Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
---
|
5 |
+
# Dream-Coder-v0-Instruct-7B
|
6 |
+
|
7 |
+
Dream-Coder 7B is a **diffusion LLM for code** trained exclusively on open-source data across its development stages—adaptation, supervised fine-tuning, and reinforcement learning.
|
8 |
+
It achieves an impressive **21.4% pass@1 on LiveCodeBench (2410-2505)**, outperforming other open-source diffusion LLMs by a wide margin.
|
9 |
+
More details about the model and usage can be found in the blog and github bellow:
|
10 |
+
|
11 |
+
- **Blog:** https://hkunlp.github.io/blog/2025/dream-coder/
|
12 |
+
- **Github:** https://github.com/DreamLM/Dream-Coder
|
13 |
+
|
14 |
+
## Quickstart
|
15 |
+
To get start with,
|
16 |
+
please install `transformers==4.46.2` and `torch==2.5.1`. Here is an example to use Dream-Coder 7B:
|
17 |
+
|
18 |
+
```python
|
19 |
+
import torch
|
20 |
+
from transformers import AutoModel, AutoTokenizer
|
21 |
+
|
22 |
+
model_path = "Dream-org/Dream-Coder-v0-Instruct-7B"
|
23 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
25 |
+
model = model.to("cuda").eval()
|
26 |
+
|
27 |
+
messages = [
|
28 |
+
{"role": "user", "content": "Write a quick sort algorithm."}
|
29 |
+
]
|
30 |
+
inputs = tokenizer.apply_chat_template(
|
31 |
+
messages, return_tensors="pt", return_dict=True, add_generation_prompt=True
|
32 |
+
)
|
33 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
34 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
35 |
+
|
36 |
+
output = model.diffusion_generate(
|
37 |
+
input_ids,
|
38 |
+
attention_mask=attention_mask,
|
39 |
+
max_new_tokens=768,
|
40 |
+
output_history=True,
|
41 |
+
return_dict_in_generate=True,
|
42 |
+
steps=768,
|
43 |
+
temperature=0.1,
|
44 |
+
top_p=0.95,
|
45 |
+
alg="entropy",
|
46 |
+
alg_temp=0.,
|
47 |
+
)
|
48 |
+
generations = [
|
49 |
+
tokenizer.decode(g[len(p) :].tolist())
|
50 |
+
for p, g in zip(input_ids, output.sequences)
|
51 |
+
]
|
52 |
+
|
53 |
+
print(generations[0].split(tokenizer.eos_token)[0])
|
54 |
+
```
|