Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +768 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +67 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,768 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:8788
|
| 8 |
+
- loss:BatchAllTripletLoss
|
| 9 |
+
base_model: cl-nagoya/sup-simcse-ja-base
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 科目:ユニット及びその他。名称:ピクチャーレールA。
|
| 12 |
+
sentences:
|
| 13 |
+
- 科目:ユニット及びその他。名称:床ゴムチップ舗装。
|
| 14 |
+
- 科目:ユニット及びその他。名称:講堂スピーカー戸。
|
| 15 |
+
- 科目:ユニット及びその他。名称:C7三槽シンク。
|
| 16 |
+
- source_sentence: 科目:ユニット及びその他。名称:A-#小児プレイルームアート。
|
| 17 |
+
sentences:
|
| 18 |
+
- 科目:ユニット及びその他。名称:F-#階ひまわり学級職員室ミニキッチン。
|
| 19 |
+
- 科目:ユニット及びその他。名称:連絡通路梁用バトントラス。
|
| 20 |
+
- 科目:ユニット及びその他。名称:体育館サブバレーボールコートライン。
|
| 21 |
+
- source_sentence: 科目:ユニット及びその他。名称:厨房カウンター。
|
| 22 |
+
sentences:
|
| 23 |
+
- 科目:コンクリート。名称:地上部暑中コンクリート。
|
| 24 |
+
- 科目:コンクリート。名称:免震EXP.J用充填コンクリート。
|
| 25 |
+
- 科目:コンクリート。名称:基礎コンクリート。
|
| 26 |
+
- source_sentence: 科目:ユニット及びその他。名称:1F電話コーナーカウンター。
|
| 27 |
+
sentences:
|
| 28 |
+
- 科目:ユニット及びその他。名称:1・2階男子・女子更衣室カーテンレール。
|
| 29 |
+
- 科目:コンクリート。名称:鉄筋コンクリート(免震下部)。
|
| 30 |
+
- 科目:タイル。名称:EXP.J上床磁器質タイルA。
|
| 31 |
+
- source_sentence: 科目:ユニット及びその他。名称:4F透析室カウンター。
|
| 32 |
+
sentences:
|
| 33 |
+
- 科目:ユニット及びその他。名称:2F初療1、2カウンター。
|
| 34 |
+
- 科目:ユニット及びその他。名称:5Fファミリールームカウンター。
|
| 35 |
+
- 科目:ユニット及びその他。名称:9Fスタッフステーション1カウンター。
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
# SentenceTransformer based on cl-nagoya/sup-simcse-ja-base
|
| 41 |
+
|
| 42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 43 |
+
|
| 44 |
+
## Model Details
|
| 45 |
+
|
| 46 |
+
### Model Description
|
| 47 |
+
- **Model Type:** Sentence Transformer
|
| 48 |
+
- **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base) <!-- at revision d7315d93baf2c20fffa2b6845330049963509f79 -->
|
| 49 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 50 |
+
- **Output Dimensionality:** 768 dimensions
|
| 51 |
+
- **Similarity Function:** Cosine Similarity
|
| 52 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 53 |
+
<!-- - **Language:** Unknown -->
|
| 54 |
+
<!-- - **License:** Unknown -->
|
| 55 |
+
|
| 56 |
+
### Model Sources
|
| 57 |
+
|
| 58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 61 |
+
|
| 62 |
+
### Full Model Architecture
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
SentenceTransformer(
|
| 66 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 67 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 68 |
+
)
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## Usage
|
| 72 |
+
|
| 73 |
+
### Direct Usage (Sentence Transformers)
|
| 74 |
+
|
| 75 |
+
First install the Sentence Transformers library:
|
| 76 |
+
|
| 77 |
+
```bash
|
| 78 |
+
pip install -U sentence-transformers
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
Then you can load this model and run inference.
|
| 82 |
+
```python
|
| 83 |
+
from sentence_transformers import SentenceTransformer
|
| 84 |
+
|
| 85 |
+
# Download from the 🤗 Hub
|
| 86 |
+
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_1")
|
| 87 |
+
# Run inference
|
| 88 |
+
sentences = [
|
| 89 |
+
'科目:ユニット及びその他。名称:4F透析室カウンター。',
|
| 90 |
+
'科目:ユニット及びその他。名称:2F初療1、2カウンター。',
|
| 91 |
+
'科目:ユニット及びその他。名称:9Fスタッフステーション1カウンター。',
|
| 92 |
+
]
|
| 93 |
+
embeddings = model.encode(sentences)
|
| 94 |
+
print(embeddings.shape)
|
| 95 |
+
# [3, 768]
|
| 96 |
+
|
| 97 |
+
# Get the similarity scores for the embeddings
|
| 98 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 99 |
+
print(similarities.shape)
|
| 100 |
+
# [3, 3]
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
<!--
|
| 104 |
+
### Direct Usage (Transformers)
|
| 105 |
+
|
| 106 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 107 |
+
|
| 108 |
+
</details>
|
| 109 |
+
-->
|
| 110 |
+
|
| 111 |
+
<!--
|
| 112 |
+
### Downstream Usage (Sentence Transformers)
|
| 113 |
+
|
| 114 |
+
You can finetune this model on your own dataset.
|
| 115 |
+
|
| 116 |
+
<details><summary>Click to expand</summary>
|
| 117 |
+
|
| 118 |
+
</details>
|
| 119 |
+
-->
|
| 120 |
+
|
| 121 |
+
<!--
|
| 122 |
+
### Out-of-Scope Use
|
| 123 |
+
|
| 124 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 125 |
+
-->
|
| 126 |
+
|
| 127 |
+
<!--
|
| 128 |
+
## Bias, Risks and Limitations
|
| 129 |
+
|
| 130 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 131 |
+
-->
|
| 132 |
+
|
| 133 |
+
<!--
|
| 134 |
+
### Recommendations
|
| 135 |
+
|
| 136 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 137 |
+
-->
|
| 138 |
+
|
| 139 |
+
## Training Details
|
| 140 |
+
|
| 141 |
+
### Training Dataset
|
| 142 |
+
|
| 143 |
+
#### Unnamed Dataset
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
* Size: 8,788 training samples
|
| 147 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
| 148 |
+
* Approximate statistics based on the first 1000 samples:
|
| 149 |
+
| | sentence | label |
|
| 150 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 151 |
+
| type | string | int |
|
| 152 |
+
| details | <ul><li>min: 13 tokens</li><li>mean: 23.19 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>0: ~0.20%</li><li>1: ~0.30%</li><li>2: ~0.30%</li><li>3: ~0.30%</li><li>4: ~0.20%</li><li>5: ~0.20%</li><li>6: ~0.20%</li><li>7: ~0.20%</li><li>8: ~0.30%</li><li>9: ~0.30%</li><li>10: ~0.20%</li><li>11: ~0.20%</li><li>12: ~0.20%</li><li>13: ~0.20%</li><li>14: ~0.20%</li><li>15: ~0.20%</li><li>16: ~0.40%</li><li>17: ~0.20%</li><li>18: ~0.20%</li><li>19: ~0.20%</li><li>20: ~0.20%</li><li>21: ~0.20%</li><li>22: ~0.20%</li><li>23: ~0.20%</li><li>24: ~0.20%</li><li>25: ~0.20%</li><li>26: ~0.20%</li><li>27: ~0.20%</li><li>28: ~0.20%</li><li>29: ~0.20%</li><li>30: ~0.20%</li><li>31: ~0.20%</li><li>32: ~0.20%</li><li>33: ~0.20%</li><li>34: ~0.20%</li><li>35: ~0.20%</li><li>36: ~0.20%</li><li>37: ~0.20%</li><li>38: ~0.20%</li><li>39: ~0.20%</li><li>40: ~0.20%</li><li>41: ~0.20%</li><li>42: ~0.60%</li><li>43: ~0.70%</li><li>44: ~0.20%</li><li>45: ~0.30%</li><li>46: ~0.20%</li><li>47: ~0.20%</li><li>48: ~0.30%</li><li>49: ~0.20%</li><li>50: ~0.20%</li><li>51: ~0.20%</li><li>52: ~0.20%</li><li>53: ~0.30%</li><li>54: ~0.40%</li><li>55: ~0.30%</li><li>56: ~0.20%</li><li>57: ~0.20%</li><li>58: ~0.20%</li><li>59: ~0.20%</li><li>60: ~0.20%</li><li>61: ~0.30%</li><li>62: ~0.20%</li><li>63: ~0.20%</li><li>64: ~0.20%</li><li>65: ~0.20%</li><li>66: ~0.40%</li><li>67: ~0.40%</li><li>68: ~0.20%</li><li>69: ~0.60%</li><li>70: ~0.20%</li><li>71: ~0.20%</li><li>72: ~0.20%</li><li>73: ~0.20%</li><li>74: ~0.20%</li><li>75: ~0.30%</li><li>76: ~0.20%</li><li>77: ~0.40%</li><li>78: ~0.20%</li><li>79: ~0.20%</li><li>80: ~0.50%</li><li>81: ~0.30%</li><li>82: ~0.60%</li><li>83: ~0.20%</li><li>84: ~0.30%</li><li>85: ~0.20%</li><li>86: ~0.20%</li><li>87: ~0.20%</li><li>88: ~0.20%</li><li>89: ~1.10%</li><li>90: ~1.70%</li><li>91: ~2.20%</li><li>92: ~0.50%</li><li>93: ~0.20%</li><li>94: ~0.20%</li><li>95: ~1.60%</li><li>96: ~0.20%</li><li>97: ~0.20%</li><li>98: ~0.20%</li><li>99: ~0.20%</li><li>100: ~0.30%</li><li>101: ~1.70%</li><li>102: ~0.20%</li><li>103: ~0.20%</li><li>104: ~0.40%</li><li>105: ~0.40%</li><li>106: ~0.20%</li><li>107: ~0.20%</li><li>108: ~0.20%</li><li>109: ~1.10%</li><li>110: ~0.20%</li><li>111: ~0.40%</li><li>112: ~0.50%</li><li>113: ~0.20%</li><li>114: ~0.20%</li><li>115: ~0.20%</li><li>116: ~0.20%</li><li>117: ~0.50%</li><li>118: ~0.20%</li><li>119: ~0.20%</li><li>120: ~0.20%</li><li>121: ~0.20%</li><li>122: ~0.20%</li><li>123: ~0.20%</li><li>124: ~0.30%</li><li>125: ~0.20%</li><li>126: ~0.20%</li><li>127: ~0.20%</li><li>128: ~0.40%</li><li>129: ~0.20%</li><li>130: ~0.20%</li><li>131: ~0.20%</li><li>132: ~0.20%</li><li>133: ~0.20%</li><li>134: ~0.20%</li><li>135: ~0.20%</li><li>136: ~0.20%</li><li>137: ~0.20%</li><li>138: ~0.30%</li><li>139: ~0.20%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.20%</li><li>143: ~0.20%</li><li>144: ~0.20%</li><li>145: ~0.20%</li><li>146: ~0.20%</li><li>147: ~0.20%</li><li>148: ~0.20%</li><li>149: ~0.20%</li><li>150: ~0.20%</li><li>151: ~0.20%</li><li>152: ~0.20%</li><li>153: ~0.20%</li><li>154: ~0.20%</li><li>155: ~0.20%</li><li>156: ~0.60%</li><li>157: ~0.20%</li><li>158: ~1.50%</li><li>159: ~0.20%</li><li>160: ~0.20%</li><li>161: ~0.20%</li><li>162: ~0.20%</li><li>163: ~0.50%</li><li>164: ~0.20%</li><li>165: ~0.20%</li><li>166: ~0.20%</li><li>167: ~0.20%</li><li>168: ~0.20%</li><li>169: ~0.30%</li><li>170: ~0.30%</li><li>171: ~0.20%</li><li>172: ~0.20%</li><li>173: ~1.30%</li><li>174: ~0.20%</li><li>175: ~0.20%</li><li>176: ~0.20%</li><li>177: ~0.20%</li><li>178: ~0.60%</li><li>179: ~0.20%</li><li>180: ~0.20%</li><li>181: ~0.20%</li><li>182: ~0.20%</li><li>183: ~0.20%</li><li>184: ~0.20%</li><li>185: ~0.30%</li><li>186: ~0.20%</li><li>187: ~0.20%</li><li>188: ~0.30%</li><li>189: ~0.20%</li><li>190: ~0.90%</li><li>191: ~0.30%</li><li>192: ~0.30%</li><li>193: ~0.20%</li><li>194: ~0.30%</li><li>195: ~0.20%</li><li>196: ~0.80%</li><li>197: ~0.20%</li><li>198: ~0.20%</li><li>199: ~0.30%</li><li>200: ~0.20%</li><li>201: ~0.20%</li><li>202: ~0.20%</li><li>203: ~0.20%</li><li>204: ~0.20%</li><li>205: ~1.20%</li><li>206: ~0.40%</li><li>207: ~0.20%</li><li>208: ~0.20%</li><li>209: ~0.20%</li><li>210: ~0.20%</li><li>211: ~0.30%</li><li>212: ~0.20%</li><li>213: ~0.80%</li><li>214: ~0.30%</li><li>215: ~0.20%</li><li>216: ~1.10%</li><li>217: ~0.30%</li><li>218: ~0.20%</li><li>219: ~0.20%</li><li>220: ~0.20%</li><li>221: ~0.20%</li><li>222: ~0.20%</li><li>223: ~0.20%</li><li>224: ~0.20%</li><li>225: ~0.30%</li><li>226: ~0.20%</li><li>227: ~0.90%</li><li>228: ~4.70%</li><li>229: ~0.20%</li><li>230: ~0.20%</li><li>231: ~0.20%</li><li>232: ~0.70%</li><li>233: ~0.20%</li><li>234: ~0.80%</li><li>235: ~0.20%</li><li>236: ~0.40%</li><li>237: ~0.30%</li><li>238: ~0.40%</li><li>239: ~0.20%</li><li>240: ~0.30%</li><li>241: ~0.50%</li><li>242: ~0.30%</li><li>243: ~0.20%</li><li>244: ~0.20%</li><li>245: ~0.30%</li><li>246: ~0.30%</li><li>247: ~0.30%</li><li>248: ~0.60%</li><li>249: ~0.20%</li><li>250: ~0.20%</li><li>251: ~0.20%</li><li>252: ~0.30%</li><li>253: ~0.30%</li><li>254: ~1.90%</li><li>255: ~0.20%</li><li>256: ~0.20%</li><li>257: ~0.20%</li><li>258: ~0.20%</li><li>259: ~0.20%</li><li>260: ~0.50%</li><li>261: ~0.20%</li><li>262: ~0.30%</li><li>263: ~0.20%</li><li>264: ~0.20%</li><li>265: ~1.00%</li><li>266: ~0.20%</li><li>267: ~0.20%</li><li>268: ~0.20%</li><li>269: ~0.40%</li><li>270: ~0.20%</li><li>271: ~0.20%</li><li>272: ~0.20%</li><li>273: ~0.20%</li><li>274: ~0.20%</li><li>275: ~0.20%</li><li>276: ~0.20%</li><li>277: ~3.70%</li><li>278: ~0.20%</li><li>279: ~0.40%</li><li>280: ~0.20%</li><li>281: ~0.20%</li><li>282: ~0.90%</li><li>283: ~0.40%</li><li>284: ~0.20%</li><li>285: ~2.30%</li><li>286: ~0.30%</li><li>287: ~0.20%</li><li>288: ~0.30%</li><li>289: ~0.60%</li></ul> |
|
| 153 |
+
* Samples:
|
| 154 |
+
| sentence | label |
|
| 155 |
+
|:----------------------------------------|:---------------|
|
| 156 |
+
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
| 157 |
+
| <code>科目:コンクリート。名称:免震基礎天端グラウト注入。</code> | <code>0</code> |
|
| 158 |
+
| <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>1</code> |
|
| 159 |
+
* Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
|
| 160 |
+
|
| 161 |
+
### Training Hyperparameters
|
| 162 |
+
#### Non-Default Hyperparameters
|
| 163 |
+
|
| 164 |
+
- `per_device_train_batch_size`: 256
|
| 165 |
+
- `per_device_eval_batch_size`: 256
|
| 166 |
+
- `learning_rate`: 1e-05
|
| 167 |
+
- `weight_decay`: 0.01
|
| 168 |
+
- `num_train_epochs`: 250
|
| 169 |
+
- `warmup_ratio`: 0.1
|
| 170 |
+
- `fp16`: True
|
| 171 |
+
- `batch_sampler`: group_by_label
|
| 172 |
+
|
| 173 |
+
#### All Hyperparameters
|
| 174 |
+
<details><summary>Click to expand</summary>
|
| 175 |
+
|
| 176 |
+
- `overwrite_output_dir`: False
|
| 177 |
+
- `do_predict`: False
|
| 178 |
+
- `eval_strategy`: no
|
| 179 |
+
- `prediction_loss_only`: True
|
| 180 |
+
- `per_device_train_batch_size`: 256
|
| 181 |
+
- `per_device_eval_batch_size`: 256
|
| 182 |
+
- `per_gpu_train_batch_size`: None
|
| 183 |
+
- `per_gpu_eval_batch_size`: None
|
| 184 |
+
- `gradient_accumulation_steps`: 1
|
| 185 |
+
- `eval_accumulation_steps`: None
|
| 186 |
+
- `torch_empty_cache_steps`: None
|
| 187 |
+
- `learning_rate`: 1e-05
|
| 188 |
+
- `weight_decay`: 0.01
|
| 189 |
+
- `adam_beta1`: 0.9
|
| 190 |
+
- `adam_beta2`: 0.999
|
| 191 |
+
- `adam_epsilon`: 1e-08
|
| 192 |
+
- `max_grad_norm`: 1.0
|
| 193 |
+
- `num_train_epochs`: 250
|
| 194 |
+
- `max_steps`: -1
|
| 195 |
+
- `lr_scheduler_type`: linear
|
| 196 |
+
- `lr_scheduler_kwargs`: {}
|
| 197 |
+
- `warmup_ratio`: 0.1
|
| 198 |
+
- `warmup_steps`: 0
|
| 199 |
+
- `log_level`: passive
|
| 200 |
+
- `log_level_replica`: warning
|
| 201 |
+
- `log_on_each_node`: True
|
| 202 |
+
- `logging_nan_inf_filter`: True
|
| 203 |
+
- `save_safetensors`: True
|
| 204 |
+
- `save_on_each_node`: False
|
| 205 |
+
- `save_only_model`: False
|
| 206 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 207 |
+
- `no_cuda`: False
|
| 208 |
+
- `use_cpu`: False
|
| 209 |
+
- `use_mps_device`: False
|
| 210 |
+
- `seed`: 42
|
| 211 |
+
- `data_seed`: None
|
| 212 |
+
- `jit_mode_eval`: False
|
| 213 |
+
- `use_ipex`: False
|
| 214 |
+
- `bf16`: False
|
| 215 |
+
- `fp16`: True
|
| 216 |
+
- `fp16_opt_level`: O1
|
| 217 |
+
- `half_precision_backend`: auto
|
| 218 |
+
- `bf16_full_eval`: False
|
| 219 |
+
- `fp16_full_eval`: False
|
| 220 |
+
- `tf32`: None
|
| 221 |
+
- `local_rank`: 0
|
| 222 |
+
- `ddp_backend`: None
|
| 223 |
+
- `tpu_num_cores`: None
|
| 224 |
+
- `tpu_metrics_debug`: False
|
| 225 |
+
- `debug`: []
|
| 226 |
+
- `dataloader_drop_last`: False
|
| 227 |
+
- `dataloader_num_workers`: 0
|
| 228 |
+
- `dataloader_prefetch_factor`: None
|
| 229 |
+
- `past_index`: -1
|
| 230 |
+
- `disable_tqdm`: False
|
| 231 |
+
- `remove_unused_columns`: True
|
| 232 |
+
- `label_names`: None
|
| 233 |
+
- `load_best_model_at_end`: False
|
| 234 |
+
- `ignore_data_skip`: False
|
| 235 |
+
- `fsdp`: []
|
| 236 |
+
- `fsdp_min_num_params`: 0
|
| 237 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 238 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 239 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 240 |
+
- `deepspeed`: None
|
| 241 |
+
- `label_smoothing_factor`: 0.0
|
| 242 |
+
- `optim`: adamw_torch
|
| 243 |
+
- `optim_args`: None
|
| 244 |
+
- `adafactor`: False
|
| 245 |
+
- `group_by_length`: False
|
| 246 |
+
- `length_column_name`: length
|
| 247 |
+
- `ddp_find_unused_parameters`: None
|
| 248 |
+
- `ddp_bucket_cap_mb`: None
|
| 249 |
+
- `ddp_broadcast_buffers`: False
|
| 250 |
+
- `dataloader_pin_memory`: True
|
| 251 |
+
- `dataloader_persistent_workers`: False
|
| 252 |
+
- `skip_memory_metrics`: True
|
| 253 |
+
- `use_legacy_prediction_loop`: False
|
| 254 |
+
- `push_to_hub`: False
|
| 255 |
+
- `resume_from_checkpoint`: None
|
| 256 |
+
- `hub_model_id`: None
|
| 257 |
+
- `hub_strategy`: every_save
|
| 258 |
+
- `hub_private_repo`: None
|
| 259 |
+
- `hub_always_push`: False
|
| 260 |
+
- `gradient_checkpointing`: False
|
| 261 |
+
- `gradient_checkpointing_kwargs`: None
|
| 262 |
+
- `include_inputs_for_metrics`: False
|
| 263 |
+
- `include_for_metrics`: []
|
| 264 |
+
- `eval_do_concat_batches`: True
|
| 265 |
+
- `fp16_backend`: auto
|
| 266 |
+
- `push_to_hub_model_id`: None
|
| 267 |
+
- `push_to_hub_organization`: None
|
| 268 |
+
- `mp_parameters`:
|
| 269 |
+
- `auto_find_batch_size`: False
|
| 270 |
+
- `full_determinism`: False
|
| 271 |
+
- `torchdynamo`: None
|
| 272 |
+
- `ray_scope`: last
|
| 273 |
+
- `ddp_timeout`: 1800
|
| 274 |
+
- `torch_compile`: False
|
| 275 |
+
- `torch_compile_backend`: None
|
| 276 |
+
- `torch_compile_mode`: None
|
| 277 |
+
- `dispatch_batches`: None
|
| 278 |
+
- `split_batches`: None
|
| 279 |
+
- `include_tokens_per_second`: False
|
| 280 |
+
- `include_num_input_tokens_seen`: False
|
| 281 |
+
- `neftune_noise_alpha`: None
|
| 282 |
+
- `optim_target_modules`: None
|
| 283 |
+
- `batch_eval_metrics`: False
|
| 284 |
+
- `eval_on_start`: False
|
| 285 |
+
- `use_liger_kernel`: False
|
| 286 |
+
- `eval_use_gather_object`: False
|
| 287 |
+
- `average_tokens_across_devices`: False
|
| 288 |
+
- `prompts`: None
|
| 289 |
+
- `batch_sampler`: group_by_label
|
| 290 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 291 |
+
|
| 292 |
+
</details>
|
| 293 |
+
|
| 294 |
+
### Training Logs
|
| 295 |
+
<details><summary>Click to expand</summary>
|
| 296 |
+
|
| 297 |
+
| Epoch | Step | Training Loss |
|
| 298 |
+
|:--------:|:----:|:-------------:|
|
| 299 |
+
| 0.5714 | 20 | 0.787 |
|
| 300 |
+
| 1.2 | 40 | 0.7827 |
|
| 301 |
+
| 1.7714 | 60 | 0.7361 |
|
| 302 |
+
| 2.4 | 80 | 0.6798 |
|
| 303 |
+
| 3.0286 | 100 | 0.6569 |
|
| 304 |
+
| 3.6 | 120 | 0.6669 |
|
| 305 |
+
| 4.2286 | 140 | 0.6163 |
|
| 306 |
+
| 4.8 | 160 | 0.6277 |
|
| 307 |
+
| 5.4286 | 180 | 0.6449 |
|
| 308 |
+
| 6.0571 | 200 | 0.6135 |
|
| 309 |
+
| 6.6286 | 220 | 0.6445 |
|
| 310 |
+
| 7.2571 | 240 | 0.6572 |
|
| 311 |
+
| 7.8286 | 260 | 0.6268 |
|
| 312 |
+
| 8.4571 | 280 | 0.6034 |
|
| 313 |
+
| 9.0857 | 300 | 0.5598 |
|
| 314 |
+
| 9.6571 | 320 | 0.5801 |
|
| 315 |
+
| 10.2857 | 340 | 0.5471 |
|
| 316 |
+
| 10.8571 | 360 | 0.6579 |
|
| 317 |
+
| 11.4857 | 380 | 0.6059 |
|
| 318 |
+
| 12.1143 | 400 | 0.5715 |
|
| 319 |
+
| 12.6857 | 420 | 0.5986 |
|
| 320 |
+
| 13.3143 | 440 | 0.5601 |
|
| 321 |
+
| 13.8857 | 460 | 0.5547 |
|
| 322 |
+
| 14.5143 | 480 | 0.5642 |
|
| 323 |
+
| 15.1429 | 500 | 0.697 |
|
| 324 |
+
| 15.7143 | 520 | 0.5688 |
|
| 325 |
+
| 16.3429 | 540 | 0.5736 |
|
| 326 |
+
| 16.9143 | 560 | 0.5088 |
|
| 327 |
+
| 17.5429 | 580 | 0.5677 |
|
| 328 |
+
| 18.1714 | 600 | 0.6028 |
|
| 329 |
+
| 18.7429 | 620 | 0.5674 |
|
| 330 |
+
| 19.3714 | 640 | 0.5665 |
|
| 331 |
+
| 19.9429 | 660 | 0.6289 |
|
| 332 |
+
| 20.5714 | 680 | 0.5456 |
|
| 333 |
+
| 21.2 | 700 | 0.4944 |
|
| 334 |
+
| 21.7714 | 720 | 0.5712 |
|
| 335 |
+
| 22.4 | 740 | 0.6106 |
|
| 336 |
+
| 23.0286 | 760 | 0.5209 |
|
| 337 |
+
| 23.6 | 780 | 0.5236 |
|
| 338 |
+
| 24.2286 | 800 | 0.6091 |
|
| 339 |
+
| 24.8 | 820 | 0.6678 |
|
| 340 |
+
| 25.4286 | 840 | 0.4693 |
|
| 341 |
+
| 26.0571 | 860 | 0.4582 |
|
| 342 |
+
| 26.6286 | 880 | 0.5627 |
|
| 343 |
+
| 27.2571 | 900 | 0.5525 |
|
| 344 |
+
| 27.8286 | 920 | 0.503 |
|
| 345 |
+
| 28.4571 | 940 | 0.4801 |
|
| 346 |
+
| 29.0857 | 960 | 0.5039 |
|
| 347 |
+
| 29.6571 | 980 | 0.5049 |
|
| 348 |
+
| 30.2857 | 1000 | 0.595 |
|
| 349 |
+
| 30.8571 | 1020 | 0.4733 |
|
| 350 |
+
| 31.4857 | 1040 | 0.5804 |
|
| 351 |
+
| 32.1143 | 1060 | 0.4101 |
|
| 352 |
+
| 32.6857 | 1080 | 0.4311 |
|
| 353 |
+
| 33.3143 | 1100 | 0.4746 |
|
| 354 |
+
| 33.8857 | 1120 | 0.4964 |
|
| 355 |
+
| 34.5143 | 1140 | 0.4436 |
|
| 356 |
+
| 35.1429 | 1160 | 0.6351 |
|
| 357 |
+
| 35.7143 | 1180 | 0.5267 |
|
| 358 |
+
| 36.3429 | 1200 | 0.4685 |
|
| 359 |
+
| 36.9143 | 1220 | 0.4201 |
|
| 360 |
+
| 37.5429 | 1240 | 0.4256 |
|
| 361 |
+
| 38.1714 | 1260 | 0.5543 |
|
| 362 |
+
| 38.7429 | 1280 | 0.5176 |
|
| 363 |
+
| 39.3714 | 1300 | 0.4328 |
|
| 364 |
+
| 39.9429 | 1320 | 0.4746 |
|
| 365 |
+
| 40.5714 | 1340 | 0.4768 |
|
| 366 |
+
| 41.2 | 1360 | 0.4663 |
|
| 367 |
+
| 41.7714 | 1380 | 0.4729 |
|
| 368 |
+
| 42.4 | 1400 | 0.4141 |
|
| 369 |
+
| 43.0286 | 1420 | 0.3195 |
|
| 370 |
+
| 43.6 | 1440 | 0.3789 |
|
| 371 |
+
| 44.2286 | 1460 | 0.4032 |
|
| 372 |
+
| 44.8 | 1480 | 0.443 |
|
| 373 |
+
| 45.4286 | 1500 | 0.4116 |
|
| 374 |
+
| 46.0571 | 1520 | 0.4951 |
|
| 375 |
+
| 46.6286 | 1540 | 0.3845 |
|
| 376 |
+
| 47.2571 | 1560 | 0.3461 |
|
| 377 |
+
| 47.8286 | 1580 | 0.4754 |
|
| 378 |
+
| 48.4571 | 1600 | 0.5583 |
|
| 379 |
+
| 49.0857 | 1620 | 0.4282 |
|
| 380 |
+
| 49.6571 | 1640 | 0.436 |
|
| 381 |
+
| 50.2857 | 1660 | 0.4097 |
|
| 382 |
+
| 50.8571 | 1680 | 0.4642 |
|
| 383 |
+
| 51.4857 | 1700 | 0.3243 |
|
| 384 |
+
| 52.1143 | 1720 | 0.4395 |
|
| 385 |
+
| 52.6857 | 1740 | 0.3672 |
|
| 386 |
+
| 53.3143 | 1760 | 0.4781 |
|
| 387 |
+
| 53.8857 | 1780 | 0.5362 |
|
| 388 |
+
| 54.5143 | 1800 | 0.4401 |
|
| 389 |
+
| 55.1429 | 1820 | 0.4313 |
|
| 390 |
+
| 55.7143 | 1840 | 0.2751 |
|
| 391 |
+
| 56.3429 | 1860 | 0.331 |
|
| 392 |
+
| 56.9143 | 1880 | 0.4325 |
|
| 393 |
+
| 57.5429 | 1900 | 0.2995 |
|
| 394 |
+
| 58.1714 | 1920 | 0.4159 |
|
| 395 |
+
| 58.7429 | 1940 | 0.5603 |
|
| 396 |
+
| 59.3714 | 1960 | 0.4575 |
|
| 397 |
+
| 59.9429 | 1980 | 0.4677 |
|
| 398 |
+
| 60.5714 | 2000 | 0.4653 |
|
| 399 |
+
| 61.2 | 2020 | 0.3098 |
|
| 400 |
+
| 61.7714 | 2040 | 0.3188 |
|
| 401 |
+
| 62.4 | 2060 | 0.3769 |
|
| 402 |
+
| 63.0286 | 2080 | 0.2902 |
|
| 403 |
+
| 63.6 | 2100 | 0.4064 |
|
| 404 |
+
| 64.2286 | 2120 | 0.3663 |
|
| 405 |
+
| 64.8 | 2140 | 0.3184 |
|
| 406 |
+
| 65.4286 | 2160 | 0.4874 |
|
| 407 |
+
| 66.0571 | 2180 | 0.4094 |
|
| 408 |
+
| 66.6286 | 2200 | 0.4261 |
|
| 409 |
+
| 67.2571 | 2220 | 0.3808 |
|
| 410 |
+
| 67.8286 | 2240 | 0.2991 |
|
| 411 |
+
| 68.4571 | 2260 | 0.3242 |
|
| 412 |
+
| 69.0857 | 2280 | 0.2582 |
|
| 413 |
+
| 69.6571 | 2300 | 0.3806 |
|
| 414 |
+
| 70.2857 | 2320 | 0.3573 |
|
| 415 |
+
| 70.8571 | 2340 | 0.3183 |
|
| 416 |
+
| 71.4857 | 2360 | 0.4043 |
|
| 417 |
+
| 72.1143 | 2380 | 0.4266 |
|
| 418 |
+
| 72.6857 | 2400 | 0.5612 |
|
| 419 |
+
| 73.3143 | 2420 | 0.3476 |
|
| 420 |
+
| 73.8857 | 2440 | 0.3018 |
|
| 421 |
+
| 74.5143 | 2460 | 0.2952 |
|
| 422 |
+
| 75.1429 | 2480 | 0.2633 |
|
| 423 |
+
| 75.7143 | 2500 | 0.3564 |
|
| 424 |
+
| 76.3429 | 2520 | 0.2283 |
|
| 425 |
+
| 76.9143 | 2540 | 0.3615 |
|
| 426 |
+
| 77.5429 | 2560 | 0.2174 |
|
| 427 |
+
| 78.1714 | 2580 | 0.3049 |
|
| 428 |
+
| 78.7429 | 2600 | 0.2838 |
|
| 429 |
+
| 79.3714 | 2620 | 0.3191 |
|
| 430 |
+
| 79.9429 | 2640 | 0.2529 |
|
| 431 |
+
| 80.5714 | 2660 | 0.3192 |
|
| 432 |
+
| 81.2 | 2680 | 0.5119 |
|
| 433 |
+
| 81.7714 | 2700 | 0.2459 |
|
| 434 |
+
| 82.4 | 2720 | 0.4136 |
|
| 435 |
+
| 83.0286 | 2740 | 0.3266 |
|
| 436 |
+
| 83.6 | 2760 | 0.2863 |
|
| 437 |
+
| 84.2286 | 2780 | 0.3563 |
|
| 438 |
+
| 84.8 | 2800 | 0.2605 |
|
| 439 |
+
| 85.4286 | 2820 | 0.254 |
|
| 440 |
+
| 86.0571 | 2840 | 0.2252 |
|
| 441 |
+
| 86.6286 | 2860 | 0.3191 |
|
| 442 |
+
| 87.2571 | 2880 | 0.3074 |
|
| 443 |
+
| 87.8286 | 2900 | 0.274 |
|
| 444 |
+
| 88.4571 | 2920 | 0.3864 |
|
| 445 |
+
| 89.0857 | 2940 | 0.3206 |
|
| 446 |
+
| 89.6571 | 2960 | 0.2752 |
|
| 447 |
+
| 90.2857 | 2980 | 0.2033 |
|
| 448 |
+
| 90.8571 | 3000 | 0.3979 |
|
| 449 |
+
| 91.4857 | 3020 | 0.4327 |
|
| 450 |
+
| 92.1143 | 3040 | 0.1999 |
|
| 451 |
+
| 92.6857 | 3060 | 0.3939 |
|
| 452 |
+
| 93.3143 | 3080 | 0.2733 |
|
| 453 |
+
| 93.8857 | 3100 | 0.4334 |
|
| 454 |
+
| 94.5143 | 3120 | 0.3726 |
|
| 455 |
+
| 95.1429 | 3140 | 0.2567 |
|
| 456 |
+
| 95.7143 | 3160 | 0.258 |
|
| 457 |
+
| 96.3429 | 3180 | 0.1805 |
|
| 458 |
+
| 96.9143 | 3200 | 0.3244 |
|
| 459 |
+
| 97.5429 | 3220 | 0.2038 |
|
| 460 |
+
| 98.1714 | 3240 | 0.2689 |
|
| 461 |
+
| 98.7429 | 3260 | 0.433 |
|
| 462 |
+
| 99.3714 | 3280 | 0.1587 |
|
| 463 |
+
| 99.9429 | 3300 | 0.3088 |
|
| 464 |
+
| 100.5714 | 3320 | 0.3049 |
|
| 465 |
+
| 101.2 | 3340 | 0.335 |
|
| 466 |
+
| 101.7714 | 3360 | 0.2688 |
|
| 467 |
+
| 102.4 | 3380 | 0.359 |
|
| 468 |
+
| 103.0286 | 3400 | 0.2512 |
|
| 469 |
+
| 103.6 | 3420 | 0.2818 |
|
| 470 |
+
| 104.2286 | 3440 | 0.3606 |
|
| 471 |
+
| 104.8 | 3460 | 0.3254 |
|
| 472 |
+
| 105.4286 | 3480 | 0.2487 |
|
| 473 |
+
| 106.0571 | 3500 | 0.2184 |
|
| 474 |
+
| 106.6286 | 3520 | 0.2897 |
|
| 475 |
+
| 107.2571 | 3540 | 0.2849 |
|
| 476 |
+
| 107.8286 | 3560 | 0.362 |
|
| 477 |
+
| 108.4571 | 3580 | 0.2418 |
|
| 478 |
+
| 109.0857 | 3600 | 0.1498 |
|
| 479 |
+
| 109.6571 | 3620 | 0.2566 |
|
| 480 |
+
| 110.2857 | 3640 | 0.1181 |
|
| 481 |
+
| 110.8571 | 3660 | 0.3675 |
|
| 482 |
+
| 111.4857 | 3680 | 0.2722 |
|
| 483 |
+
| 112.1143 | 3700 | 0.3779 |
|
| 484 |
+
| 112.6857 | 3720 | 0.3882 |
|
| 485 |
+
| 113.3143 | 3740 | 0.1941 |
|
| 486 |
+
| 113.8857 | 3760 | 0.2281 |
|
| 487 |
+
| 114.5143 | 3780 | 0.2079 |
|
| 488 |
+
| 115.1429 | 3800 | 0.3443 |
|
| 489 |
+
| 115.7143 | 3820 | 0.2763 |
|
| 490 |
+
| 116.3429 | 3840 | 0.2331 |
|
| 491 |
+
| 116.9143 | 3860 | 0.2093 |
|
| 492 |
+
| 117.5429 | 3880 | 0.2439 |
|
| 493 |
+
| 118.1714 | 3900 | 0.1312 |
|
| 494 |
+
| 118.7429 | 3920 | 0.1098 |
|
| 495 |
+
| 119.3714 | 3940 | 0.2295 |
|
| 496 |
+
| 119.9429 | 3960 | 0.2501 |
|
| 497 |
+
| 120.5714 | 3980 | 0.3522 |
|
| 498 |
+
| 121.2 | 4000 | 0.3293 |
|
| 499 |
+
| 121.7714 | 4020 | 0.1698 |
|
| 500 |
+
| 122.4 | 4040 | 0.3992 |
|
| 501 |
+
| 123.0286 | 4060 | 0.1931 |
|
| 502 |
+
| 123.6 | 4080 | 0.1755 |
|
| 503 |
+
| 124.2286 | 4100 | 0.3408 |
|
| 504 |
+
| 124.8 | 4120 | 0.2337 |
|
| 505 |
+
| 125.4286 | 4140 | 0.2121 |
|
| 506 |
+
| 126.0571 | 4160 | 0.1628 |
|
| 507 |
+
| 126.6286 | 4180 | 0.2455 |
|
| 508 |
+
| 127.2571 | 4200 | 0.3342 |
|
| 509 |
+
| 127.8286 | 4220 | 0.1725 |
|
| 510 |
+
| 128.4571 | 4240 | 0.3714 |
|
| 511 |
+
| 129.0857 | 4260 | 0.2775 |
|
| 512 |
+
| 129.6571 | 4280 | 0.1764 |
|
| 513 |
+
| 130.2857 | 4300 | 0.1863 |
|
| 514 |
+
| 130.8571 | 4320 | 0.276 |
|
| 515 |
+
| 131.4857 | 4340 | 0.2006 |
|
| 516 |
+
| 132.1143 | 4360 | 0.2099 |
|
| 517 |
+
| 132.6857 | 4380 | 0.2397 |
|
| 518 |
+
| 133.3143 | 4400 | 0.223 |
|
| 519 |
+
| 133.8857 | 4420 | 0.1321 |
|
| 520 |
+
| 134.5143 | 4440 | 0.2499 |
|
| 521 |
+
| 135.1429 | 4460 | 0.2107 |
|
| 522 |
+
| 135.7143 | 4480 | 0.2374 |
|
| 523 |
+
| 136.3429 | 4500 | 0.2589 |
|
| 524 |
+
| 136.9143 | 4520 | 0.2382 |
|
| 525 |
+
| 137.5429 | 4540 | 0.1058 |
|
| 526 |
+
| 138.1714 | 4560 | 0.2519 |
|
| 527 |
+
| 138.7429 | 4580 | 0.23 |
|
| 528 |
+
| 139.3714 | 4600 | 0.2031 |
|
| 529 |
+
| 139.9429 | 4620 | 0.2424 |
|
| 530 |
+
| 140.5714 | 4640 | 0.1312 |
|
| 531 |
+
| 141.2 | 4660 | 0.1787 |
|
| 532 |
+
| 141.7714 | 4680 | 0.2445 |
|
| 533 |
+
| 142.4 | 4700 | 0.1948 |
|
| 534 |
+
| 143.0286 | 4720 | 0.2601 |
|
| 535 |
+
| 143.6 | 4740 | 0.1906 |
|
| 536 |
+
| 144.2286 | 4760 | 0.35 |
|
| 537 |
+
| 144.8 | 4780 | 0.1674 |
|
| 538 |
+
| 145.4286 | 4800 | 0.2339 |
|
| 539 |
+
| 146.0571 | 4820 | 0.2151 |
|
| 540 |
+
| 146.6286 | 4840 | 0.1986 |
|
| 541 |
+
| 147.2571 | 4860 | 0.1608 |
|
| 542 |
+
| 147.8286 | 4880 | 0.2729 |
|
| 543 |
+
| 148.4571 | 4900 | 0.1555 |
|
| 544 |
+
| 149.0857 | 4920 | 0.1536 |
|
| 545 |
+
| 149.6571 | 4940 | 0.1245 |
|
| 546 |
+
| 150.2857 | 4960 | 0.2635 |
|
| 547 |
+
| 150.8571 | 4980 | 0.1628 |
|
| 548 |
+
| 151.4857 | 5000 | 0.1869 |
|
| 549 |
+
| 152.1143 | 5020 | 0.2142 |
|
| 550 |
+
| 152.6857 | 5040 | 0.1867 |
|
| 551 |
+
| 153.3143 | 5060 | 0.2361 |
|
| 552 |
+
| 153.8857 | 5080 | 0.1811 |
|
| 553 |
+
| 154.5143 | 5100 | 0.4071 |
|
| 554 |
+
| 155.1429 | 5120 | 0.2499 |
|
| 555 |
+
| 155.7143 | 5140 | 0.2398 |
|
| 556 |
+
| 156.3429 | 5160 | 0.1486 |
|
| 557 |
+
| 156.9143 | 5180 | 0.1683 |
|
| 558 |
+
| 157.5429 | 5200 | 0.1434 |
|
| 559 |
+
| 158.1714 | 5220 | 0.1731 |
|
| 560 |
+
| 158.7429 | 5240 | 0.1674 |
|
| 561 |
+
| 159.3714 | 5260 | 0.1085 |
|
| 562 |
+
| 159.9429 | 5280 | 0.2573 |
|
| 563 |
+
| 160.5714 | 5300 | 0.1937 |
|
| 564 |
+
| 161.2 | 5320 | 0.0806 |
|
| 565 |
+
| 161.7714 | 5340 | 0.1411 |
|
| 566 |
+
| 162.4 | 5360 | 0.1603 |
|
| 567 |
+
| 163.0286 | 5380 | 0.1787 |
|
| 568 |
+
| 163.6 | 5400 | 0.2099 |
|
| 569 |
+
| 164.2286 | 5420 | 0.2676 |
|
| 570 |
+
| 164.8 | 5440 | 0.2658 |
|
| 571 |
+
| 165.4286 | 5460 | 0.2632 |
|
| 572 |
+
| 166.0571 | 5480 | 0.1839 |
|
| 573 |
+
| 166.6286 | 5500 | 0.2524 |
|
| 574 |
+
| 167.2571 | 5520 | 0.2018 |
|
| 575 |
+
| 167.8286 | 5540 | 0.2955 |
|
| 576 |
+
| 168.4571 | 5560 | 0.209 |
|
| 577 |
+
| 169.0857 | 5580 | 0.1999 |
|
| 578 |
+
| 169.6571 | 5600 | 0.2836 |
|
| 579 |
+
| 170.2857 | 5620 | 0.1559 |
|
| 580 |
+
| 170.8571 | 5640 | 0.2746 |
|
| 581 |
+
| 171.4857 | 5660 | 0.1939 |
|
| 582 |
+
| 172.1143 | 5680 | 0.1561 |
|
| 583 |
+
| 172.6857 | 5700 | 0.0935 |
|
| 584 |
+
| 173.3143 | 5720 | 0.1927 |
|
| 585 |
+
| 173.8857 | 5740 | 0.3022 |
|
| 586 |
+
| 174.5143 | 5760 | 0.2068 |
|
| 587 |
+
| 175.1429 | 5780 | 0.1384 |
|
| 588 |
+
| 175.7143 | 5800 | 0.086 |
|
| 589 |
+
| 176.3429 | 5820 | 0.1181 |
|
| 590 |
+
| 176.9143 | 5840 | 0.3145 |
|
| 591 |
+
| 177.5429 | 5860 | 0.0974 |
|
| 592 |
+
| 178.1714 | 5880 | 0.1891 |
|
| 593 |
+
| 178.7429 | 5900 | 0.1788 |
|
| 594 |
+
| 179.3714 | 5920 | 0.1954 |
|
| 595 |
+
| 179.9429 | 5940 | 0.1342 |
|
| 596 |
+
| 180.5714 | 5960 | 0.0936 |
|
| 597 |
+
| 181.2 | 5980 | 0.3109 |
|
| 598 |
+
| 181.7714 | 6000 | 0.1879 |
|
| 599 |
+
| 182.4 | 6020 | 0.0798 |
|
| 600 |
+
| 183.0286 | 6040 | 0.097 |
|
| 601 |
+
| 183.6 | 6060 | 0.0835 |
|
| 602 |
+
| 184.2286 | 6080 | 0.0931 |
|
| 603 |
+
| 184.8 | 6100 | 0.1377 |
|
| 604 |
+
| 185.4286 | 6120 | 0.1239 |
|
| 605 |
+
| 186.0571 | 6140 | 0.0307 |
|
| 606 |
+
| 186.6286 | 6160 | 0.1962 |
|
| 607 |
+
| 187.2571 | 6180 | 0.242 |
|
| 608 |
+
| 187.8286 | 6200 | 0.0886 |
|
| 609 |
+
| 188.4571 | 6220 | 0.2103 |
|
| 610 |
+
| 189.0857 | 6240 | 0.0746 |
|
| 611 |
+
| 189.6571 | 6260 | 0.1191 |
|
| 612 |
+
| 190.2857 | 6280 | 0.2356 |
|
| 613 |
+
| 190.8571 | 6300 | 0.2015 |
|
| 614 |
+
| 191.4857 | 6320 | 0.1728 |
|
| 615 |
+
| 192.1143 | 6340 | 0.1624 |
|
| 616 |
+
| 192.6857 | 6360 | 0.2528 |
|
| 617 |
+
| 193.3143 | 6380 | 0.0759 |
|
| 618 |
+
| 193.8857 | 6400 | 0.2138 |
|
| 619 |
+
| 194.5143 | 6420 | 0.1544 |
|
| 620 |
+
| 195.1429 | 6440 | 0.2444 |
|
| 621 |
+
| 195.7143 | 6460 | 0.1896 |
|
| 622 |
+
| 196.3429 | 6480 | 0.1646 |
|
| 623 |
+
| 196.9143 | 6500 | 0.1305 |
|
| 624 |
+
| 197.5429 | 6520 | 0.1379 |
|
| 625 |
+
| 198.1714 | 6540 | 0.1845 |
|
| 626 |
+
| 198.7429 | 6560 | 0.1997 |
|
| 627 |
+
| 199.3714 | 6580 | 0.2049 |
|
| 628 |
+
| 199.9429 | 6600 | 0.2891 |
|
| 629 |
+
| 200.5714 | 6620 | 0.1718 |
|
| 630 |
+
| 201.2 | 6640 | 0.1449 |
|
| 631 |
+
| 201.7714 | 6660 | 0.2096 |
|
| 632 |
+
| 202.4 | 6680 | 0.1056 |
|
| 633 |
+
| 203.0286 | 6700 | 0.0862 |
|
| 634 |
+
| 203.6 | 6720 | 0.0914 |
|
| 635 |
+
| 204.2286 | 6740 | 0.2433 |
|
| 636 |
+
| 204.8 | 6760 | 0.146 |
|
| 637 |
+
| 205.4286 | 6780 | 0.2099 |
|
| 638 |
+
| 206.0571 | 6800 | 0.0877 |
|
| 639 |
+
| 206.6286 | 6820 | 0.1194 |
|
| 640 |
+
| 207.2571 | 6840 | 0.069 |
|
| 641 |
+
| 207.8286 | 6860 | 0.0742 |
|
| 642 |
+
| 208.4571 | 6880 | 0.2773 |
|
| 643 |
+
| 209.0857 | 6900 | 0.1762 |
|
| 644 |
+
| 209.6571 | 6920 | 0.1573 |
|
| 645 |
+
| 210.2857 | 6940 | 0.0922 |
|
| 646 |
+
| 210.8571 | 6960 | 0.1366 |
|
| 647 |
+
| 211.4857 | 6980 | 0.0746 |
|
| 648 |
+
| 212.1143 | 7000 | 0.2004 |
|
| 649 |
+
| 212.6857 | 7020 | 0.0922 |
|
| 650 |
+
| 213.3143 | 7040 | 0.0662 |
|
| 651 |
+
| 213.8857 | 7060 | 0.1828 |
|
| 652 |
+
| 214.5143 | 7080 | 0.1202 |
|
| 653 |
+
| 215.1429 | 7100 | 0.1388 |
|
| 654 |
+
| 215.7143 | 7120 | 0.0638 |
|
| 655 |
+
| 216.3429 | 7140 | 0.2259 |
|
| 656 |
+
| 216.9143 | 7160 | 0.1219 |
|
| 657 |
+
| 217.5429 | 7180 | 0.1599 |
|
| 658 |
+
| 218.1714 | 7200 | 0.2424 |
|
| 659 |
+
| 218.7429 | 7220 | 0.149 |
|
| 660 |
+
| 219.3714 | 7240 | 0.272 |
|
| 661 |
+
| 219.9429 | 7260 | 0.1051 |
|
| 662 |
+
| 220.5714 | 7280 | 0.2117 |
|
| 663 |
+
| 221.2 | 7300 | 0.1466 |
|
| 664 |
+
| 221.7714 | 7320 | 0.1155 |
|
| 665 |
+
| 222.4 | 7340 | 0.2247 |
|
| 666 |
+
| 223.0286 | 7360 | 0.096 |
|
| 667 |
+
| 223.6 | 7380 | 0.0566 |
|
| 668 |
+
| 224.2286 | 7400 | 0.2404 |
|
| 669 |
+
| 224.8 | 7420 | 0.1684 |
|
| 670 |
+
| 225.4286 | 7440 | 0.0927 |
|
| 671 |
+
| 226.0571 | 7460 | 0.1746 |
|
| 672 |
+
| 226.6286 | 7480 | 0.13 |
|
| 673 |
+
| 227.2571 | 7500 | 0.1027 |
|
| 674 |
+
| 227.8286 | 7520 | 0.1359 |
|
| 675 |
+
| 228.4571 | 7540 | 0.0937 |
|
| 676 |
+
| 229.0857 | 7560 | 0.1378 |
|
| 677 |
+
| 229.6571 | 7580 | 0.0458 |
|
| 678 |
+
| 230.2857 | 7600 | 0.0766 |
|
| 679 |
+
| 230.8571 | 7620 | 0.0896 |
|
| 680 |
+
| 231.4857 | 7640 | 0.1541 |
|
| 681 |
+
| 232.1143 | 7660 | 0.1464 |
|
| 682 |
+
| 232.6857 | 7680 | 0.1427 |
|
| 683 |
+
| 233.3143 | 7700 | 0.2471 |
|
| 684 |
+
| 233.8857 | 7720 | 0.1636 |
|
| 685 |
+
| 234.5143 | 7740 | 0.1601 |
|
| 686 |
+
| 235.1429 | 7760 | 0.1583 |
|
| 687 |
+
| 235.7143 | 7780 | 0.1473 |
|
| 688 |
+
| 236.3429 | 7800 | 0.1211 |
|
| 689 |
+
| 236.9143 | 7820 | 0.1582 |
|
| 690 |
+
| 237.5429 | 7840 | 0.1083 |
|
| 691 |
+
| 238.1714 | 7860 | 0.2014 |
|
| 692 |
+
| 238.7429 | 7880 | 0.0981 |
|
| 693 |
+
| 239.3714 | 7900 | 0.2449 |
|
| 694 |
+
| 239.9429 | 7920 | 0.1142 |
|
| 695 |
+
| 240.5714 | 7940 | 0.1177 |
|
| 696 |
+
| 241.2 | 7960 | 0.1241 |
|
| 697 |
+
| 241.7714 | 7980 | 0.2778 |
|
| 698 |
+
| 242.4 | 8000 | 0.1066 |
|
| 699 |
+
| 243.0286 | 8020 | 0.0867 |
|
| 700 |
+
| 243.6 | 8040 | 0.156 |
|
| 701 |
+
| 244.2286 | 8060 | 0.1413 |
|
| 702 |
+
| 244.8 | 8080 | 0.0598 |
|
| 703 |
+
| 245.4286 | 8100 | 0.1206 |
|
| 704 |
+
| 246.0571 | 8120 | 0.1883 |
|
| 705 |
+
| 246.6286 | 8140 | 0.1245 |
|
| 706 |
+
| 247.2571 | 8160 | 0.0949 |
|
| 707 |
+
| 247.8286 | 8180 | 0.1096 |
|
| 708 |
+
| 248.4571 | 8200 | 0.1567 |
|
| 709 |
+
| 249.0857 | 8220 | 0.065 |
|
| 710 |
+
| 249.6571 | 8240 | 0.1075 |
|
| 711 |
+
|
| 712 |
+
</details>
|
| 713 |
+
|
| 714 |
+
### Framework Versions
|
| 715 |
+
- Python: 3.11.11
|
| 716 |
+
- Sentence Transformers: 3.3.1
|
| 717 |
+
- Transformers: 4.48.3
|
| 718 |
+
- PyTorch: 2.5.1+cu124
|
| 719 |
+
- Accelerate: 1.3.0
|
| 720 |
+
- Datasets: 3.3.2
|
| 721 |
+
- Tokenizers: 0.21.0
|
| 722 |
+
|
| 723 |
+
## Citation
|
| 724 |
+
|
| 725 |
+
### BibTeX
|
| 726 |
+
|
| 727 |
+
#### Sentence Transformers
|
| 728 |
+
```bibtex
|
| 729 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 730 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 731 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 732 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 733 |
+
month = "11",
|
| 734 |
+
year = "2019",
|
| 735 |
+
publisher = "Association for Computational Linguistics",
|
| 736 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 737 |
+
}
|
| 738 |
+
```
|
| 739 |
+
|
| 740 |
+
#### BatchAllTripletLoss
|
| 741 |
+
```bibtex
|
| 742 |
+
@misc{hermans2017defense,
|
| 743 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
| 744 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
| 745 |
+
year={2017},
|
| 746 |
+
eprint={1703.07737},
|
| 747 |
+
archivePrefix={arXiv},
|
| 748 |
+
primaryClass={cs.CV}
|
| 749 |
+
}
|
| 750 |
+
```
|
| 751 |
+
|
| 752 |
+
<!--
|
| 753 |
+
## Glossary
|
| 754 |
+
|
| 755 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 756 |
+
-->
|
| 757 |
+
|
| 758 |
+
<!--
|
| 759 |
+
## Model Card Authors
|
| 760 |
+
|
| 761 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 762 |
+
-->
|
| 763 |
+
|
| 764 |
+
<!--
|
| 765 |
+
## Model Card Contact
|
| 766 |
+
|
| 767 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 768 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "cl-nagoya/sup-simcse-ja-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 768,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 3072,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 12,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"torch_dtype": "float32",
|
| 21 |
+
"transformers_version": "4.48.3",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 32768
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.48.3",
|
| 5 |
+
"pytorch": "2.5.1+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8b34777f10626d2c1bb546159872a3d7f6da77cbe0ec8fba4ceba436e88a931
|
| 3 |
+
size 444851048
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"do_subword_tokenize": true,
|
| 49 |
+
"do_word_tokenize": true,
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"jumanpp_kwargs": null,
|
| 52 |
+
"mask_token": "[MASK]",
|
| 53 |
+
"mecab_kwargs": {
|
| 54 |
+
"mecab_dic": "unidic_lite"
|
| 55 |
+
},
|
| 56 |
+
"model_max_length": 512,
|
| 57 |
+
"never_split": null,
|
| 58 |
+
"pad_token": "[PAD]",
|
| 59 |
+
"sep_token": "[SEP]",
|
| 60 |
+
"strip_accents": null,
|
| 61 |
+
"subword_tokenizer_type": "wordpiece",
|
| 62 |
+
"sudachi_kwargs": null,
|
| 63 |
+
"tokenize_chinese_chars": true,
|
| 64 |
+
"tokenizer_class": "BertTokenizer",
|
| 65 |
+
"unk_token": "[UNK]",
|
| 66 |
+
"word_tokenizer_type": "mecab"
|
| 67 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|