Text-to-Image
Diffusers
lora
File size: 1,997 Bytes
1a35a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
---

# FLUX 艺术增强 LoRA

## 简介

这是一个为 FLUX.1-dev 训练的 LoRA 模型,能够使模型生成的图像更符合人类的审美,包括但不限于:丰富的细节、唯美的光影、美学的构图、清晰的画面。本模型不需要任何触发词。

* 论文:coming soon
* 开源代码:https://github.com/modelscope/DiffSynth-Studio
* 模型:
    * ModelScope: https://www.modelscope.cn/models/DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1
    * HuggingFace: coming soon
* 在线体验:点击右上角“一键生成”

## 使用方式

本模型使用 DiffSynth-Studio 训练而来,我们推荐使用 DiffSynth-Studio 进行生成。

```shell
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
```

```python
import torch
from diffsynth import ModelManager, FluxImagePipeline, download_customized_models

lora_path = download_customized_models(
    model_id="DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1",
    origin_file_path="merged_lora.safetensors",
    local_dir="models/lora"
)[0]
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda", model_id_list=["FLUX.1-dev"])
model_manager.load_lora(lora_path, lora_alpha=1.0)
pipe = FluxImagePipeline.from_model_manager(model_manager)

image = pipe(prompt="a house", seed=0)
image.save("image_artaug.jpg")
```

由于本模型使用了通用的 FLUX LoRA 格式封装,可以被大多数 LoRA 加载器加载,你可以将这个 LoRA 模型接入到你的工作流中。

## 图像样例

|FLUX.1-dev|FLUX.1-dev + ArtAug LoRA|
|-|-|
|![](gallary/image_1_base.jpg)|![](gallary/image_1_enhance.jpg)|
|![](gallary/image_2_base.jpg)|![](gallary/image_2_enhance.jpg)|
|![](gallary/image_3_base.jpg)|![](gallary/image_3_enhance.jpg)|
|![](gallary/image_4_base.jpg)|![](gallary/image_4_enhance.jpg)|
|![](gallary/image_5_base.jpg)|![](gallary/image_5_enhance.jpg)|
|![](gallary/image_6_base.jpg)|![](gallary/image_6_enhance.jpg)|