Upload mteb_eval.py
Browse files- mteb_eval.py +18 -0
mteb_eval.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import functools
|
| 3 |
+
from mteb import MTEB
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
logging.basicConfig(level=logging.INFO)
|
| 6 |
+
logger = logging.getLogger("main")
|
| 7 |
+
|
| 8 |
+
# task_list
|
| 9 |
+
task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
|
| 10 |
+
# languages
|
| 11 |
+
task_langs=["zh", "zh-CN"]
|
| 12 |
+
|
| 13 |
+
model_name = "DMetaSoul/Dmeta-embedding"
|
| 14 |
+
model = SentenceTransformer(model_name)
|
| 15 |
+
# normalize_embeddings should be true for this model
|
| 16 |
+
model.encode = functools.partial(model.encode, normalize_embeddings=True)
|
| 17 |
+
evaluation = MTEB(task_types=task_list, task_langs=task_langs)
|
| 18 |
+
evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")
|