Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +441 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 1024,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": true,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": false,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
              "include_prompt": true
         | 
| 10 | 
            +
            }
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,441 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            base_model: deepvk/USER-bge-m3
         | 
| 3 | 
            +
            library_name: sentence-transformers
         | 
| 4 | 
            +
            metrics:
         | 
| 5 | 
            +
            - cosine_accuracy
         | 
| 6 | 
            +
            - dot_accuracy
         | 
| 7 | 
            +
            - manhattan_accuracy
         | 
| 8 | 
            +
            - euclidean_accuracy
         | 
| 9 | 
            +
            - max_accuracy
         | 
| 10 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 11 | 
            +
            tags:
         | 
| 12 | 
            +
            - sentence-transformers
         | 
| 13 | 
            +
            - sentence-similarity
         | 
| 14 | 
            +
            - feature-extraction
         | 
| 15 | 
            +
            - generated_from_trainer
         | 
| 16 | 
            +
            - dataset_size:10189
         | 
| 17 | 
            +
            - loss:TripletLoss
         | 
| 18 | 
            +
            widget:
         | 
| 19 | 
            +
            - source_sentence: мороженое протеиновое
         | 
| 20 | 
            +
              sentences:
         | 
| 21 | 
            +
              - Эскимо "Суфле" в молочном шоколаде Эскимо с мягким сливочным вкусом и глазурью
         | 
| 22 | 
            +
                из молочного шоколада
         | 
| 23 | 
            +
              - Ассорти сухофруктов с пастилой Сытный, вкусный и полезный снек и чудесный десерт
         | 
| 24 | 
            +
                к чаю или кофе. Солнечный аромат вяленых бананов, кисло-сладкий вкус спелого сушеного
         | 
| 25 | 
            +
                яблока и натуральная, яблочно-банановая пастила. Не содержит добавленного сахара.
         | 
| 26 | 
            +
                Удобная компактная упаковка так и просится в карман или сумку, чтобы сопровождать
         | 
| 27 | 
            +
                вас на прогулке, лекции или пикнике. Отличная замена классическим сладостям и
         | 
| 28 | 
            +
                легкий перекус.
         | 
| 29 | 
            +
              - Мороженое молочное протеиновое Bombbar Соленая карамель со сливками 150 г Универсальный
         | 
| 30 | 
            +
                белковый десерт без сахара для похудения, набора массы или просто вкусного и полезного
         | 
| 31 | 
            +
                перекуса.
         | 
| 32 | 
            +
            - source_sentence: овсяная каша
         | 
| 33 | 
            +
              sentences:
         | 
| 34 | 
            +
              - Чипсы протеиновые "Сметана и зелень" Полезная альтернатива картофельным чипсам,
         | 
| 35 | 
            +
                на 75% состоящая из коллагенового белка. Отсутствие углеводов делают чипсы подходящими
         | 
| 36 | 
            +
                для кето диеты, а высокое содержание протеина превращает их в идеальный снек для
         | 
| 37 | 
            +
                перекуса после тренировки. К тому же, небольшую упаковку удобно брать с собой,
         | 
| 38 | 
            +
                чтобы похрустеть в дороге. Некоторые покупатели отмечают, что протеиновыми чипсами
         | 
| 39 | 
            +
                легко можно наесться, причём для этого достаточно всего половины упаковки!
         | 
| 40 | 
            +
              - Каша овсяная, 250 г Питательная овсянка, сваренная на свежем молоке. Нежная, чуть
         | 
| 41 | 
            +
                сладковатая, она хороша и сама по себе, и с различными топингами. Например, в
         | 
| 42 | 
            +
                кашу можно добавить душистые ягоды, сухофрукты или горстку орехов.
         | 
| 43 | 
            +
              - 'Пирожное бисквитное "Картошка" Классическое пирожное со вкусом детства: плотное,
         | 
| 44 | 
            +
                насыщенно-шоколадное, с нежнейшим масляным кремом. Спорим, оно станет одним из
         | 
| 45 | 
            +
                ваших любимых лакомств?'
         | 
| 46 | 
            +
            - source_sentence: баранина
         | 
| 47 | 
            +
              sentences:
         | 
| 48 | 
            +
              - Большая порция куриных шариков с пряным соусом "Цезарь" Сочные куриные шарики
         | 
| 49 | 
            +
                с хрустящей корочкой и тягучей сырной начинкой. Приедут к вам горячими с порцией
         | 
| 50 | 
            +
                соуса "Цезарь"
         | 
| 51 | 
            +
              - Корм влажный консервированный для собак "Баранина с тыквой" кусочки в соусе Grand
         | 
| 52 | 
            +
                Prix , 400 гр Полнорационный сбалансированный корм для собак, разработанный под
         | 
| 53 | 
            +
                ветеринарным контролем. Содержит 45% баранины и субпродуктов, обогащен полезными
         | 
| 54 | 
            +
                веществами. Дополнительно содержит пивные дрожжи, льняное семя и масло для здоровья
         | 
| 55 | 
            +
                ЖКТ, шерсти и кожи.
         | 
| 56 | 
            +
              - Люля-кебаб из ягнятины Халяль, зам. Аппетитные кебабы из ягнятины, приготовленные
         | 
| 57 | 
            +
                по стандартам Халяль. Сочные, с пряной нотой зиры и кориандра.
         | 
| 58 | 
            +
            - source_sentence: фило
         | 
| 59 | 
            +
              sentences:
         | 
| 60 | 
            +
              - Киви резанный, Фрешбар Сочные ломтики спелых киви, нарезанные на половинки
         | 
| 61 | 
            +
              - Тесто "Фило" зам. 500 г Тончайшие ��исты теста фило для пирогов, десертов, роллов
         | 
| 62 | 
            +
              - Брусники листья 1.5г ф/пак 20 шт Брусника активно применяется в урологии как диуретик
         | 
| 63 | 
            +
                и природное средство против цистита и уретрита. Ее особая ценность в том, что
         | 
| 64 | 
            +
                она оказывает одновременно и антибактериальное, и противовоспалительное, и мочегонное
         | 
| 65 | 
            +
                действия.
         | 
| 66 | 
            +
            - source_sentence: детская каша
         | 
| 67 | 
            +
              sentences:
         | 
| 68 | 
            +
              - Каша овсяная детская "Мишка" Сладкая овсяная каша с голубикой и бананами. Можно
         | 
| 69 | 
            +
                приготовить на кокосовом молоке
         | 
| 70 | 
            +
              - Сок гранатовый прямого отжима, 200 мл Натуральный сок холодного отжима, без сахара.
         | 
| 71 | 
            +
                Сбалансированный вкус, слегка мутный из-за мякоти
         | 
| 72 | 
            +
              - Десерт "Тирамису", 300 г Изысканный итальянский десерт в нестандартном исполнении.
         | 
| 73 | 
            +
                В нашем Тирамису много (очень много!) сливочного крема и Маскарпоне,
         | 
| 74 | 
            +
                поэтому лакомство невероятно нежное!
         | 
| 75 | 
            +
            model-index:
         | 
| 76 | 
            +
            - name: SentenceTransformer based on deepvk/USER-bge-m3
         | 
| 77 | 
            +
              results:
         | 
| 78 | 
            +
              - task:
         | 
| 79 | 
            +
                  type: triplet
         | 
| 80 | 
            +
                  name: Triplet
         | 
| 81 | 
            +
                dataset:
         | 
| 82 | 
            +
                  name: dev
         | 
| 83 | 
            +
                  type: dev
         | 
| 84 | 
            +
                metrics:
         | 
| 85 | 
            +
                - type: cosine_accuracy
         | 
| 86 | 
            +
                  value: 0.9187996469549867
         | 
| 87 | 
            +
                  name: Cosine Accuracy
         | 
| 88 | 
            +
                - type: dot_accuracy
         | 
| 89 | 
            +
                  value: 0.08031774051191527
         | 
| 90 | 
            +
                  name: Dot Accuracy
         | 
| 91 | 
            +
                - type: manhattan_accuracy
         | 
| 92 | 
            +
                  value: 0.9170344218887908
         | 
| 93 | 
            +
                  name: Manhattan Accuracy
         | 
| 94 | 
            +
                - type: euclidean_accuracy
         | 
| 95 | 
            +
                  value: 0.9187996469549867
         | 
| 96 | 
            +
                  name: Euclidean Accuracy
         | 
| 97 | 
            +
                - type: max_accuracy
         | 
| 98 | 
            +
                  value: 0.9187996469549867
         | 
| 99 | 
            +
                  name: Max Accuracy
         | 
| 100 | 
            +
            ---
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            # SentenceTransformer based on deepvk/USER-bge-m3
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            ## Model Details
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ### Model Description
         | 
| 109 | 
            +
            - **Model Type:** Sentence Transformer
         | 
| 110 | 
            +
            - **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae -->
         | 
| 111 | 
            +
            - **Maximum Sequence Length:** 512 tokens
         | 
| 112 | 
            +
            - **Output Dimensionality:** 1024 tokens
         | 
| 113 | 
            +
            - **Similarity Function:** Cosine Similarity
         | 
| 114 | 
            +
            <!-- - **Training Dataset:** Unknown -->
         | 
| 115 | 
            +
            <!-- - **Language:** Unknown -->
         | 
| 116 | 
            +
            <!-- - **License:** Unknown -->
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            ### Model Sources
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 121 | 
            +
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 122 | 
            +
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            ### Full Model Architecture
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ```
         | 
| 127 | 
            +
            SentenceTransformer(
         | 
| 128 | 
            +
              (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
         | 
| 129 | 
            +
              (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
         | 
| 130 | 
            +
              (2): Normalize()
         | 
| 131 | 
            +
            )
         | 
| 132 | 
            +
            ```
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            ## Usage
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ### Direct Usage (Sentence Transformers)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            First install the Sentence Transformers library:
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            ```bash
         | 
| 141 | 
            +
            pip install -U sentence-transformers
         | 
| 142 | 
            +
            ```
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            Then you can load this model and run inference.
         | 
| 145 | 
            +
            ```python
         | 
| 146 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            # Download from the 🤗 Hub
         | 
| 149 | 
            +
            model = SentenceTransformer("Data-Lab/USER-bge-m3-embedder-td")
         | 
| 150 | 
            +
            # Run inference
         | 
| 151 | 
            +
            sentences = [
         | 
| 152 | 
            +
                'детская каша',
         | 
| 153 | 
            +
                'Каша овсяная детская "Мишка" Сладкая овсяная каша с голубикой и бананами. Можно приготовить на кокосовом молоке',
         | 
| 154 | 
            +
                'Десерт "Тирамису", 300 г Изысканный итальянский десерт в нестандартном исполнении. В нашем Тирамису много (очень много!) сливочного крема и Маскарпоне, поэтому лакомство невероятно нежное!',
         | 
| 155 | 
            +
            ]
         | 
| 156 | 
            +
            embeddings = model.encode(sentences)
         | 
| 157 | 
            +
            print(embeddings.shape)
         | 
| 158 | 
            +
            # [3, 1024]
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            # Get the similarity scores for the embeddings
         | 
| 161 | 
            +
            similarities = model.similarity(embeddings, embeddings)
         | 
| 162 | 
            +
            print(similarities.shape)
         | 
| 163 | 
            +
            # [3, 3]
         | 
| 164 | 
            +
            ```
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            <!--
         | 
| 167 | 
            +
            ### Direct Usage (Transformers)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            </details>
         | 
| 172 | 
            +
            -->
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            <!--
         | 
| 175 | 
            +
            ### Downstream Usage (Sentence Transformers)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            You can finetune this model on your own dataset.
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            </details>
         | 
| 182 | 
            +
            -->
         | 
| 183 | 
            +
             | 
| 184 | 
            +
            <!--
         | 
| 185 | 
            +
            ### Out-of-Scope Use
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 188 | 
            +
            -->
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            ## Evaluation
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            ### Metrics
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            #### Triplet
         | 
| 195 | 
            +
            * Dataset: `dev`
         | 
| 196 | 
            +
            * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            | Metric             | Value      |
         | 
| 199 | 
            +
            |:-------------------|:-----------|
         | 
| 200 | 
            +
            | cosine_accuracy    | 0.9188     |
         | 
| 201 | 
            +
            | dot_accuracy       | 0.0803     |
         | 
| 202 | 
            +
            | manhattan_accuracy | 0.917      |
         | 
| 203 | 
            +
            | euclidean_accuracy | 0.9188     |
         | 
| 204 | 
            +
            | **max_accuracy**   | **0.9188** |
         | 
| 205 | 
            +
             | 
| 206 | 
            +
            <!--
         | 
| 207 | 
            +
            ## Bias, Risks and Limitations
         | 
| 208 | 
            +
             | 
| 209 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 210 | 
            +
            -->
         | 
| 211 | 
            +
             | 
| 212 | 
            +
            <!--
         | 
| 213 | 
            +
            ### Recommendations
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 216 | 
            +
            -->
         | 
| 217 | 
            +
             | 
| 218 | 
            +
            ## Training Details
         | 
| 219 | 
            +
             | 
| 220 | 
            +
            ### Training Dataset
         | 
| 221 | 
            +
             | 
| 222 | 
            +
            #### Unnamed Dataset
         | 
| 223 | 
            +
             | 
| 224 | 
            +
             | 
| 225 | 
            +
            * Size: 10,189 training samples
         | 
| 226 | 
            +
            * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
         | 
| 227 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 228 | 
            +
              |         | sentence_0                                                                       | sentence_1                                                                         | sentence_2                                                                         |
         | 
| 229 | 
            +
              |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
         | 
| 230 | 
            +
              | type    | string                                                                           | string                                                                             | string                                                                             |
         | 
| 231 | 
            +
              | details | <ul><li>min: 3 tokens</li><li>mean: 7.85 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 61.74 tokens</li><li>max: 377 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 64.71 tokens</li><li>max: 393 tokens</li></ul> |
         | 
| 232 | 
            +
            * Samples:
         | 
| 233 | 
            +
              | sentence_0                           | sentence_1                                                                                                           | sentence_2                                                                                                                                                                                                                                                                                                               |
         | 
| 234 | 
            +
              |:-------------------------------------|:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
         | 
| 235 | 
            +
              | <code>хурма</code>                   | <code>Чипсы из хурмы, 25 г Натуральные чипсы из хурмы, без сахара. Мягкие, медово-фруктовые</code>                   | <code>Салат мимоза, 300 г Классический салат мимоза с горбушей, отварными овощами и куриными желтками.</code>                                                                                                                                                                                                            |
         | 
| 236 | 
            +
              | <code>жареное мясо</code>            | <code>КК_котлета куриная жареная, вес</code>                                                                         | <code>Баклажаны "Пармиджано" Мама миа, это же настоящая итальянская пармиджана! Нежные ломтики баклажанов, много томатов и ещё больше тягучего сыра. Очень насыщенно, сочно и аппетитно пряно. Баклажаны для этого рецепта не обжариваются, а запекаются в духовке, что делает блюдо более полезным и изысканным.</code> |
         | 
| 237 | 
            +
              | <code>бедро цыпленка бройлера</code> | <code>Бедро цыплят-бройлеров Халяль 1 кг Сочное бедро цыпленка, подходит для ма��инования, тушения и запекания</code> | <code>Мясо бедра (Филе бедра) индейки в маринаде "Чесночный" 1 кг Диетическое, нежирное филе бедра индейки с деликатным вкусом и ароматом. В меру подсолено и приправлено острым чесночком и травами.</code>                                                                                                             |
         | 
| 238 | 
            +
            * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
         | 
| 239 | 
            +
              ```json
         | 
| 240 | 
            +
              {
         | 
| 241 | 
            +
                  "distance_metric": "TripletDistanceMetric.COSINE",
         | 
| 242 | 
            +
                  "triplet_margin": 0.5
         | 
| 243 | 
            +
              }
         | 
| 244 | 
            +
              ```
         | 
| 245 | 
            +
             | 
| 246 | 
            +
            ### Training Hyperparameters
         | 
| 247 | 
            +
            #### Non-Default Hyperparameters
         | 
| 248 | 
            +
             | 
| 249 | 
            +
            - `eval_strategy`: steps
         | 
| 250 | 
            +
            - `per_device_train_batch_size`: 4
         | 
| 251 | 
            +
            - `per_device_eval_batch_size`: 4
         | 
| 252 | 
            +
            - `fp16`: True
         | 
| 253 | 
            +
            - `multi_dataset_batch_sampler`: round_robin
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            #### All Hyperparameters
         | 
| 256 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            - `overwrite_output_dir`: False
         | 
| 259 | 
            +
            - `do_predict`: False
         | 
| 260 | 
            +
            - `eval_strategy`: steps
         | 
| 261 | 
            +
            - `prediction_loss_only`: True
         | 
| 262 | 
            +
            - `per_device_train_batch_size`: 4
         | 
| 263 | 
            +
            - `per_device_eval_batch_size`: 4
         | 
| 264 | 
            +
            - `per_gpu_train_batch_size`: None
         | 
| 265 | 
            +
            - `per_gpu_eval_batch_size`: None
         | 
| 266 | 
            +
            - `gradient_accumulation_steps`: 1
         | 
| 267 | 
            +
            - `eval_accumulation_steps`: None
         | 
| 268 | 
            +
            - `torch_empty_cache_steps`: None
         | 
| 269 | 
            +
            - `learning_rate`: 5e-05
         | 
| 270 | 
            +
            - `weight_decay`: 0.0
         | 
| 271 | 
            +
            - `adam_beta1`: 0.9
         | 
| 272 | 
            +
            - `adam_beta2`: 0.999
         | 
| 273 | 
            +
            - `adam_epsilon`: 1e-08
         | 
| 274 | 
            +
            - `max_grad_norm`: 1
         | 
| 275 | 
            +
            - `num_train_epochs`: 3
         | 
| 276 | 
            +
            - `max_steps`: -1
         | 
| 277 | 
            +
            - `lr_scheduler_type`: linear
         | 
| 278 | 
            +
            - `lr_scheduler_kwargs`: {}
         | 
| 279 | 
            +
            - `warmup_ratio`: 0.0
         | 
| 280 | 
            +
            - `warmup_steps`: 0
         | 
| 281 | 
            +
            - `log_level`: passive
         | 
| 282 | 
            +
            - `log_level_replica`: warning
         | 
| 283 | 
            +
            - `log_on_each_node`: True
         | 
| 284 | 
            +
            - `logging_nan_inf_filter`: True
         | 
| 285 | 
            +
            - `save_safetensors`: True
         | 
| 286 | 
            +
            - `save_on_each_node`: False
         | 
| 287 | 
            +
            - `save_only_model`: False
         | 
| 288 | 
            +
            - `restore_callback_states_from_checkpoint`: False
         | 
| 289 | 
            +
            - `no_cuda`: False
         | 
| 290 | 
            +
            - `use_cpu`: False
         | 
| 291 | 
            +
            - `use_mps_device`: False
         | 
| 292 | 
            +
            - `seed`: 42
         | 
| 293 | 
            +
            - `data_seed`: None
         | 
| 294 | 
            +
            - `jit_mode_eval`: False
         | 
| 295 | 
            +
            - `use_ipex`: False
         | 
| 296 | 
            +
            - `bf16`: False
         | 
| 297 | 
            +
            - `fp16`: True
         | 
| 298 | 
            +
            - `fp16_opt_level`: O1
         | 
| 299 | 
            +
            - `half_precision_backend`: auto
         | 
| 300 | 
            +
            - `bf16_full_eval`: False
         | 
| 301 | 
            +
            - `fp16_full_eval`: False
         | 
| 302 | 
            +
            - `tf32`: None
         | 
| 303 | 
            +
            - `local_rank`: 0
         | 
| 304 | 
            +
            - `ddp_backend`: None
         | 
| 305 | 
            +
            - `tpu_num_cores`: None
         | 
| 306 | 
            +
            - `tpu_metrics_debug`: False
         | 
| 307 | 
            +
            - `debug`: []
         | 
| 308 | 
            +
            - `dataloader_drop_last`: True
         | 
| 309 | 
            +
            - `dataloader_num_workers`: 0
         | 
| 310 | 
            +
            - `dataloader_prefetch_factor`: None
         | 
| 311 | 
            +
            - `past_index`: -1
         | 
| 312 | 
            +
            - `disable_tqdm`: False
         | 
| 313 | 
            +
            - `remove_unused_columns`: True
         | 
| 314 | 
            +
            - `label_names`: None
         | 
| 315 | 
            +
            - `load_best_model_at_end`: False
         | 
| 316 | 
            +
            - `ignore_data_skip`: False
         | 
| 317 | 
            +
            - `fsdp`: []
         | 
| 318 | 
            +
            - `fsdp_min_num_params`: 0
         | 
| 319 | 
            +
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 320 | 
            +
            - `fsdp_transformer_layer_cls_to_wrap`: None
         | 
| 321 | 
            +
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 322 | 
            +
            - `deepspeed`: None
         | 
| 323 | 
            +
            - `label_smoothing_factor`: 0.0
         | 
| 324 | 
            +
            - `optim`: adamw_torch
         | 
| 325 | 
            +
            - `optim_args`: None
         | 
| 326 | 
            +
            - `adafactor`: False
         | 
| 327 | 
            +
            - `group_by_length`: False
         | 
| 328 | 
            +
            - `length_column_name`: length
         | 
| 329 | 
            +
            - `ddp_find_unused_parameters`: None
         | 
| 330 | 
            +
            - `ddp_bucket_cap_mb`: None
         | 
| 331 | 
            +
            - `ddp_broadcast_buffers`: False
         | 
| 332 | 
            +
            - `dataloader_pin_memory`: True
         | 
| 333 | 
            +
            - `dataloader_persistent_workers`: False
         | 
| 334 | 
            +
            - `skip_memory_metrics`: True
         | 
| 335 | 
            +
            - `use_legacy_prediction_loop`: False
         | 
| 336 | 
            +
            - `push_to_hub`: False
         | 
| 337 | 
            +
            - `resume_from_checkpoint`: None
         | 
| 338 | 
            +
            - `hub_model_id`: None
         | 
| 339 | 
            +
            - `hub_strategy`: every_save
         | 
| 340 | 
            +
            - `hub_private_repo`: False
         | 
| 341 | 
            +
            - `hub_always_push`: False
         | 
| 342 | 
            +
            - `gradient_checkpointing`: False
         | 
| 343 | 
            +
            - `gradient_checkpointing_kwargs`: None
         | 
| 344 | 
            +
            - `include_inputs_for_metrics`: False
         | 
| 345 | 
            +
            - `eval_do_concat_batches`: True
         | 
| 346 | 
            +
            - `fp16_backend`: auto
         | 
| 347 | 
            +
            - `push_to_hub_model_id`: None
         | 
| 348 | 
            +
            - `push_to_hub_organization`: None
         | 
| 349 | 
            +
            - `mp_parameters`: 
         | 
| 350 | 
            +
            - `auto_find_batch_size`: False
         | 
| 351 | 
            +
            - `full_determinism`: False
         | 
| 352 | 
            +
            - `torchdynamo`: None
         | 
| 353 | 
            +
            - `ray_scope`: last
         | 
| 354 | 
            +
            - `ddp_timeout`: 1800
         | 
| 355 | 
            +
            - `torch_compile`: False
         | 
| 356 | 
            +
            - `torch_compile_backend`: None
         | 
| 357 | 
            +
            - `torch_compile_mode`: None
         | 
| 358 | 
            +
            - `dispatch_batches`: None
         | 
| 359 | 
            +
            - `split_batches`: None
         | 
| 360 | 
            +
            - `include_tokens_per_second`: False
         | 
| 361 | 
            +
            - `include_num_input_tokens_seen`: False
         | 
| 362 | 
            +
            - `neftune_noise_alpha`: None
         | 
| 363 | 
            +
            - `optim_target_modules`: None
         | 
| 364 | 
            +
            - `batch_eval_metrics`: False
         | 
| 365 | 
            +
            - `eval_on_start`: False
         | 
| 366 | 
            +
            - `eval_use_gather_object`: False
         | 
| 367 | 
            +
            - `batch_sampler`: batch_sampler
         | 
| 368 | 
            +
            - `multi_dataset_batch_sampler`: round_robin
         | 
| 369 | 
            +
             | 
| 370 | 
            +
            </details>
         | 
| 371 | 
            +
             | 
| 372 | 
            +
            ### Training Logs
         | 
| 373 | 
            +
            | Epoch  | Step | Training Loss | dev_max_accuracy |
         | 
| 374 | 
            +
            |:------:|:----:|:-------------:|:----------------:|
         | 
| 375 | 
            +
            | 0.3928 | 500  | 0.2477        | -                |
         | 
| 376 | 
            +
            | 0.7855 | 1000 | 0.182         | 0.9064           |
         | 
| 377 | 
            +
            | 1.0    | 1273 | -             | 0.9073           |
         | 
| 378 | 
            +
            | 1.1783 | 1500 | 0.157         | -                |
         | 
| 379 | 
            +
            | 1.5711 | 2000 | 0.1234        | 0.9029           |
         | 
| 380 | 
            +
            | 1.9639 | 2500 | 0.0993        | -                |
         | 
| 381 | 
            +
            | 2.0    | 2546 | -             | 0.9179           |
         | 
| 382 | 
            +
            | 2.3566 | 3000 | 0.0864        | 0.9170           |
         | 
| 383 | 
            +
            | 2.7494 | 3500 | 0.0691        | -                |
         | 
| 384 | 
            +
            | 3.0    | 3819 | -             | 0.9188           |
         | 
| 385 | 
            +
             | 
| 386 | 
            +
             | 
| 387 | 
            +
            ### Framework Versions
         | 
| 388 | 
            +
            - Python: 3.10.12
         | 
| 389 | 
            +
            - Sentence Transformers: 3.2.0
         | 
| 390 | 
            +
            - Transformers: 4.44.0
         | 
| 391 | 
            +
            - PyTorch: 2.3.1+cu121
         | 
| 392 | 
            +
            - Accelerate: 0.31.0
         | 
| 393 | 
            +
            - Datasets: 2.20.0
         | 
| 394 | 
            +
            - Tokenizers: 0.19.1
         | 
| 395 | 
            +
             | 
| 396 | 
            +
            ## Citation
         | 
| 397 | 
            +
             | 
| 398 | 
            +
            ### BibTeX
         | 
| 399 | 
            +
             | 
| 400 | 
            +
            #### Sentence Transformers
         | 
| 401 | 
            +
            ```bibtex
         | 
| 402 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 403 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 404 | 
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 405 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 406 | 
            +
                month = "11",
         | 
| 407 | 
            +
                year = "2019",
         | 
| 408 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 409 | 
            +
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 410 | 
            +
            }
         | 
| 411 | 
            +
            ```
         | 
| 412 | 
            +
             | 
| 413 | 
            +
            #### TripletLoss
         | 
| 414 | 
            +
            ```bibtex
         | 
| 415 | 
            +
            @misc{hermans2017defense,
         | 
| 416 | 
            +
                title={In Defense of the Triplet Loss for Person Re-Identification},
         | 
| 417 | 
            +
                author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
         | 
| 418 | 
            +
                year={2017},
         | 
| 419 | 
            +
                eprint={1703.07737},
         | 
| 420 | 
            +
                archivePrefix={arXiv},
         | 
| 421 | 
            +
                primaryClass={cs.CV}
         | 
| 422 | 
            +
            }
         | 
| 423 | 
            +
            ```
         | 
| 424 | 
            +
             | 
| 425 | 
            +
            <!--
         | 
| 426 | 
            +
            ## Glossary
         | 
| 427 | 
            +
             | 
| 428 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 429 | 
            +
            -->
         | 
| 430 | 
            +
             | 
| 431 | 
            +
            <!--
         | 
| 432 | 
            +
            ## Model Card Authors
         | 
| 433 | 
            +
             | 
| 434 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 435 | 
            +
            -->
         | 
| 436 | 
            +
             | 
| 437 | 
            +
            <!--
         | 
| 438 | 
            +
            ## Model Card Contact
         | 
| 439 | 
            +
             | 
| 440 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 441 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "deepvk/USER-bge-m3",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "XLMRobertaModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "bos_token_id": 0,
         | 
| 8 | 
            +
              "classifier_dropout": null,
         | 
| 9 | 
            +
              "eos_token_id": 2,
         | 
| 10 | 
            +
              "hidden_act": "gelu",
         | 
| 11 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 12 | 
            +
              "hidden_size": 1024,
         | 
| 13 | 
            +
              "initializer_range": 0.02,
         | 
| 14 | 
            +
              "intermediate_size": 4096,
         | 
| 15 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 16 | 
            +
              "max_position_embeddings": 8194,
         | 
| 17 | 
            +
              "model_type": "xlm-roberta",
         | 
| 18 | 
            +
              "num_attention_heads": 16,
         | 
| 19 | 
            +
              "num_hidden_layers": 24,
         | 
| 20 | 
            +
              "output_past": true,
         | 
| 21 | 
            +
              "pad_token_id": 1,
         | 
| 22 | 
            +
              "position_embedding_type": "absolute",
         | 
| 23 | 
            +
              "torch_dtype": "float32",
         | 
| 24 | 
            +
              "transformers_version": "4.44.0",
         | 
| 25 | 
            +
              "type_vocab_size": 1,
         | 
| 26 | 
            +
              "use_cache": true,
         | 
| 27 | 
            +
              "vocab_size": 46166
         | 
| 28 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "3.2.0",
         | 
| 4 | 
            +
                "transformers": "4.44.0",
         | 
| 5 | 
            +
                "pytorch": "2.3.1+cu121"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "prompts": {},
         | 
| 8 | 
            +
              "default_prompt_name": null,
         | 
| 9 | 
            +
              "similarity_fn_name": null
         | 
| 10 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4ba4adb692a1cabe83e99cdb0eb542c168193914da371dd3f1cf003ea8a8d5d4
         | 
| 3 | 
            +
            size 1436151696
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,20 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              {
         | 
| 15 | 
            +
                "idx": 2,
         | 
| 16 | 
            +
                "name": "2",
         | 
| 17 | 
            +
                "path": "2_Normalize",
         | 
| 18 | 
            +
                "type": "sentence_transformers.models.Normalize"
         | 
| 19 | 
            +
              }
         | 
| 20 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 512,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
            +
            }
         | 
    	
        sentencepiece.bpe.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1538f6a9b7588645542db5c84f16c0b8e00a93ba9dbef13792ea065bdda403fb
         | 
| 3 | 
            +
            size 1042866
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<s>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "cls_token": {
         | 
| 10 | 
            +
                "content": "<s>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "eos_token": {
         | 
| 17 | 
            +
                "content": "</s>",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "mask_token": {
         | 
| 24 | 
            +
                "content": "<mask>",
         | 
| 25 | 
            +
                "lstrip": true,
         | 
| 26 | 
            +
                "normalized": true,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "pad_token": {
         | 
| 31 | 
            +
                "content": "<pad>",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              },
         | 
| 37 | 
            +
              "sep_token": {
         | 
| 38 | 
            +
                "content": "</s>",
         | 
| 39 | 
            +
                "lstrip": false,
         | 
| 40 | 
            +
                "normalized": false,
         | 
| 41 | 
            +
                "rstrip": false,
         | 
| 42 | 
            +
                "single_word": false
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "unk_token": {
         | 
| 45 | 
            +
                "content": "<unk>",
         | 
| 46 | 
            +
                "lstrip": false,
         | 
| 47 | 
            +
                "normalized": false,
         | 
| 48 | 
            +
                "rstrip": false,
         | 
| 49 | 
            +
                "single_word": false
         | 
| 50 | 
            +
              }
         | 
| 51 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,62 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<s>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<pad>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "</s>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "<unk>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "46165": {
         | 
| 36 | 
            +
                  "content": "<mask>",
         | 
| 37 | 
            +
                  "lstrip": true,
         | 
| 38 | 
            +
                  "normalized": true,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "bos_token": "<s>",
         | 
| 45 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 46 | 
            +
              "cls_token": "<s>",
         | 
| 47 | 
            +
              "eos_token": "</s>",
         | 
| 48 | 
            +
              "mask_token": "<mask>",
         | 
| 49 | 
            +
              "max_length": 512,
         | 
| 50 | 
            +
              "model_max_length": 8192,
         | 
| 51 | 
            +
              "pad_to_multiple_of": null,
         | 
| 52 | 
            +
              "pad_token": "<pad>",
         | 
| 53 | 
            +
              "pad_token_type_id": 0,
         | 
| 54 | 
            +
              "padding_side": "right",
         | 
| 55 | 
            +
              "sep_token": "</s>",
         | 
| 56 | 
            +
              "sp_model_kwargs": {},
         | 
| 57 | 
            +
              "stride": 0,
         | 
| 58 | 
            +
              "tokenizer_class": "XLMRobertaTokenizer",
         | 
| 59 | 
            +
              "truncation_side": "right",
         | 
| 60 | 
            +
              "truncation_strategy": "longest_first",
         | 
| 61 | 
            +
              "unk_token": "<unk>"
         | 
| 62 | 
            +
            }
         | 
