DeepMostInnovations commited on
Commit
d0c2d01
·
verified ·
1 Parent(s): 416cf70

Add inference script

Browse files
Files changed (1) hide show
  1. hindi_embeddings.py +13 -1
hindi_embeddings.py CHANGED
@@ -510,6 +510,13 @@ class HindiEmbedder:
510
  Returns:
511
  Similarity scores
512
  """
 
 
 
 
 
 
 
513
  embeddings1 = self.encode(texts1)
514
 
515
  if texts2 is None:
@@ -522,10 +529,15 @@ class HindiEmbedder:
522
 
523
  if len(texts1) == len(texts2):
524
  # Compute pairwise similarity when the number of texts match
525
- return np.array([
526
  cosine_similarity([e1], [e2])[0][0]
527
  for e1, e2 in zip(embeddings1, embeddings2)
528
  ])
 
 
 
 
 
529
  else:
530
  # Return full similarity matrix
531
  return cosine_similarity(embeddings1, embeddings2)
 
510
  Returns:
511
  Similarity scores
512
  """
513
+ # Convert single strings to lists for consistent handling
514
+ if isinstance(texts1, str):
515
+ texts1 = [texts1]
516
+
517
+ if texts2 is not None and isinstance(texts2, str):
518
+ texts2 = [texts2]
519
+
520
  embeddings1 = self.encode(texts1)
521
 
522
  if texts2 is None:
 
529
 
530
  if len(texts1) == len(texts2):
531
  # Compute pairwise similarity when the number of texts match
532
+ similarities = np.array([
533
  cosine_similarity([e1], [e2])[0][0]
534
  for e1, e2 in zip(embeddings1, embeddings2)
535
  ])
536
+
537
+ # If there's just one pair, return a scalar
538
+ if len(similarities) == 1:
539
+ return similarities[0]
540
+ return similarities
541
  else:
542
  # Return full similarity matrix
543
  return cosine_similarity(embeddings1, embeddings2)