Update README.md
Browse files
README.md
CHANGED
@@ -7,28 +7,80 @@ tags:
|
|
7 |
- generated_from_trainer
|
8 |
- sft
|
9 |
- trl
|
|
|
|
|
10 |
licence: license
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Model Card for gpt-oss-20b-korean-reasoner
|
14 |
|
15 |
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [Day1Kim/Multilingual-Thinking-KO](https://huggingface.co/datasets/Day1Kim/Multilingual-Thinking-KO) dataset.
|
16 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
|
|
|
17 |
|
18 |
## Quick start
|
19 |
|
20 |
```python
|
21 |
from transformers import pipeline
|
22 |
|
23 |
-
question = "
|
24 |
generator = pipeline("text-generation", model="Day1Kim/gpt-oss-20b-korean-reasoner", device="cuda")
|
25 |
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
26 |
print(output["generated_text"])
|
27 |
```
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
## Training procedure
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
This model was trained with SFT.
|
|
|
7 |
- generated_from_trainer
|
8 |
- sft
|
9 |
- trl
|
10 |
+
- korean
|
11 |
+
- 한국어
|
12 |
licence: license
|
13 |
+
license: apache-2.0
|
14 |
+
language:
|
15 |
+
- ko
|
16 |
+
pipeline_tag: text-generation
|
17 |
---
|
18 |
|
19 |
# Model Card for gpt-oss-20b-korean-reasoner
|
20 |
|
21 |
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [Day1Kim/Multilingual-Thinking-KO](https://huggingface.co/datasets/Day1Kim/Multilingual-Thinking-KO) dataset.
|
22 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
23 |
+
|
24 |
+
한국어 thinking 데이터셋 기반 파인튜닝된 모델.
|
25 |
|
26 |
## Quick start
|
27 |
|
28 |
```python
|
29 |
from transformers import pipeline
|
30 |
|
31 |
+
question = "한국의 수도는?"
|
32 |
generator = pipeline("text-generation", model="Day1Kim/gpt-oss-20b-korean-reasoner", device="cuda")
|
33 |
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
34 |
print(output["generated_text"])
|
35 |
```
|
36 |
|
37 |
+
### 모델 로드
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
from peft import PeftModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
# Load the tokenizer
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
46 |
+
|
47 |
+
# Load the original model first
|
48 |
+
model_kwargs = dict(attn_implementation="eager", torch_dtype="auto", use_cache=True, device_map="auto")
|
49 |
+
base_model = AutoModelForCausalLM.from_pretrained("openai/gpt-oss-20b", **model_kwargs).cuda()
|
50 |
+
|
51 |
+
# Merge fine-tuned weights with the base model
|
52 |
+
peft_model_id = "gpt-oss-20b-korean-reasoner"
|
53 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
54 |
+
model = model.merge_and_unload()
|
55 |
+
|
56 |
+
REASONING_LANGUAGE = "Korean"
|
57 |
+
SYSTEM_PROMPT = f"reasoning language: {REASONING_LANGUAGE}"
|
58 |
+
USER_PROMPT = "한국의 수도는?"
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
62 |
+
{"role": "user", "content": USER_PROMPT},
|
63 |
+
]
|
64 |
+
|
65 |
+
input_ids = tokenizer.apply_chat_template(
|
66 |
+
messages,
|
67 |
+
add_generation_prompt=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
).to(model.device)
|
70 |
+
|
71 |
+
gen_kwargs = {"max_new_tokens": 512, "do_sample": True, "temperature": 0.6, "top_p": None, "top_k": None}
|
72 |
+
|
73 |
+
output_ids = model.generate(input_ids, **gen_kwargs)
|
74 |
+
response = tokenizer.batch_decode(output_ids)[0]
|
75 |
+
print(response)
|
76 |
+
```
|
77 |
+
|
78 |
## Training procedure
|
79 |
|
80 |
+
- **베이스 모델**: openai/gpt-oss-20b
|
81 |
+
- **훈련 스텝**: 65 steps
|
82 |
+
- **Epochs**: 5
|
83 |
+
- **데이터셋**: Day1Kim/Multilingual-Thinking-KO
|
84 |
|
85 |
|
86 |
This model was trained with SFT.
|