anhnct commited on
Commit
f666b0c
·
verified ·
1 Parent(s): c8406fd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -5
README.md CHANGED
@@ -1,6 +1,66 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
3
- base_model:
4
- - SparkAudio/Spark-TTS-0.5B
5
- pipeline_tag: text-to-speech
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-nd-4.0
3
+ ---
4
+
5
+
6
+ # Spark TTS Vietnamese
7
+
8
+ Spark-TTS is an advanced text-to-speech system that uses the power of large language models (LLM) for highly accurate and natural-sounding voice synthesis. It is designed to be efficient, flexible, and powerful for both research and production use. This model is trained from [viVoice](https://huggingface.co/datasets/thinhlpg/viVoice) vietnamese dataset
9
+
10
+ # Usage
11
+
12
+ First, install the required packages:
13
+
14
+ ```
15
+ pip install --upgrade transformers accelerate
16
+ ```
17
+
18
+ ## Text-to-Speech
19
+ We have customized the code so you can inference using the huggingface transformer library without installing anything else.
20
+
21
+ ```python
22
+ from transformers import AutoProcessor, AutoModel, AutoTokenizer
23
+ import soundfile as sf
24
+ import torch
25
+ import numpy as np
26
+
27
+ device = "cuda"
28
+ model_id = "DragonLineageAI/Vi-Spark-TTS-0.5B-v2"
29
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
30
+ model = AutoModel.from_pretrained(model_id, trust_remote_code=True).eval()
31
+ processor.model = model
32
+
33
+ prompt_audio_path = "path_to_audio_path" # CHANGE TO YOUR ACTUAL PATH
34
+ prompt_transcript = "text corresponding to prompt audio" # Optional
35
+ text_input = "xin chào mọi người chúng tôi là Nguyễn Công Tú Anh và Chu Văn An đến từ dragonlineageai"
36
+
37
+ inputs = processor(
38
+ text=text_input.lower(),
39
+ prompt_speech_path=prompt_audio_path,
40
+ prompt_text=None,
41
+ return_tensors="pt"
42
+ ).to(device)
43
+ global_tokens_prompt = inputs.pop("global_token_ids_prompt", None)
44
+
45
+ with torch.no_grad():
46
+ output_ids = model.generate(
47
+ **inputs,
48
+ max_new_tokens=3000,
49
+ do_sample=True,
50
+ temperature=0.8,
51
+ top_k=50,
52
+ top_p=0.95,
53
+ eos_token_id=processor.tokenizer.eos_token_id,
54
+ pad_token_id=processor.tokenizer.pad_token_id
55
+ )
56
+
57
+ output_clone = processor.decode(
58
+ generated_ids=output_ids,
59
+ global_token_ids_prompt=global_tokens_prompt,
60
+ input_ids_len=inputs["input_ids"].shape[-1]
61
+ )
62
+
63
+ sf.write("output_cloned.wav", output_clone["audio"], output_clone["sampling_rate"])
64
+ ```
65
+ ## Fintune
66
+ You can finetune this model with any dataset to improve quality or train on a new language. [training code](https://github.com/tuanh123789/Spark-TTS-finetune)