = attention_interface(
|
186 |
+
self,
|
187 |
+
query_states,
|
188 |
+
key_states,
|
189 |
+
value_states,
|
190 |
+
attention_mask,
|
191 |
+
is_causal=False,
|
192 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
193 |
+
scaling=self.scaling,
|
194 |
+
sliding_window=self.sliding_window, # main diff with Llama
|
195 |
+
**kwargs,
|
196 |
+
)
|
197 |
+
|
198 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
199 |
+
attn_output = self.o_proj(attn_output)
|
200 |
+
return attn_output
|
201 |
+
|
202 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
203 |
+
class Fast_dLLM_QwenRMSNorm(nn.Module):
|
204 |
+
def __init__(self, hidden_size, eps=1e-6):
|
205 |
+
"""
|
206 |
+
Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm
|
207 |
+
"""
|
208 |
+
super().__init__()
|
209 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
210 |
+
self.variance_epsilon = eps
|
211 |
+
|
212 |
+
def forward(self, hidden_states):
|
213 |
+
input_dtype = hidden_states.dtype
|
214 |
+
hidden_states = hidden_states.to(torch.float32)
|
215 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
216 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
217 |
+
return self.weight * hidden_states.to(input_dtype)
|
218 |
+
|
219 |
+
def extra_repr(self):
|
220 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
221 |
+
|
222 |
+
|
223 |
+
class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer):
|
224 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
|
225 |
+
super().__init__()
|
226 |
+
self.hidden_size = config.hidden_size
|
227 |
+
|
228 |
+
self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx)
|
229 |
+
|
230 |
+
self.mlp = Fast_dLLM_QwenMLP(config)
|
231 |
+
self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
232 |
+
self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
233 |
+
self.attention_type = config.layer_types[layer_idx]
|
234 |
+
|
235 |
+
def forward(
|
236 |
+
self,
|
237 |
+
hidden_states: torch.Tensor,
|
238 |
+
attention_mask: Optional[torch.Tensor] = None,
|
239 |
+
position_ids: Optional[torch.LongTensor] = None,
|
240 |
+
past_key_value: Optional[Cache] = None,
|
241 |
+
use_cache: Optional[bool] = False,
|
242 |
+
cache_position: Optional[torch.LongTensor] = None,
|
243 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
244 |
+
update_past_key_values: Optional[bool] = False,
|
245 |
+
use_block_cache: Optional[bool] = False,
|
246 |
+
block_past_key_values: Optional[Cache] = None,
|
247 |
+
replace_position: Optional[int] = None,
|
248 |
+
**kwargs
|
249 |
+
) -> tuple[torch.Tensor]:
|
250 |
+
residual = hidden_states
|
251 |
+
hidden_states = self.input_layernorm(hidden_states)
|
252 |
+
# Self Attention
|
253 |
+
hidden_states = self.self_attn(
|
254 |
+
hidden_states=hidden_states,
|
255 |
+
attention_mask=attention_mask,
|
256 |
+
position_ids=position_ids,
|
257 |
+
past_key_value=past_key_value,
|
258 |
+
use_cache=use_cache,
|
259 |
+
cache_position=cache_position,
|
260 |
+
position_embeddings=position_embeddings,
|
261 |
+
update_past_key_values=update_past_key_values,
|
262 |
+
use_block_cache=use_block_cache,
|
263 |
+
block_past_key_values=block_past_key_values,
|
264 |
+
replace_position=replace_position,
|
265 |
+
**kwargs,
|
266 |
+
)
|
267 |
+
hidden_states = residual + hidden_states
|
268 |
+
|
269 |
+
# Fully Connected
|
270 |
+
residual = hidden_states
|
271 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
272 |
+
hidden_states = self.mlp(hidden_states)
|
273 |
+
hidden_states = residual + hidden_states
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel):
|
279 |
+
config_class = Fast_dLLM_QwenConfig
|
280 |
+
base_model_prefix = "model"
|
281 |
+
supports_gradient_checkpointing = True
|
282 |
+
_no_split_modules = ["Fast_dLLM_QwenDecoderLayer"]
|
283 |
+
_skip_keys_device_placement = ["past_key_values"]
|
284 |
+
_supports_flash_attn_2 = True
|
285 |
+
_supports_sdpa = True
|
286 |
+
_supports_flex_attn = True
|
287 |
+
_supports_cache_class = True
|
288 |
+
_supports_quantized_cache = True
|
289 |
+
_supports_static_cache = True
|
290 |
+
_supports_attention_backend = True
|
291 |
+
_can_record_outputs = {
|
292 |
+
"hidden_states": Fast_dLLM_QwenDecoderLayer,
|
293 |
+
"attentions": Fast_dLLM_QwenAttention,
|
294 |
+
}
|
295 |
+
|
296 |
+
def _init_weights(self, module):
|
297 |
+
std = self.config.initializer_range
|
298 |
+
if isinstance(module, nn.Linear):
|
299 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
300 |
+
if module.bias is not None:
|
301 |
+
module.bias.data.zero_()
|
302 |
+
elif isinstance(module, nn.Embedding):
|
303 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
304 |
+
if module.padding_idx is not None:
|
305 |
+
module.weight.data[module.padding_idx].zero_()
|
306 |
+
elif isinstance(module, Fast_dLLM_QwenRMSNorm):
|
307 |
+
module.weight.data.fill_(1.0)
|
308 |
+
|
309 |
+
|
310 |
+
class Fast_dLLM_QwenRotaryEmbedding(nn.Module):
|
311 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, device=None):
|
312 |
+
super().__init__()
|
313 |
+
# BC: "rope_type" was originally "type"
|
314 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
315 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
316 |
+
else:
|
317 |
+
self.rope_type = "default"
|
318 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
319 |
+
self.original_max_seq_len = config.max_position_embeddings
|
320 |
+
|
321 |
+
self.config = config
|
322 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
323 |
+
|
324 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
325 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
326 |
+
self.original_inv_freq = self.inv_freq
|
327 |
+
|
328 |
+
@torch.no_grad()
|
329 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
330 |
+
def forward(self, x, position_ids):
|
331 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
332 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
333 |
+
|
334 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
335 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
336 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
337 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
338 |
+
cos = emb.cos() * self.attention_scaling
|
339 |
+
sin = emb.sin() * self.attention_scaling
|
340 |
+
|
341 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel):
|
346 |
+
def __init__(self, config: Fast_dLLM_QwenConfig):
|
347 |
+
super().__init__(config)
|
348 |
+
self.padding_idx = config.pad_token_id
|
349 |
+
self.vocab_size = config.vocab_size
|
350 |
+
|
351 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
352 |
+
self.layers = nn.ModuleList(
|
353 |
+
[Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
354 |
+
)
|
355 |
+
self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
356 |
+
self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config)
|
357 |
+
self.gradient_checkpointing = True
|
358 |
+
|
359 |
+
# Initialize weights and apply final processing
|
360 |
+
self.post_init()
|
361 |
+
|
362 |
+
def get_input_embeddings(self):
|
363 |
+
return self.embed_tokens
|
364 |
+
|
365 |
+
def set_input_embeddings(self, value):
|
366 |
+
self.embed_tokens = value
|
367 |
+
|
368 |
+
|
369 |
+
def eval_mask(self, seqlen, block_size, cache_seq_len):
|
370 |
+
q_indices = torch.arange(seqlen) + cache_seq_len
|
371 |
+
k_indices = torch.arange(seqlen + cache_seq_len)
|
372 |
+
mask = eval_block_diff_mask(
|
373 |
+
q_idx=q_indices[:, None],
|
374 |
+
kv_idx=k_indices[None, :],
|
375 |
+
block_size=block_size
|
376 |
+
)
|
377 |
+
return mask
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
input_ids: Optional[torch.LongTensor] = None,
|
382 |
+
labels: Optional[torch.LongTensor] = None,
|
383 |
+
attention_mask: Optional[torch.Tensor] = None,
|
384 |
+
position_ids: Optional[torch.LongTensor] = None,
|
385 |
+
past_key_values: Optional[Cache] = None,
|
386 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
387 |
+
use_cache: Optional[bool] = None,
|
388 |
+
cache_position: Optional[torch.LongTensor] = None,
|
389 |
+
update_past_key_values: Optional[bool] = False,
|
390 |
+
block_size: Optional[int] = 32,
|
391 |
+
use_block_cache: Optional[bool] = False,
|
392 |
+
block_past_key_values: Optional[Cache] = None,
|
393 |
+
replace_position: Optional[int] = None,
|
394 |
+
**kwargs
|
395 |
+
) -> BaseModelOutputWithPast:
|
396 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
397 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
398 |
+
|
399 |
+
if inputs_embeds is None:
|
400 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
401 |
+
|
402 |
+
if use_cache and past_key_values is None:
|
403 |
+
past_key_values = DynamicCache()
|
404 |
+
|
405 |
+
if use_block_cache and block_past_key_values is None:
|
406 |
+
block_past_key_values = DynamicCache()
|
407 |
+
|
408 |
+
if cache_position is None:
|
409 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
410 |
+
if use_block_cache:
|
411 |
+
block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens
|
412 |
+
cache_position = torch.arange(
|
413 |
+
block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
cache_position = torch.arange(
|
417 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device
|
418 |
+
)
|
419 |
+
|
420 |
+
if position_ids is None:
|
421 |
+
position_ids = cache_position.unsqueeze(0)
|
422 |
+
|
423 |
+
if use_block_cache and block_past_key_values.get_seq_length() != 0:
|
424 |
+
attention_mask = None
|
425 |
+
else:
|
426 |
+
attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device)
|
427 |
+
|
428 |
+
hidden_states = inputs_embeds
|
429 |
+
|
430 |
+
# create position embeddings to be shared across the decoder layers
|
431 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
432 |
+
|
433 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
434 |
+
hidden_states = decoder_layer(
|
435 |
+
hidden_states,
|
436 |
+
attention_mask=attention_mask,
|
437 |
+
position_ids=position_ids,
|
438 |
+
past_key_value=past_key_values,
|
439 |
+
use_cache=use_cache,
|
440 |
+
cache_position=cache_position,
|
441 |
+
position_embeddings=position_embeddings,
|
442 |
+
update_past_key_values=update_past_key_values,
|
443 |
+
use_block_cache=use_block_cache,
|
444 |
+
block_past_key_values=block_past_key_values,
|
445 |
+
replace_position=replace_position,
|
446 |
+
**kwargs,
|
447 |
+
)
|
448 |
+
|
449 |
+
hidden_states = self.norm(hidden_states)
|
450 |
+
return BaseModelOutputWithPastAndBlockCache(
|
451 |
+
last_hidden_state=hidden_states,
|
452 |
+
past_key_values=past_key_values if use_cache else None,
|
453 |
+
block_past_key_values=block_past_key_values if use_block_cache else None,
|
454 |
+
)
|
455 |
+
|
456 |
+
|
457 |
+
class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
458 |
+
_tied_weights_keys = ["lm_head.weight"]
|
459 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
460 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
461 |
+
|
462 |
+
def __init__(self, config):
|
463 |
+
super().__init__(config)
|
464 |
+
self.model = Fast_dLLM_QwenModel(config)
|
465 |
+
self.vocab_size = config.vocab_size
|
466 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
467 |
+
|
468 |
+
# Initialize weights and apply final processing
|
469 |
+
self.post_init()
|
470 |
+
|
471 |
+
def get_input_embeddings(self):
|
472 |
+
return self.model.embed_tokens
|
473 |
+
|
474 |
+
def set_input_embeddings(self, value):
|
475 |
+
self.model.embed_tokens = value
|
476 |
+
|
477 |
+
def get_output_embeddings(self):
|
478 |
+
return self.lm_head
|
479 |
+
|
480 |
+
def set_output_embeddings(self, new_embeddings):
|
481 |
+
self.lm_head = new_embeddings
|
482 |
+
|
483 |
+
def set_decoder(self, decoder):
|
484 |
+
self.model = decoder
|
485 |
+
|
486 |
+
def get_decoder(self):
|
487 |
+
return self.model
|
488 |
+
|
489 |
+
@can_return_tuple
|
490 |
+
def forward(
|
491 |
+
self,
|
492 |
+
input_ids: Optional[torch.LongTensor] = None,
|
493 |
+
attention_mask: Optional[torch.Tensor] = None,
|
494 |
+
position_ids: Optional[torch.LongTensor] = None,
|
495 |
+
past_key_values: Optional[Cache] = None,
|
496 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
497 |
+
labels: Optional[torch.LongTensor] = None,
|
498 |
+
use_cache: Optional[bool] = None,
|
499 |
+
cache_position: Optional[torch.LongTensor] = None,
|
500 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
501 |
+
update_past_key_values: Optional[bool] = False,
|
502 |
+
block_size: Optional[int] = 32,
|
503 |
+
use_block_cache: Optional[bool] = False,
|
504 |
+
block_past_key_values: Optional[Cache] = None,
|
505 |
+
replace_position: Optional[int] = None,
|
506 |
+
**kwargs
|
507 |
+
) -> CausalLMOutputWithPastAndBlockCache:
|
508 |
+
|
509 |
+
outputs: BaseModelOutputWithPastAndBlockCache = self.model(
|
510 |
+
input_ids=input_ids,
|
511 |
+
labels=labels,
|
512 |
+
attention_mask=attention_mask,
|
513 |
+
position_ids=position_ids,
|
514 |
+
past_key_values=past_key_values,
|
515 |
+
inputs_embeds=inputs_embeds,
|
516 |
+
use_cache=use_cache,
|
517 |
+
cache_position=cache_position,
|
518 |
+
update_past_key_values=update_past_key_values,
|
519 |
+
block_size=block_size,
|
520 |
+
use_block_cache=use_block_cache,
|
521 |
+
block_past_key_values=block_past_key_values,
|
522 |
+
replace_position=replace_position,
|
523 |
+
**kwargs,
|
524 |
+
)
|
525 |
+
|
526 |
+
hidden_states = outputs.last_hidden_state
|
527 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
528 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
529 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
530 |
+
|
531 |
+
loss = None
|
532 |
+
if labels is not None:
|
533 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
534 |
+
|
535 |
+
return CausalLMOutputWithPastAndBlockCache(
|
536 |
+
loss=loss,
|
537 |
+
logits=logits,
|
538 |
+
past_key_values=outputs.past_key_values,
|
539 |
+
hidden_states=outputs.hidden_states,
|
540 |
+
attentions=outputs.attentions,
|
541 |
+
block_past_key_values=outputs.block_past_key_values,
|
542 |
+
)
|
543 |
+
|
544 |
+
@torch.no_grad()
|
545 |
+
def generate(
|
546 |
+
self,
|
547 |
+
input_ids,
|
548 |
+
max_new_tokens,
|
549 |
+
mask_id=151665,
|
550 |
+
threshold=1,
|
551 |
+
small_block_size=8,
|
552 |
+
block_size=32,
|
553 |
+
stop_token=151645,
|
554 |
+
stopping_criteria=None,
|
555 |
+
top_p=0.95,
|
556 |
+
temperature=0,
|
557 |
+
use_block_cache=False,
|
558 |
+
block_cache_refresh_interval=16,
|
559 |
+
**kwargs
|
560 |
+
):
|
561 |
+
num_blocks = max_new_tokens // block_size
|
562 |
+
original_input_length = input_ids.shape[1]
|
563 |
+
|
564 |
+
if input_ids.shape[1] > block_size:
|
565 |
+
output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size)
|
566 |
+
logits, past_key_values = output.logits, output.past_key_values
|
567 |
+
if input_ids.shape[1] % block_size == 0:
|
568 |
+
next_token = logits[:, -1:, :].argmax(dim=-1)
|
569 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
570 |
+
else:
|
571 |
+
past_key_values = None
|
572 |
+
|
573 |
+
num_small_blocks = block_size // small_block_size
|
574 |
+
|
575 |
+
for block_idx in range(num_blocks):
|
576 |
+
if stop_token in input_ids[:, original_input_length:]:
|
577 |
+
break
|
578 |
+
prompt_length = input_ids.shape[1]
|
579 |
+
# Initialize x_init with mask_id
|
580 |
+
x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long)
|
581 |
+
x_init = torch.cat([input_ids, x_init], dim=1)
|
582 |
+
|
583 |
+
x_t = x_init.clone()
|
584 |
+
step = 0
|
585 |
+
block_past_key_values = None
|
586 |
+
while True:
|
587 |
+
if stop_token in x_t[:, prompt_length:]:
|
588 |
+
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
|
589 |
+
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
|
590 |
+
break
|
591 |
+
mask_idx = (x_t[:, -block_size:] == mask_id)
|
592 |
+
# Decode a complete block, update cache, and generate the next token
|
593 |
+
if mask_idx.sum() == 0:
|
594 |
+
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size)
|
595 |
+
logits, past_key_values = output.logits, output.past_key_values
|
596 |
+
next_token = logits[:, -1:, :].argmax(dim=-1)
|
597 |
+
x_t = torch.cat([x_t, next_token], dim=1)
|
598 |
+
break
|
599 |
+
for small_block_idx in range(num_small_blocks):
|
600 |
+
small_block_start_idx = small_block_idx * small_block_size
|
601 |
+
small_block_end_idx = small_block_start_idx + small_block_size
|
602 |
+
|
603 |
+
start = -block_size + small_block_start_idx
|
604 |
+
end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx
|
605 |
+
while True:
|
606 |
+
mask_idx = (x_t[:, -block_size:] == mask_id)
|
607 |
+
if mask_idx[:, start:end].sum() == 0:
|
608 |
+
break
|
609 |
+
if stop_token in x_t[:, prompt_length:]:
|
610 |
+
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
|
611 |
+
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
|
612 |
+
break
|
613 |
+
|
614 |
+
if use_block_cache:
|
615 |
+
if step % block_cache_refresh_interval == 0 or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
|
616 |
+
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
|
617 |
+
logits, block_past_key_values = output.logits, output.block_past_key_values
|
618 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
619 |
+
logits = logits[:, start:end]
|
620 |
+
else:
|
621 |
+
logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits
|
622 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
623 |
+
else:
|
624 |
+
logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits
|
625 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
626 |
+
logits = logits[:, start:end]
|
627 |
+
|
628 |
+
|
629 |
+
x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature)
|
630 |
+
# Select tokens with probability greater than threshold from p_1t
|
631 |
+
x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1)
|
632 |
+
x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf)
|
633 |
+
|
634 |
+
unmask_idx = (x1_p > threshold)
|
635 |
+
max_prob_idx = x1_p.argmax(dim=-1)
|
636 |
+
unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True
|
637 |
+
unmask_idx = unmask_idx & mask_idx[:, start:end]
|
638 |
+
|
639 |
+
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
|
640 |
+
|
641 |
+
step += 1
|
642 |
+
input_ids = x_t
|
643 |
+
# Truncate stop_token
|
644 |
+
if stop_token in input_ids[:, original_input_length:]:
|
645 |
+
stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1]
|
646 |
+
input_ids = input_ids[:, :stop_token_idx+original_input_length+1]
|
647 |
+
return input_ids
|
648 |
+
|
649 |
+
def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0):
|
650 |
+
# Calculate probabilities
|
651 |
+
if temperature > 0:
|
652 |
+
scaled_logits = logits / temperature
|
653 |
+
else:
|
654 |
+
p_1t = torch.softmax(logits, dim=-1)
|
655 |
+
x_1 = p_1t.argmax(dim=-1)
|
656 |
+
return x_1, p_1t
|
657 |
+
|
658 |
+
probs = F.softmax(scaled_logits, dim=-1)
|
659 |
+
|
660 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
|
661 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
662 |
+
|
663 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
664 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
665 |
+
sorted_indices_to_remove[..., 0] = 0
|
666 |
+
|
667 |
+
indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_(
|
668 |
+
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
|
669 |
+
)
|
670 |
+
|
671 |
+
probs[indices_to_remove] = 0
|
672 |
+
|
673 |
+
# Renormalize so that the probabilities of remaining tokens sum to 1
|
674 |
+
# Add a small epsilon value to prevent division by zero
|
675 |
+
probs_sum = torch.sum(probs, dim=-1, keepdim=True)
|
676 |
+
normalized_probs = probs / probs_sum
|
677 |
+
|
678 |
+
p_1t = normalized_probs
|
679 |
+
x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1)
|
680 |
+
|
681 |
+
return x_1, p_1t
|
special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "|<MASK>|",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"eos_token": {
|
12 |
+
"content": "<|im_end|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"pad_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
}
|
25 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb2105b66192c5a532e2a098dc899df86eca233b4faa48461211e4312c8b3568
|
3 |
+
size 11422081
|
tokenizer_config.json
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "|<MASK>|",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"additional_special_tokens": [
|
191 |
+
"|<MASK>|"
|
192 |
+
],
|
193 |
+
"bos_token": null,
|
194 |
+
"clean_up_tokenization_spaces": false,
|
195 |
+
"eos_token": "<|im_end|>",
|
196 |
+
"errors": "replace",
|
197 |
+
"extra_special_tokens": {},
|
198 |
+
"model_max_length": 131072,
|
199 |
+
"pad_token": "<|endoftext|>",
|
200 |
+
"padding_side": "right",
|
201 |
+
"split_special_tokens": false,
|
202 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
203 |
+
"unk_token": null
|
204 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|