David Scripps
commited on
Commit
·
a706d11
1
Parent(s):
2546a51
adding files
Browse files- .gitattributes +3 -0
- Border Texture.png +3 -0
- README.md +42 -0
- RunLaboroTomato.cs +275 -0
- classes.txt +6 -0
- info.js +5 -0
- info.json +5 -0
- laboro_tomato_yolov8.onnx +3 -0
- laboro_tomato_yolov8.sentis +3 -0
- preview.png +3 -0
- tomatoes.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.sentis filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Border Texture.png
ADDED
![]() |
Git LFS Details
|
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: unity-sentis
|
3 |
+
pipeline_tag: object-detection
|
4 |
+
---
|
5 |
+
# LaboroTomato for Unity Sentis (Version 1.4.0-pre.3*)
|
6 |
+
|
7 |
+
[LaboroTomato](https://github.com/laboroai/LaboroTomato) is is an image dataset of growing tomatoes at different stages of their ripening.
|
8 |
+
|
9 |
+
This model was trained on the LaboroTomato image dataset using the Ultralytics [YOLOv8n](https://docs.ultralytics.com/models/yolov8/) object detection framework. The sentis example implementation was copied from [sentis-YOLOv8n](https://huggingface.co/unity/sentis-YOLOv8n).
|
10 |
+
|
11 |
+
## How to Use
|
12 |
+
First get the package `com.unity.sentis` from the package manager.
|
13 |
+
You will also need the Unity UI package.
|
14 |
+
|
15 |
+
* Create a new scene in Unity 6.
|
16 |
+
* Install `com.unity.sentis` version `1.4.0-pre.3` from the package manager
|
17 |
+
* Add the c# script to the Main Camera.
|
18 |
+
* Create a Raw Image in the scene and link it as the `displayImage`
|
19 |
+
* Drag the yolov8n.sentis file into the model asset field
|
20 |
+
* Drag the classes.txt on to the labelAssets field
|
21 |
+
* Put a video file in the Assets/StreamingAssets folder and set the name of videoName to the filename in the script ("tomatoes.mp4")
|
22 |
+
* Set the fields for the bounding box texture sprite (you can [create your own one](https://docs.unity3d.com/Manual/9SliceSprites.html) using a transparent texture or use an inbuilt one) and the font
|
23 |
+
|
24 |
+
|
25 |
+
## Preview
|
26 |
+
If working correctly you should see something like this:
|
27 |
+
|
28 |
+

|
29 |
+
|
30 |
+
## Information
|
31 |
+
The onnx model was designed with the same inputs as [sentis-YOLOv8n](https://huggingface.co/unity/sentis-YOLOv8n). If you are using that implementation, you can simply swap out the model and labels with the ones in this project and it should work.
|
32 |
+
|
33 |
+
## References
|
34 |
+
For information on how the model was trained and exported to onnx, see the [project github page](https://github.com/DavidAtRedpine/LaboroTomatoYoloV8).
|
35 |
+
|
36 |
+
## Unity Sentis
|
37 |
+
Unity Sentis is the inference engine that runs in Unity 3D. More information can be found at [here](https://unity.com/products/sentis)
|
38 |
+
|
39 |
+
## License
|
40 |
+
Ultralytics YOLOv8 uses the GPLv3 license. Details [here](https://github.com/autogyro/yolo-V8?tab=readme-ov-file#license).
|
41 |
+
|
42 |
+
The LaboroTomato dataset uses the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Details [here](https://github.com/laboroai/LaboroTomato/blob/master/README.md#license).
|
RunLaboroTomato.cs
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
using System.Collections.Generic;
|
2 |
+
using Unity.Sentis;
|
3 |
+
using UnityEngine;
|
4 |
+
using UnityEngine.UI;
|
5 |
+
using UnityEngine.Video;
|
6 |
+
using Lays = Unity.Sentis.Layers;
|
7 |
+
using System.IO;
|
8 |
+
using FF = Unity.Sentis.Functional;
|
9 |
+
|
10 |
+
/*
|
11 |
+
* LaboroTomato (made with YoloV8) Inference Script
|
12 |
+
* ========================
|
13 |
+
*
|
14 |
+
* Place this script on the Main Camera.
|
15 |
+
*
|
16 |
+
* Place the laboro_tomato_yolov8.sentis file in the asset folder and drag onto the asset field
|
17 |
+
* Place a *.mp4 video file in the Assets/StreamingAssets folder
|
18 |
+
* Create a RawImage in your scene and set it as the displayImage field
|
19 |
+
* Drag the classes.txt into the labelsAsset field
|
20 |
+
* Add a reference to a sprite image for the bounding box and a font for the text
|
21 |
+
*
|
22 |
+
*/
|
23 |
+
|
24 |
+
|
25 |
+
public class RunLaboroTomato : MonoBehaviour
|
26 |
+
{
|
27 |
+
// Drag the yolov8n.sentis file here
|
28 |
+
public ModelAsset asset;
|
29 |
+
const string modelName = "laboro_tomato_yolov8.sentis";
|
30 |
+
// Change this to the name of the video you put in StreamingAssets folder:
|
31 |
+
const string videoName = "tomatoes.mp4";
|
32 |
+
// Link the classes.txt here:
|
33 |
+
public TextAsset labelsAsset;
|
34 |
+
// Create a Raw Image in the scene and link it here:
|
35 |
+
public RawImage displayImage;
|
36 |
+
// Link to a bounding box sprite or texture here:
|
37 |
+
public Sprite borderSprite;
|
38 |
+
public Texture2D borderTexture;
|
39 |
+
// Link to the font for the labels:
|
40 |
+
public Font font;
|
41 |
+
|
42 |
+
const BackendType backend = BackendType.GPUCompute;
|
43 |
+
|
44 |
+
private Transform displayLocation;
|
45 |
+
private IWorker engine;
|
46 |
+
private string[] labels;
|
47 |
+
private RenderTexture targetRT;
|
48 |
+
|
49 |
+
|
50 |
+
//Image size for the model
|
51 |
+
private const int imageWidth = 640;
|
52 |
+
private const int imageHeight = 640;
|
53 |
+
|
54 |
+
//The number of classes in the model
|
55 |
+
private const int numClasses = 80;
|
56 |
+
|
57 |
+
private VideoPlayer video;
|
58 |
+
|
59 |
+
List<GameObject> boxPool = new();
|
60 |
+
|
61 |
+
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
|
62 |
+
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
|
63 |
+
int maxOutputBoxes = 64;
|
64 |
+
|
65 |
+
TensorFloat centersToCorners;
|
66 |
+
//bounding box data
|
67 |
+
public struct BoundingBox
|
68 |
+
{
|
69 |
+
public float centerX;
|
70 |
+
public float centerY;
|
71 |
+
public float width;
|
72 |
+
public float height;
|
73 |
+
public string label;
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
void Start()
|
78 |
+
{
|
79 |
+
Application.targetFrameRate = 60;
|
80 |
+
Screen.orientation = ScreenOrientation.LandscapeLeft;
|
81 |
+
|
82 |
+
//Parse neural net labels
|
83 |
+
labels = labelsAsset.text.Split('\n');
|
84 |
+
|
85 |
+
LoadModel();
|
86 |
+
|
87 |
+
targetRT = new RenderTexture(imageWidth, imageHeight, 0);
|
88 |
+
|
89 |
+
//Create image to display video
|
90 |
+
displayLocation = displayImage.transform;
|
91 |
+
|
92 |
+
SetupInput();
|
93 |
+
|
94 |
+
if (borderSprite == null)
|
95 |
+
{
|
96 |
+
borderSprite = Sprite.Create(borderTexture, new Rect(0, 0, borderTexture.width, borderTexture.height), new Vector2(borderTexture.width / 2, borderTexture.height / 2));
|
97 |
+
}
|
98 |
+
}
|
99 |
+
void LoadModel()
|
100 |
+
{
|
101 |
+
|
102 |
+
//Load model
|
103 |
+
//var model1 = ModelLoader.Load(Path.Join(Application.streamingAssetsPath, modelName));
|
104 |
+
var model1 = ModelLoader.Load(asset);
|
105 |
+
|
106 |
+
centersToCorners = new TensorFloat(new TensorShape(4, 4),
|
107 |
+
new float[]
|
108 |
+
{
|
109 |
+
1, 0, 1, 0,
|
110 |
+
0, 1, 0, 1,
|
111 |
+
-0.5f, 0, 0.5f, 0,
|
112 |
+
0, -0.5f, 0, 0.5f
|
113 |
+
});
|
114 |
+
|
115 |
+
//Here we transform the output of the model1 by feeding it through a Non-Max-Suppression layer.
|
116 |
+
var model2 = Functional.Compile(
|
117 |
+
input =>
|
118 |
+
{
|
119 |
+
var modelOutput = model1.Forward(input)[0];
|
120 |
+
var boxCoords = modelOutput[0, 0..4, ..].Transpose(0, 1); //shape=(8400,4)
|
121 |
+
var allScores = modelOutput[0, 4.., ..]; //shape=(80,8400)
|
122 |
+
var scores = FF.ReduceMax(allScores, 0) - scoreThreshold; //shape=(8400)
|
123 |
+
var classIDs = FF.ArgMax(allScores, 0); //shape=(8400)
|
124 |
+
var boxCorners = FF.MatMul(boxCoords, FunctionalTensor.FromTensor(centersToCorners));
|
125 |
+
var indices = FF.NMS(boxCorners, scores, iouThreshold); //shape=(N)
|
126 |
+
var indices2 = indices.Unsqueeze(-1).BroadcastTo(new int[] { 4 });//shape=(N,4)
|
127 |
+
var coords = FF.Gather(boxCoords, 0, indices2); //shape=(N,4)
|
128 |
+
var labelIDs = FF.Gather(classIDs, 0, indices); //shape=(N)
|
129 |
+
return (coords, labelIDs);
|
130 |
+
},
|
131 |
+
InputDef.FromModel(model1)[0]
|
132 |
+
);
|
133 |
+
|
134 |
+
//Create engine to run model
|
135 |
+
engine = WorkerFactory.CreateWorker(backend, model2);
|
136 |
+
}
|
137 |
+
|
138 |
+
void SetupInput()
|
139 |
+
{
|
140 |
+
video = gameObject.AddComponent<VideoPlayer>();
|
141 |
+
video.renderMode = VideoRenderMode.APIOnly;
|
142 |
+
video.source = VideoSource.Url;
|
143 |
+
video.url = Path.Join(Application.streamingAssetsPath, videoName);
|
144 |
+
video.isLooping = true;
|
145 |
+
video.Play();
|
146 |
+
}
|
147 |
+
|
148 |
+
private void Update()
|
149 |
+
{
|
150 |
+
ExecuteML();
|
151 |
+
|
152 |
+
if (Input.GetKeyDown(KeyCode.Escape))
|
153 |
+
{
|
154 |
+
Application.Quit();
|
155 |
+
}
|
156 |
+
}
|
157 |
+
|
158 |
+
public void ExecuteML()
|
159 |
+
{
|
160 |
+
ClearAnnotations();
|
161 |
+
|
162 |
+
if (video && video.texture)
|
163 |
+
{
|
164 |
+
float aspect = video.width * 1f / video.height;
|
165 |
+
Graphics.Blit(video.texture, targetRT, new Vector2(1f / aspect, 1), new Vector2(0, 0));
|
166 |
+
displayImage.texture = targetRT;
|
167 |
+
}
|
168 |
+
else return;
|
169 |
+
|
170 |
+
using var input = TextureConverter.ToTensor(targetRT, imageWidth, imageHeight, 3);
|
171 |
+
engine.Execute(input);
|
172 |
+
|
173 |
+
var output = engine.PeekOutput("output_0") as TensorFloat;
|
174 |
+
var labelIDs = engine.PeekOutput("output_1") as TensorInt;
|
175 |
+
|
176 |
+
output.CompleteOperationsAndDownload();
|
177 |
+
labelIDs.CompleteOperationsAndDownload();
|
178 |
+
|
179 |
+
float displayWidth = displayImage.rectTransform.rect.width;
|
180 |
+
float displayHeight = displayImage.rectTransform.rect.height;
|
181 |
+
|
182 |
+
float scaleX = displayWidth / imageWidth;
|
183 |
+
float scaleY = displayHeight / imageHeight;
|
184 |
+
|
185 |
+
int boxesFound = output.shape[0];
|
186 |
+
//Draw the bounding boxes
|
187 |
+
for (int n = 0; n < Mathf.Min(boxesFound, 200); n++)
|
188 |
+
{
|
189 |
+
var box = new BoundingBox
|
190 |
+
{
|
191 |
+
centerX = output[n, 0] * scaleX - displayWidth / 2,
|
192 |
+
centerY = output[n, 1] * scaleY - displayHeight / 2,
|
193 |
+
width = output[n, 2] * scaleX,
|
194 |
+
height = output[n, 3] * scaleY,
|
195 |
+
label = labels[labelIDs[n]],
|
196 |
+
};
|
197 |
+
DrawBox(box, n, displayHeight * 0.05f);
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
public void DrawBox(BoundingBox box, int id, float fontSize)
|
202 |
+
{
|
203 |
+
//Create the bounding box graphic or get from pool
|
204 |
+
GameObject panel;
|
205 |
+
if (id < boxPool.Count)
|
206 |
+
{
|
207 |
+
panel = boxPool[id];
|
208 |
+
panel.SetActive(true);
|
209 |
+
}
|
210 |
+
else
|
211 |
+
{
|
212 |
+
panel = CreateNewBox(Color.yellow);
|
213 |
+
}
|
214 |
+
//Set box position
|
215 |
+
panel.transform.localPosition = new Vector3(box.centerX, -box.centerY);
|
216 |
+
|
217 |
+
//Set box size
|
218 |
+
RectTransform rt = panel.GetComponent<RectTransform>();
|
219 |
+
rt.sizeDelta = new Vector2(box.width, box.height);
|
220 |
+
|
221 |
+
//Set label text
|
222 |
+
var label = panel.GetComponentInChildren<Text>();
|
223 |
+
label.text = box.label;
|
224 |
+
label.fontSize = (int)fontSize;
|
225 |
+
}
|
226 |
+
|
227 |
+
public GameObject CreateNewBox(Color color)
|
228 |
+
{
|
229 |
+
//Create the box and set image
|
230 |
+
|
231 |
+
var panel = new GameObject("ObjectBox");
|
232 |
+
panel.AddComponent<CanvasRenderer>();
|
233 |
+
Image img = panel.AddComponent<Image>();
|
234 |
+
img.color = color;
|
235 |
+
img.sprite = borderSprite;
|
236 |
+
img.type = Image.Type.Sliced;
|
237 |
+
panel.transform.SetParent(displayLocation, false);
|
238 |
+
|
239 |
+
//Create the label
|
240 |
+
|
241 |
+
var text = new GameObject("ObjectLabel");
|
242 |
+
text.AddComponent<CanvasRenderer>();
|
243 |
+
text.transform.SetParent(panel.transform, false);
|
244 |
+
Text txt = text.AddComponent<Text>();
|
245 |
+
txt.font = font;
|
246 |
+
txt.color = color;
|
247 |
+
txt.fontSize = 40;
|
248 |
+
txt.horizontalOverflow = HorizontalWrapMode.Overflow;
|
249 |
+
|
250 |
+
RectTransform rt2 = text.GetComponent<RectTransform>();
|
251 |
+
rt2.offsetMin = new Vector2(20, rt2.offsetMin.y);
|
252 |
+
rt2.offsetMax = new Vector2(0, rt2.offsetMax.y);
|
253 |
+
rt2.offsetMin = new Vector2(rt2.offsetMin.x, 0);
|
254 |
+
rt2.offsetMax = new Vector2(rt2.offsetMax.x, 30);
|
255 |
+
rt2.anchorMin = new Vector2(0, 0);
|
256 |
+
rt2.anchorMax = new Vector2(1, 1);
|
257 |
+
|
258 |
+
boxPool.Add(panel);
|
259 |
+
return panel;
|
260 |
+
}
|
261 |
+
|
262 |
+
public void ClearAnnotations()
|
263 |
+
{
|
264 |
+
foreach (var box in boxPool)
|
265 |
+
{
|
266 |
+
box.SetActive(false);
|
267 |
+
}
|
268 |
+
}
|
269 |
+
|
270 |
+
private void OnDestroy()
|
271 |
+
{
|
272 |
+
centersToCorners?.Dispose();
|
273 |
+
engine?.Dispose();
|
274 |
+
}
|
275 |
+
}
|
classes.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
b_fully_ripened
|
2 |
+
b_half_ripened
|
3 |
+
b_green
|
4 |
+
l_fully_ripened
|
5 |
+
l_half_ripened
|
6 |
+
l_green
|
info.js
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version" : [
|
3 |
+
"1.4.0-pre.2"
|
4 |
+
]
|
5 |
+
}
|
info.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"code": [ "RunLaboroTomato.cs"],
|
3 |
+
"models": [ "laboro_tomato_yolov8.sentis"],
|
4 |
+
"data": [ "classes.txt" ]
|
5 |
+
}
|
laboro_tomato_yolov8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0de233be5f31b89ab1482268ff7e72aca0ebb5917bf92afb500de79c0476a86a
|
3 |
+
size 44739449
|
laboro_tomato_yolov8.sentis
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b24b5e411a644600616be29245edc37876df080c86398fb5368a83fe759217cc
|
3 |
+
size 44738340
|
preview.png
ADDED
![]() |
Git LFS Details
|
tomatoes.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:217ecb66a7235e4d3a6eb2557f62b15e69b5c6141ccae8e6ca076680efe0bc7f
|
3 |
+
size 3199970
|