Upload README_zh.md
Browse files- README_zh.md +1332 -0
README_zh.md
ADDED
|
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- mteb
|
| 8 |
+
model-index:
|
| 9 |
+
- name: Dmeta-embedding
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: STS
|
| 13 |
+
dataset:
|
| 14 |
+
type: C-MTEB/AFQMC
|
| 15 |
+
name: MTEB AFQMC
|
| 16 |
+
config: default
|
| 17 |
+
split: validation
|
| 18 |
+
revision: None
|
| 19 |
+
metrics:
|
| 20 |
+
- type: cos_sim_pearson
|
| 21 |
+
value: 65.60825224706932
|
| 22 |
+
- type: cos_sim_spearman
|
| 23 |
+
value: 71.12862586297193
|
| 24 |
+
- type: euclidean_pearson
|
| 25 |
+
value: 70.18130275750404
|
| 26 |
+
- type: euclidean_spearman
|
| 27 |
+
value: 71.12862586297193
|
| 28 |
+
- type: manhattan_pearson
|
| 29 |
+
value: 70.14470398075396
|
| 30 |
+
- type: manhattan_spearman
|
| 31 |
+
value: 71.05226975911737
|
| 32 |
+
- task:
|
| 33 |
+
type: STS
|
| 34 |
+
dataset:
|
| 35 |
+
type: C-MTEB/ATEC
|
| 36 |
+
name: MTEB ATEC
|
| 37 |
+
config: default
|
| 38 |
+
split: test
|
| 39 |
+
revision: None
|
| 40 |
+
metrics:
|
| 41 |
+
- type: cos_sim_pearson
|
| 42 |
+
value: 65.52386345655479
|
| 43 |
+
- type: cos_sim_spearman
|
| 44 |
+
value: 64.64245253181382
|
| 45 |
+
- type: euclidean_pearson
|
| 46 |
+
value: 73.20157662981914
|
| 47 |
+
- type: euclidean_spearman
|
| 48 |
+
value: 64.64245253178956
|
| 49 |
+
- type: manhattan_pearson
|
| 50 |
+
value: 73.22837571756348
|
| 51 |
+
- type: manhattan_spearman
|
| 52 |
+
value: 64.62632334391418
|
| 53 |
+
- task:
|
| 54 |
+
type: Classification
|
| 55 |
+
dataset:
|
| 56 |
+
type: mteb/amazon_reviews_multi
|
| 57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
| 58 |
+
config: zh
|
| 59 |
+
split: test
|
| 60 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 61 |
+
metrics:
|
| 62 |
+
- type: accuracy
|
| 63 |
+
value: 44.925999999999995
|
| 64 |
+
- type: f1
|
| 65 |
+
value: 42.82555191308971
|
| 66 |
+
- task:
|
| 67 |
+
type: STS
|
| 68 |
+
dataset:
|
| 69 |
+
type: C-MTEB/BQ
|
| 70 |
+
name: MTEB BQ
|
| 71 |
+
config: default
|
| 72 |
+
split: test
|
| 73 |
+
revision: None
|
| 74 |
+
metrics:
|
| 75 |
+
- type: cos_sim_pearson
|
| 76 |
+
value: 71.35236446393156
|
| 77 |
+
- type: cos_sim_spearman
|
| 78 |
+
value: 72.29629643702184
|
| 79 |
+
- type: euclidean_pearson
|
| 80 |
+
value: 70.94570179874498
|
| 81 |
+
- type: euclidean_spearman
|
| 82 |
+
value: 72.29629297226953
|
| 83 |
+
- type: manhattan_pearson
|
| 84 |
+
value: 70.84463025501125
|
| 85 |
+
- type: manhattan_spearman
|
| 86 |
+
value: 72.24527021975821
|
| 87 |
+
- task:
|
| 88 |
+
type: Clustering
|
| 89 |
+
dataset:
|
| 90 |
+
type: C-MTEB/CLSClusteringP2P
|
| 91 |
+
name: MTEB CLSClusteringP2P
|
| 92 |
+
config: default
|
| 93 |
+
split: test
|
| 94 |
+
revision: None
|
| 95 |
+
metrics:
|
| 96 |
+
- type: v_measure
|
| 97 |
+
value: 40.24232916894152
|
| 98 |
+
- task:
|
| 99 |
+
type: Clustering
|
| 100 |
+
dataset:
|
| 101 |
+
type: C-MTEB/CLSClusteringS2S
|
| 102 |
+
name: MTEB CLSClusteringS2S
|
| 103 |
+
config: default
|
| 104 |
+
split: test
|
| 105 |
+
revision: None
|
| 106 |
+
metrics:
|
| 107 |
+
- type: v_measure
|
| 108 |
+
value: 39.167806226929706
|
| 109 |
+
- task:
|
| 110 |
+
type: Reranking
|
| 111 |
+
dataset:
|
| 112 |
+
type: C-MTEB/CMedQAv1-reranking
|
| 113 |
+
name: MTEB CMedQAv1
|
| 114 |
+
config: default
|
| 115 |
+
split: test
|
| 116 |
+
revision: None
|
| 117 |
+
metrics:
|
| 118 |
+
- type: map
|
| 119 |
+
value: 88.48837920106357
|
| 120 |
+
- type: mrr
|
| 121 |
+
value: 90.36861111111111
|
| 122 |
+
- task:
|
| 123 |
+
type: Reranking
|
| 124 |
+
dataset:
|
| 125 |
+
type: C-MTEB/CMedQAv2-reranking
|
| 126 |
+
name: MTEB CMedQAv2
|
| 127 |
+
config: default
|
| 128 |
+
split: test
|
| 129 |
+
revision: None
|
| 130 |
+
metrics:
|
| 131 |
+
- type: map
|
| 132 |
+
value: 89.17878171657071
|
| 133 |
+
- type: mrr
|
| 134 |
+
value: 91.35805555555555
|
| 135 |
+
- task:
|
| 136 |
+
type: Retrieval
|
| 137 |
+
dataset:
|
| 138 |
+
type: C-MTEB/CmedqaRetrieval
|
| 139 |
+
name: MTEB CmedqaRetrieval
|
| 140 |
+
config: default
|
| 141 |
+
split: dev
|
| 142 |
+
revision: None
|
| 143 |
+
metrics:
|
| 144 |
+
- type: map_at_1
|
| 145 |
+
value: 25.751
|
| 146 |
+
- type: map_at_10
|
| 147 |
+
value: 38.946
|
| 148 |
+
- type: map_at_100
|
| 149 |
+
value: 40.855000000000004
|
| 150 |
+
- type: map_at_1000
|
| 151 |
+
value: 40.953
|
| 152 |
+
- type: map_at_3
|
| 153 |
+
value: 34.533
|
| 154 |
+
- type: map_at_5
|
| 155 |
+
value: 36.905
|
| 156 |
+
- type: mrr_at_1
|
| 157 |
+
value: 39.235
|
| 158 |
+
- type: mrr_at_10
|
| 159 |
+
value: 47.713
|
| 160 |
+
- type: mrr_at_100
|
| 161 |
+
value: 48.71
|
| 162 |
+
- type: mrr_at_1000
|
| 163 |
+
value: 48.747
|
| 164 |
+
- type: mrr_at_3
|
| 165 |
+
value: 45.086
|
| 166 |
+
- type: mrr_at_5
|
| 167 |
+
value: 46.498
|
| 168 |
+
- type: ndcg_at_1
|
| 169 |
+
value: 39.235
|
| 170 |
+
- type: ndcg_at_10
|
| 171 |
+
value: 45.831
|
| 172 |
+
- type: ndcg_at_100
|
| 173 |
+
value: 53.162
|
| 174 |
+
- type: ndcg_at_1000
|
| 175 |
+
value: 54.800000000000004
|
| 176 |
+
- type: ndcg_at_3
|
| 177 |
+
value: 40.188
|
| 178 |
+
- type: ndcg_at_5
|
| 179 |
+
value: 42.387
|
| 180 |
+
- type: precision_at_1
|
| 181 |
+
value: 39.235
|
| 182 |
+
- type: precision_at_10
|
| 183 |
+
value: 10.273
|
| 184 |
+
- type: precision_at_100
|
| 185 |
+
value: 1.627
|
| 186 |
+
- type: precision_at_1000
|
| 187 |
+
value: 0.183
|
| 188 |
+
- type: precision_at_3
|
| 189 |
+
value: 22.772000000000002
|
| 190 |
+
- type: precision_at_5
|
| 191 |
+
value: 16.524
|
| 192 |
+
- type: recall_at_1
|
| 193 |
+
value: 25.751
|
| 194 |
+
- type: recall_at_10
|
| 195 |
+
value: 57.411
|
| 196 |
+
- type: recall_at_100
|
| 197 |
+
value: 87.44
|
| 198 |
+
- type: recall_at_1000
|
| 199 |
+
value: 98.386
|
| 200 |
+
- type: recall_at_3
|
| 201 |
+
value: 40.416000000000004
|
| 202 |
+
- type: recall_at_5
|
| 203 |
+
value: 47.238
|
| 204 |
+
- task:
|
| 205 |
+
type: PairClassification
|
| 206 |
+
dataset:
|
| 207 |
+
type: C-MTEB/CMNLI
|
| 208 |
+
name: MTEB Cmnli
|
| 209 |
+
config: default
|
| 210 |
+
split: validation
|
| 211 |
+
revision: None
|
| 212 |
+
metrics:
|
| 213 |
+
- type: cos_sim_accuracy
|
| 214 |
+
value: 83.59591100420926
|
| 215 |
+
- type: cos_sim_ap
|
| 216 |
+
value: 90.65538153970263
|
| 217 |
+
- type: cos_sim_f1
|
| 218 |
+
value: 84.76466651795673
|
| 219 |
+
- type: cos_sim_precision
|
| 220 |
+
value: 81.04073363190446
|
| 221 |
+
- type: cos_sim_recall
|
| 222 |
+
value: 88.84732288987608
|
| 223 |
+
- type: dot_accuracy
|
| 224 |
+
value: 83.59591100420926
|
| 225 |
+
- type: dot_ap
|
| 226 |
+
value: 90.64355541781003
|
| 227 |
+
- type: dot_f1
|
| 228 |
+
value: 84.76466651795673
|
| 229 |
+
- type: dot_precision
|
| 230 |
+
value: 81.04073363190446
|
| 231 |
+
- type: dot_recall
|
| 232 |
+
value: 88.84732288987608
|
| 233 |
+
- type: euclidean_accuracy
|
| 234 |
+
value: 83.59591100420926
|
| 235 |
+
- type: euclidean_ap
|
| 236 |
+
value: 90.6547878194287
|
| 237 |
+
- type: euclidean_f1
|
| 238 |
+
value: 84.76466651795673
|
| 239 |
+
- type: euclidean_precision
|
| 240 |
+
value: 81.04073363190446
|
| 241 |
+
- type: euclidean_recall
|
| 242 |
+
value: 88.84732288987608
|
| 243 |
+
- type: manhattan_accuracy
|
| 244 |
+
value: 83.51172579675286
|
| 245 |
+
- type: manhattan_ap
|
| 246 |
+
value: 90.59941589844144
|
| 247 |
+
- type: manhattan_f1
|
| 248 |
+
value: 84.51827242524917
|
| 249 |
+
- type: manhattan_precision
|
| 250 |
+
value: 80.28613507258574
|
| 251 |
+
- type: manhattan_recall
|
| 252 |
+
value: 89.22141688099134
|
| 253 |
+
- type: max_accuracy
|
| 254 |
+
value: 83.59591100420926
|
| 255 |
+
- type: max_ap
|
| 256 |
+
value: 90.65538153970263
|
| 257 |
+
- type: max_f1
|
| 258 |
+
value: 84.76466651795673
|
| 259 |
+
- task:
|
| 260 |
+
type: Retrieval
|
| 261 |
+
dataset:
|
| 262 |
+
type: C-MTEB/CovidRetrieval
|
| 263 |
+
name: MTEB CovidRetrieval
|
| 264 |
+
config: default
|
| 265 |
+
split: dev
|
| 266 |
+
revision: None
|
| 267 |
+
metrics:
|
| 268 |
+
- type: map_at_1
|
| 269 |
+
value: 63.251000000000005
|
| 270 |
+
- type: map_at_10
|
| 271 |
+
value: 72.442
|
| 272 |
+
- type: map_at_100
|
| 273 |
+
value: 72.79299999999999
|
| 274 |
+
- type: map_at_1000
|
| 275 |
+
value: 72.80499999999999
|
| 276 |
+
- type: map_at_3
|
| 277 |
+
value: 70.293
|
| 278 |
+
- type: map_at_5
|
| 279 |
+
value: 71.571
|
| 280 |
+
- type: mrr_at_1
|
| 281 |
+
value: 63.541000000000004
|
| 282 |
+
- type: mrr_at_10
|
| 283 |
+
value: 72.502
|
| 284 |
+
- type: mrr_at_100
|
| 285 |
+
value: 72.846
|
| 286 |
+
- type: mrr_at_1000
|
| 287 |
+
value: 72.858
|
| 288 |
+
- type: mrr_at_3
|
| 289 |
+
value: 70.39
|
| 290 |
+
- type: mrr_at_5
|
| 291 |
+
value: 71.654
|
| 292 |
+
- type: ndcg_at_1
|
| 293 |
+
value: 63.541000000000004
|
| 294 |
+
- type: ndcg_at_10
|
| 295 |
+
value: 76.774
|
| 296 |
+
- type: ndcg_at_100
|
| 297 |
+
value: 78.389
|
| 298 |
+
- type: ndcg_at_1000
|
| 299 |
+
value: 78.678
|
| 300 |
+
- type: ndcg_at_3
|
| 301 |
+
value: 72.47
|
| 302 |
+
- type: ndcg_at_5
|
| 303 |
+
value: 74.748
|
| 304 |
+
- type: precision_at_1
|
| 305 |
+
value: 63.541000000000004
|
| 306 |
+
- type: precision_at_10
|
| 307 |
+
value: 9.115
|
| 308 |
+
- type: precision_at_100
|
| 309 |
+
value: 0.9860000000000001
|
| 310 |
+
- type: precision_at_1000
|
| 311 |
+
value: 0.101
|
| 312 |
+
- type: precision_at_3
|
| 313 |
+
value: 26.379
|
| 314 |
+
- type: precision_at_5
|
| 315 |
+
value: 16.965
|
| 316 |
+
- type: recall_at_1
|
| 317 |
+
value: 63.251000000000005
|
| 318 |
+
- type: recall_at_10
|
| 319 |
+
value: 90.253
|
| 320 |
+
- type: recall_at_100
|
| 321 |
+
value: 97.576
|
| 322 |
+
- type: recall_at_1000
|
| 323 |
+
value: 99.789
|
| 324 |
+
- type: recall_at_3
|
| 325 |
+
value: 78.635
|
| 326 |
+
- type: recall_at_5
|
| 327 |
+
value: 84.141
|
| 328 |
+
- task:
|
| 329 |
+
type: Retrieval
|
| 330 |
+
dataset:
|
| 331 |
+
type: C-MTEB/DuRetrieval
|
| 332 |
+
name: MTEB DuRetrieval
|
| 333 |
+
config: default
|
| 334 |
+
split: dev
|
| 335 |
+
revision: None
|
| 336 |
+
metrics:
|
| 337 |
+
- type: map_at_1
|
| 338 |
+
value: 23.597
|
| 339 |
+
- type: map_at_10
|
| 340 |
+
value: 72.411
|
| 341 |
+
- type: map_at_100
|
| 342 |
+
value: 75.58500000000001
|
| 343 |
+
- type: map_at_1000
|
| 344 |
+
value: 75.64800000000001
|
| 345 |
+
- type: map_at_3
|
| 346 |
+
value: 49.61
|
| 347 |
+
- type: map_at_5
|
| 348 |
+
value: 62.527
|
| 349 |
+
- type: mrr_at_1
|
| 350 |
+
value: 84.65
|
| 351 |
+
- type: mrr_at_10
|
| 352 |
+
value: 89.43900000000001
|
| 353 |
+
- type: mrr_at_100
|
| 354 |
+
value: 89.525
|
| 355 |
+
- type: mrr_at_1000
|
| 356 |
+
value: 89.529
|
| 357 |
+
- type: mrr_at_3
|
| 358 |
+
value: 89
|
| 359 |
+
- type: mrr_at_5
|
| 360 |
+
value: 89.297
|
| 361 |
+
- type: ndcg_at_1
|
| 362 |
+
value: 84.65
|
| 363 |
+
- type: ndcg_at_10
|
| 364 |
+
value: 81.47
|
| 365 |
+
- type: ndcg_at_100
|
| 366 |
+
value: 85.198
|
| 367 |
+
- type: ndcg_at_1000
|
| 368 |
+
value: 85.828
|
| 369 |
+
- type: ndcg_at_3
|
| 370 |
+
value: 79.809
|
| 371 |
+
- type: ndcg_at_5
|
| 372 |
+
value: 78.55
|
| 373 |
+
- type: precision_at_1
|
| 374 |
+
value: 84.65
|
| 375 |
+
- type: precision_at_10
|
| 376 |
+
value: 39.595
|
| 377 |
+
- type: precision_at_100
|
| 378 |
+
value: 4.707
|
| 379 |
+
- type: precision_at_1000
|
| 380 |
+
value: 0.485
|
| 381 |
+
- type: precision_at_3
|
| 382 |
+
value: 71.61699999999999
|
| 383 |
+
- type: precision_at_5
|
| 384 |
+
value: 60.45
|
| 385 |
+
- type: recall_at_1
|
| 386 |
+
value: 23.597
|
| 387 |
+
- type: recall_at_10
|
| 388 |
+
value: 83.34
|
| 389 |
+
- type: recall_at_100
|
| 390 |
+
value: 95.19800000000001
|
| 391 |
+
- type: recall_at_1000
|
| 392 |
+
value: 98.509
|
| 393 |
+
- type: recall_at_3
|
| 394 |
+
value: 52.744
|
| 395 |
+
- type: recall_at_5
|
| 396 |
+
value: 68.411
|
| 397 |
+
- task:
|
| 398 |
+
type: Retrieval
|
| 399 |
+
dataset:
|
| 400 |
+
type: C-MTEB/EcomRetrieval
|
| 401 |
+
name: MTEB EcomRetrieval
|
| 402 |
+
config: default
|
| 403 |
+
split: dev
|
| 404 |
+
revision: None
|
| 405 |
+
metrics:
|
| 406 |
+
- type: map_at_1
|
| 407 |
+
value: 53.1
|
| 408 |
+
- type: map_at_10
|
| 409 |
+
value: 63.359
|
| 410 |
+
- type: map_at_100
|
| 411 |
+
value: 63.9
|
| 412 |
+
- type: map_at_1000
|
| 413 |
+
value: 63.909000000000006
|
| 414 |
+
- type: map_at_3
|
| 415 |
+
value: 60.95
|
| 416 |
+
- type: map_at_5
|
| 417 |
+
value: 62.305
|
| 418 |
+
- type: mrr_at_1
|
| 419 |
+
value: 53.1
|
| 420 |
+
- type: mrr_at_10
|
| 421 |
+
value: 63.359
|
| 422 |
+
- type: mrr_at_100
|
| 423 |
+
value: 63.9
|
| 424 |
+
- type: mrr_at_1000
|
| 425 |
+
value: 63.909000000000006
|
| 426 |
+
- type: mrr_at_3
|
| 427 |
+
value: 60.95
|
| 428 |
+
- type: mrr_at_5
|
| 429 |
+
value: 62.305
|
| 430 |
+
- type: ndcg_at_1
|
| 431 |
+
value: 53.1
|
| 432 |
+
- type: ndcg_at_10
|
| 433 |
+
value: 68.418
|
| 434 |
+
- type: ndcg_at_100
|
| 435 |
+
value: 70.88499999999999
|
| 436 |
+
- type: ndcg_at_1000
|
| 437 |
+
value: 71.135
|
| 438 |
+
- type: ndcg_at_3
|
| 439 |
+
value: 63.50599999999999
|
| 440 |
+
- type: ndcg_at_5
|
| 441 |
+
value: 65.92
|
| 442 |
+
- type: precision_at_1
|
| 443 |
+
value: 53.1
|
| 444 |
+
- type: precision_at_10
|
| 445 |
+
value: 8.43
|
| 446 |
+
- type: precision_at_100
|
| 447 |
+
value: 0.955
|
| 448 |
+
- type: precision_at_1000
|
| 449 |
+
value: 0.098
|
| 450 |
+
- type: precision_at_3
|
| 451 |
+
value: 23.633000000000003
|
| 452 |
+
- type: precision_at_5
|
| 453 |
+
value: 15.340000000000002
|
| 454 |
+
- type: recall_at_1
|
| 455 |
+
value: 53.1
|
| 456 |
+
- type: recall_at_10
|
| 457 |
+
value: 84.3
|
| 458 |
+
- type: recall_at_100
|
| 459 |
+
value: 95.5
|
| 460 |
+
- type: recall_at_1000
|
| 461 |
+
value: 97.5
|
| 462 |
+
- type: recall_at_3
|
| 463 |
+
value: 70.89999999999999
|
| 464 |
+
- type: recall_at_5
|
| 465 |
+
value: 76.7
|
| 466 |
+
- task:
|
| 467 |
+
type: Classification
|
| 468 |
+
dataset:
|
| 469 |
+
type: C-MTEB/IFlyTek-classification
|
| 470 |
+
name: MTEB IFlyTek
|
| 471 |
+
config: default
|
| 472 |
+
split: validation
|
| 473 |
+
revision: None
|
| 474 |
+
metrics:
|
| 475 |
+
- type: accuracy
|
| 476 |
+
value: 48.303193535975375
|
| 477 |
+
- type: f1
|
| 478 |
+
value: 35.96559358693866
|
| 479 |
+
- task:
|
| 480 |
+
type: Classification
|
| 481 |
+
dataset:
|
| 482 |
+
type: C-MTEB/JDReview-classification
|
| 483 |
+
name: MTEB JDReview
|
| 484 |
+
config: default
|
| 485 |
+
split: test
|
| 486 |
+
revision: None
|
| 487 |
+
metrics:
|
| 488 |
+
- type: accuracy
|
| 489 |
+
value: 85.06566604127579
|
| 490 |
+
- type: ap
|
| 491 |
+
value: 52.0596483757231
|
| 492 |
+
- type: f1
|
| 493 |
+
value: 79.5196835127668
|
| 494 |
+
- task:
|
| 495 |
+
type: STS
|
| 496 |
+
dataset:
|
| 497 |
+
type: C-MTEB/LCQMC
|
| 498 |
+
name: MTEB LCQMC
|
| 499 |
+
config: default
|
| 500 |
+
split: test
|
| 501 |
+
revision: None
|
| 502 |
+
metrics:
|
| 503 |
+
- type: cos_sim_pearson
|
| 504 |
+
value: 74.48499423626059
|
| 505 |
+
- type: cos_sim_spearman
|
| 506 |
+
value: 78.75806756061169
|
| 507 |
+
- type: euclidean_pearson
|
| 508 |
+
value: 78.47917601852879
|
| 509 |
+
- type: euclidean_spearman
|
| 510 |
+
value: 78.75807199272622
|
| 511 |
+
- type: manhattan_pearson
|
| 512 |
+
value: 78.40207586289772
|
| 513 |
+
- type: manhattan_spearman
|
| 514 |
+
value: 78.6911776964119
|
| 515 |
+
- task:
|
| 516 |
+
type: Reranking
|
| 517 |
+
dataset:
|
| 518 |
+
type: C-MTEB/Mmarco-reranking
|
| 519 |
+
name: MTEB MMarcoReranking
|
| 520 |
+
config: default
|
| 521 |
+
split: dev
|
| 522 |
+
revision: None
|
| 523 |
+
metrics:
|
| 524 |
+
- type: map
|
| 525 |
+
value: 24.75987466552363
|
| 526 |
+
- type: mrr
|
| 527 |
+
value: 23.40515873015873
|
| 528 |
+
- task:
|
| 529 |
+
type: Retrieval
|
| 530 |
+
dataset:
|
| 531 |
+
type: C-MTEB/MMarcoRetrieval
|
| 532 |
+
name: MTEB MMarcoRetrieval
|
| 533 |
+
config: default
|
| 534 |
+
split: dev
|
| 535 |
+
revision: None
|
| 536 |
+
metrics:
|
| 537 |
+
- type: map_at_1
|
| 538 |
+
value: 58.026999999999994
|
| 539 |
+
- type: map_at_10
|
| 540 |
+
value: 67.50699999999999
|
| 541 |
+
- type: map_at_100
|
| 542 |
+
value: 67.946
|
| 543 |
+
- type: map_at_1000
|
| 544 |
+
value: 67.96600000000001
|
| 545 |
+
- type: map_at_3
|
| 546 |
+
value: 65.503
|
| 547 |
+
- type: map_at_5
|
| 548 |
+
value: 66.649
|
| 549 |
+
- type: mrr_at_1
|
| 550 |
+
value: 60.20100000000001
|
| 551 |
+
- type: mrr_at_10
|
| 552 |
+
value: 68.271
|
| 553 |
+
- type: mrr_at_100
|
| 554 |
+
value: 68.664
|
| 555 |
+
- type: mrr_at_1000
|
| 556 |
+
value: 68.682
|
| 557 |
+
- type: mrr_at_3
|
| 558 |
+
value: 66.47800000000001
|
| 559 |
+
- type: mrr_at_5
|
| 560 |
+
value: 67.499
|
| 561 |
+
- type: ndcg_at_1
|
| 562 |
+
value: 60.20100000000001
|
| 563 |
+
- type: ndcg_at_10
|
| 564 |
+
value: 71.697
|
| 565 |
+
- type: ndcg_at_100
|
| 566 |
+
value: 73.736
|
| 567 |
+
- type: ndcg_at_1000
|
| 568 |
+
value: 74.259
|
| 569 |
+
- type: ndcg_at_3
|
| 570 |
+
value: 67.768
|
| 571 |
+
- type: ndcg_at_5
|
| 572 |
+
value: 69.72
|
| 573 |
+
- type: precision_at_1
|
| 574 |
+
value: 60.20100000000001
|
| 575 |
+
- type: precision_at_10
|
| 576 |
+
value: 8.927999999999999
|
| 577 |
+
- type: precision_at_100
|
| 578 |
+
value: 0.9950000000000001
|
| 579 |
+
- type: precision_at_1000
|
| 580 |
+
value: 0.104
|
| 581 |
+
- type: precision_at_3
|
| 582 |
+
value: 25.883
|
| 583 |
+
- type: precision_at_5
|
| 584 |
+
value: 16.55
|
| 585 |
+
- type: recall_at_1
|
| 586 |
+
value: 58.026999999999994
|
| 587 |
+
- type: recall_at_10
|
| 588 |
+
value: 83.966
|
| 589 |
+
- type: recall_at_100
|
| 590 |
+
value: 93.313
|
| 591 |
+
- type: recall_at_1000
|
| 592 |
+
value: 97.426
|
| 593 |
+
- type: recall_at_3
|
| 594 |
+
value: 73.342
|
| 595 |
+
- type: recall_at_5
|
| 596 |
+
value: 77.997
|
| 597 |
+
- task:
|
| 598 |
+
type: Classification
|
| 599 |
+
dataset:
|
| 600 |
+
type: mteb/amazon_massive_intent
|
| 601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
| 602 |
+
config: zh-CN
|
| 603 |
+
split: test
|
| 604 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 605 |
+
metrics:
|
| 606 |
+
- type: accuracy
|
| 607 |
+
value: 71.1600537995965
|
| 608 |
+
- type: f1
|
| 609 |
+
value: 68.8126216609964
|
| 610 |
+
- task:
|
| 611 |
+
type: Classification
|
| 612 |
+
dataset:
|
| 613 |
+
type: mteb/amazon_massive_scenario
|
| 614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
| 615 |
+
config: zh-CN
|
| 616 |
+
split: test
|
| 617 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 618 |
+
metrics:
|
| 619 |
+
- type: accuracy
|
| 620 |
+
value: 73.54068594485541
|
| 621 |
+
- type: f1
|
| 622 |
+
value: 73.46845879869848
|
| 623 |
+
- task:
|
| 624 |
+
type: Retrieval
|
| 625 |
+
dataset:
|
| 626 |
+
type: C-MTEB/MedicalRetrieval
|
| 627 |
+
name: MTEB MedicalRetrieval
|
| 628 |
+
config: default
|
| 629 |
+
split: dev
|
| 630 |
+
revision: None
|
| 631 |
+
metrics:
|
| 632 |
+
- type: map_at_1
|
| 633 |
+
value: 54.900000000000006
|
| 634 |
+
- type: map_at_10
|
| 635 |
+
value: 61.363
|
| 636 |
+
- type: map_at_100
|
| 637 |
+
value: 61.924
|
| 638 |
+
- type: map_at_1000
|
| 639 |
+
value: 61.967000000000006
|
| 640 |
+
- type: map_at_3
|
| 641 |
+
value: 59.767
|
| 642 |
+
- type: map_at_5
|
| 643 |
+
value: 60.802
|
| 644 |
+
- type: mrr_at_1
|
| 645 |
+
value: 55.1
|
| 646 |
+
- type: mrr_at_10
|
| 647 |
+
value: 61.454
|
| 648 |
+
- type: mrr_at_100
|
| 649 |
+
value: 62.016000000000005
|
| 650 |
+
- type: mrr_at_1000
|
| 651 |
+
value: 62.059
|
| 652 |
+
- type: mrr_at_3
|
| 653 |
+
value: 59.882999999999996
|
| 654 |
+
- type: mrr_at_5
|
| 655 |
+
value: 60.893
|
| 656 |
+
- type: ndcg_at_1
|
| 657 |
+
value: 54.900000000000006
|
| 658 |
+
- type: ndcg_at_10
|
| 659 |
+
value: 64.423
|
| 660 |
+
- type: ndcg_at_100
|
| 661 |
+
value: 67.35900000000001
|
| 662 |
+
- type: ndcg_at_1000
|
| 663 |
+
value: 68.512
|
| 664 |
+
- type: ndcg_at_3
|
| 665 |
+
value: 61.224000000000004
|
| 666 |
+
- type: ndcg_at_5
|
| 667 |
+
value: 63.083
|
| 668 |
+
- type: precision_at_1
|
| 669 |
+
value: 54.900000000000006
|
| 670 |
+
- type: precision_at_10
|
| 671 |
+
value: 7.3999999999999995
|
| 672 |
+
- type: precision_at_100
|
| 673 |
+
value: 0.882
|
| 674 |
+
- type: precision_at_1000
|
| 675 |
+
value: 0.097
|
| 676 |
+
- type: precision_at_3
|
| 677 |
+
value: 21.8
|
| 678 |
+
- type: precision_at_5
|
| 679 |
+
value: 13.98
|
| 680 |
+
- type: recall_at_1
|
| 681 |
+
value: 54.900000000000006
|
| 682 |
+
- type: recall_at_10
|
| 683 |
+
value: 74
|
| 684 |
+
- type: recall_at_100
|
| 685 |
+
value: 88.2
|
| 686 |
+
- type: recall_at_1000
|
| 687 |
+
value: 97.3
|
| 688 |
+
- type: recall_at_3
|
| 689 |
+
value: 65.4
|
| 690 |
+
- type: recall_at_5
|
| 691 |
+
value: 69.89999999999999
|
| 692 |
+
- task:
|
| 693 |
+
type: Classification
|
| 694 |
+
dataset:
|
| 695 |
+
type: C-MTEB/MultilingualSentiment-classification
|
| 696 |
+
name: MTEB MultilingualSentiment
|
| 697 |
+
config: default
|
| 698 |
+
split: validation
|
| 699 |
+
revision: None
|
| 700 |
+
metrics:
|
| 701 |
+
- type: accuracy
|
| 702 |
+
value: 75.15666666666667
|
| 703 |
+
- type: f1
|
| 704 |
+
value: 74.8306375354435
|
| 705 |
+
- task:
|
| 706 |
+
type: PairClassification
|
| 707 |
+
dataset:
|
| 708 |
+
type: C-MTEB/OCNLI
|
| 709 |
+
name: MTEB Ocnli
|
| 710 |
+
config: default
|
| 711 |
+
split: validation
|
| 712 |
+
revision: None
|
| 713 |
+
metrics:
|
| 714 |
+
- type: cos_sim_accuracy
|
| 715 |
+
value: 83.10774228478614
|
| 716 |
+
- type: cos_sim_ap
|
| 717 |
+
value: 87.17679348388666
|
| 718 |
+
- type: cos_sim_f1
|
| 719 |
+
value: 84.59302325581395
|
| 720 |
+
- type: cos_sim_precision
|
| 721 |
+
value: 78.15577439570276
|
| 722 |
+
- type: cos_sim_recall
|
| 723 |
+
value: 92.18585005279832
|
| 724 |
+
- type: dot_accuracy
|
| 725 |
+
value: 83.10774228478614
|
| 726 |
+
- type: dot_ap
|
| 727 |
+
value: 87.17679348388666
|
| 728 |
+
- type: dot_f1
|
| 729 |
+
value: 84.59302325581395
|
| 730 |
+
- type: dot_precision
|
| 731 |
+
value: 78.15577439570276
|
| 732 |
+
- type: dot_recall
|
| 733 |
+
value: 92.18585005279832
|
| 734 |
+
- type: euclidean_accuracy
|
| 735 |
+
value: 83.10774228478614
|
| 736 |
+
- type: euclidean_ap
|
| 737 |
+
value: 87.17679348388666
|
| 738 |
+
- type: euclidean_f1
|
| 739 |
+
value: 84.59302325581395
|
| 740 |
+
- type: euclidean_precision
|
| 741 |
+
value: 78.15577439570276
|
| 742 |
+
- type: euclidean_recall
|
| 743 |
+
value: 92.18585005279832
|
| 744 |
+
- type: manhattan_accuracy
|
| 745 |
+
value: 82.67460747157553
|
| 746 |
+
- type: manhattan_ap
|
| 747 |
+
value: 86.94296334435238
|
| 748 |
+
- type: manhattan_f1
|
| 749 |
+
value: 84.32327166504382
|
| 750 |
+
- type: manhattan_precision
|
| 751 |
+
value: 78.22944896115628
|
| 752 |
+
- type: manhattan_recall
|
| 753 |
+
value: 91.4466737064414
|
| 754 |
+
- type: max_accuracy
|
| 755 |
+
value: 83.10774228478614
|
| 756 |
+
- type: max_ap
|
| 757 |
+
value: 87.17679348388666
|
| 758 |
+
- type: max_f1
|
| 759 |
+
value: 84.59302325581395
|
| 760 |
+
- task:
|
| 761 |
+
type: Classification
|
| 762 |
+
dataset:
|
| 763 |
+
type: C-MTEB/OnlineShopping-classification
|
| 764 |
+
name: MTEB OnlineShopping
|
| 765 |
+
config: default
|
| 766 |
+
split: test
|
| 767 |
+
revision: None
|
| 768 |
+
metrics:
|
| 769 |
+
- type: accuracy
|
| 770 |
+
value: 93.24999999999999
|
| 771 |
+
- type: ap
|
| 772 |
+
value: 90.98617641063584
|
| 773 |
+
- type: f1
|
| 774 |
+
value: 93.23447883650289
|
| 775 |
+
- task:
|
| 776 |
+
type: STS
|
| 777 |
+
dataset:
|
| 778 |
+
type: C-MTEB/PAWSX
|
| 779 |
+
name: MTEB PAWSX
|
| 780 |
+
config: default
|
| 781 |
+
split: test
|
| 782 |
+
revision: None
|
| 783 |
+
metrics:
|
| 784 |
+
- type: cos_sim_pearson
|
| 785 |
+
value: 41.071417937737856
|
| 786 |
+
- type: cos_sim_spearman
|
| 787 |
+
value: 45.049199344455424
|
| 788 |
+
- type: euclidean_pearson
|
| 789 |
+
value: 44.913450096830786
|
| 790 |
+
- type: euclidean_spearman
|
| 791 |
+
value: 45.05733424275291
|
| 792 |
+
- type: manhattan_pearson
|
| 793 |
+
value: 44.881623825912065
|
| 794 |
+
- type: manhattan_spearman
|
| 795 |
+
value: 44.989923561416596
|
| 796 |
+
- task:
|
| 797 |
+
type: STS
|
| 798 |
+
dataset:
|
| 799 |
+
type: C-MTEB/QBQTC
|
| 800 |
+
name: MTEB QBQTC
|
| 801 |
+
config: default
|
| 802 |
+
split: test
|
| 803 |
+
revision: None
|
| 804 |
+
metrics:
|
| 805 |
+
- type: cos_sim_pearson
|
| 806 |
+
value: 41.38238052689359
|
| 807 |
+
- type: cos_sim_spearman
|
| 808 |
+
value: 42.61949690594399
|
| 809 |
+
- type: euclidean_pearson
|
| 810 |
+
value: 40.61261500356766
|
| 811 |
+
- type: euclidean_spearman
|
| 812 |
+
value: 42.619626605620724
|
| 813 |
+
- type: manhattan_pearson
|
| 814 |
+
value: 40.8886109204474
|
| 815 |
+
- type: manhattan_spearman
|
| 816 |
+
value: 42.75791523010463
|
| 817 |
+
- task:
|
| 818 |
+
type: STS
|
| 819 |
+
dataset:
|
| 820 |
+
type: mteb/sts22-crosslingual-sts
|
| 821 |
+
name: MTEB STS22 (zh)
|
| 822 |
+
config: zh
|
| 823 |
+
split: test
|
| 824 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 825 |
+
metrics:
|
| 826 |
+
- type: cos_sim_pearson
|
| 827 |
+
value: 62.10977863727196
|
| 828 |
+
- type: cos_sim_spearman
|
| 829 |
+
value: 63.843727112473225
|
| 830 |
+
- type: euclidean_pearson
|
| 831 |
+
value: 63.25133487817196
|
| 832 |
+
- type: euclidean_spearman
|
| 833 |
+
value: 63.843727112473225
|
| 834 |
+
- type: manhattan_pearson
|
| 835 |
+
value: 63.58749018644103
|
| 836 |
+
- type: manhattan_spearman
|
| 837 |
+
value: 63.83820575456674
|
| 838 |
+
- task:
|
| 839 |
+
type: STS
|
| 840 |
+
dataset:
|
| 841 |
+
type: C-MTEB/STSB
|
| 842 |
+
name: MTEB STSB
|
| 843 |
+
config: default
|
| 844 |
+
split: test
|
| 845 |
+
revision: None
|
| 846 |
+
metrics:
|
| 847 |
+
- type: cos_sim_pearson
|
| 848 |
+
value: 79.30616496720054
|
| 849 |
+
- type: cos_sim_spearman
|
| 850 |
+
value: 80.767935782436
|
| 851 |
+
- type: euclidean_pearson
|
| 852 |
+
value: 80.4160642670106
|
| 853 |
+
- type: euclidean_spearman
|
| 854 |
+
value: 80.76820284024356
|
| 855 |
+
- type: manhattan_pearson
|
| 856 |
+
value: 80.27318714580251
|
| 857 |
+
- type: manhattan_spearman
|
| 858 |
+
value: 80.61030164164964
|
| 859 |
+
- task:
|
| 860 |
+
type: Reranking
|
| 861 |
+
dataset:
|
| 862 |
+
type: C-MTEB/T2Reranking
|
| 863 |
+
name: MTEB T2Reranking
|
| 864 |
+
config: default
|
| 865 |
+
split: dev
|
| 866 |
+
revision: None
|
| 867 |
+
metrics:
|
| 868 |
+
- type: map
|
| 869 |
+
value: 66.26242871142425
|
| 870 |
+
- type: mrr
|
| 871 |
+
value: 76.20689863623174
|
| 872 |
+
- task:
|
| 873 |
+
type: Retrieval
|
| 874 |
+
dataset:
|
| 875 |
+
type: C-MTEB/T2Retrieval
|
| 876 |
+
name: MTEB T2Retrieval
|
| 877 |
+
config: default
|
| 878 |
+
split: dev
|
| 879 |
+
revision: None
|
| 880 |
+
metrics:
|
| 881 |
+
- type: map_at_1
|
| 882 |
+
value: 26.240999999999996
|
| 883 |
+
- type: map_at_10
|
| 884 |
+
value: 73.009
|
| 885 |
+
- type: map_at_100
|
| 886 |
+
value: 76.893
|
| 887 |
+
- type: map_at_1000
|
| 888 |
+
value: 76.973
|
| 889 |
+
- type: map_at_3
|
| 890 |
+
value: 51.339
|
| 891 |
+
- type: map_at_5
|
| 892 |
+
value: 63.003
|
| 893 |
+
- type: mrr_at_1
|
| 894 |
+
value: 87.458
|
| 895 |
+
- type: mrr_at_10
|
| 896 |
+
value: 90.44
|
| 897 |
+
- type: mrr_at_100
|
| 898 |
+
value: 90.558
|
| 899 |
+
- type: mrr_at_1000
|
| 900 |
+
value: 90.562
|
| 901 |
+
- type: mrr_at_3
|
| 902 |
+
value: 89.89
|
| 903 |
+
- type: mrr_at_5
|
| 904 |
+
value: 90.231
|
| 905 |
+
- type: ndcg_at_1
|
| 906 |
+
value: 87.458
|
| 907 |
+
- type: ndcg_at_10
|
| 908 |
+
value: 81.325
|
| 909 |
+
- type: ndcg_at_100
|
| 910 |
+
value: 85.61999999999999
|
| 911 |
+
- type: ndcg_at_1000
|
| 912 |
+
value: 86.394
|
| 913 |
+
- type: ndcg_at_3
|
| 914 |
+
value: 82.796
|
| 915 |
+
- type: ndcg_at_5
|
| 916 |
+
value: 81.219
|
| 917 |
+
- type: precision_at_1
|
| 918 |
+
value: 87.458
|
| 919 |
+
- type: precision_at_10
|
| 920 |
+
value: 40.534
|
| 921 |
+
- type: precision_at_100
|
| 922 |
+
value: 4.96
|
| 923 |
+
- type: precision_at_1000
|
| 924 |
+
value: 0.514
|
| 925 |
+
- type: precision_at_3
|
| 926 |
+
value: 72.444
|
| 927 |
+
- type: precision_at_5
|
| 928 |
+
value: 60.601000000000006
|
| 929 |
+
- type: recall_at_1
|
| 930 |
+
value: 26.240999999999996
|
| 931 |
+
- type: recall_at_10
|
| 932 |
+
value: 80.42
|
| 933 |
+
- type: recall_at_100
|
| 934 |
+
value: 94.118
|
| 935 |
+
- type: recall_at_1000
|
| 936 |
+
value: 98.02199999999999
|
| 937 |
+
- type: recall_at_3
|
| 938 |
+
value: 53.174
|
| 939 |
+
- type: recall_at_5
|
| 940 |
+
value: 66.739
|
| 941 |
+
- task:
|
| 942 |
+
type: Classification
|
| 943 |
+
dataset:
|
| 944 |
+
type: C-MTEB/TNews-classification
|
| 945 |
+
name: MTEB TNews
|
| 946 |
+
config: default
|
| 947 |
+
split: validation
|
| 948 |
+
revision: None
|
| 949 |
+
metrics:
|
| 950 |
+
- type: accuracy
|
| 951 |
+
value: 52.40899999999999
|
| 952 |
+
- type: f1
|
| 953 |
+
value: 50.68532128056062
|
| 954 |
+
- task:
|
| 955 |
+
type: Clustering
|
| 956 |
+
dataset:
|
| 957 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
| 958 |
+
name: MTEB ThuNewsClusteringP2P
|
| 959 |
+
config: default
|
| 960 |
+
split: test
|
| 961 |
+
revision: None
|
| 962 |
+
metrics:
|
| 963 |
+
- type: v_measure
|
| 964 |
+
value: 65.57616085176686
|
| 965 |
+
- task:
|
| 966 |
+
type: Clustering
|
| 967 |
+
dataset:
|
| 968 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
| 969 |
+
name: MTEB ThuNewsClusteringS2S
|
| 970 |
+
config: default
|
| 971 |
+
split: test
|
| 972 |
+
revision: None
|
| 973 |
+
metrics:
|
| 974 |
+
- type: v_measure
|
| 975 |
+
value: 58.844999922904925
|
| 976 |
+
- task:
|
| 977 |
+
type: Retrieval
|
| 978 |
+
dataset:
|
| 979 |
+
type: C-MTEB/VideoRetrieval
|
| 980 |
+
name: MTEB VideoRetrieval
|
| 981 |
+
config: default
|
| 982 |
+
split: dev
|
| 983 |
+
revision: None
|
| 984 |
+
metrics:
|
| 985 |
+
- type: map_at_1
|
| 986 |
+
value: 58.4
|
| 987 |
+
- type: map_at_10
|
| 988 |
+
value: 68.64
|
| 989 |
+
- type: map_at_100
|
| 990 |
+
value: 69.062
|
| 991 |
+
- type: map_at_1000
|
| 992 |
+
value: 69.073
|
| 993 |
+
- type: map_at_3
|
| 994 |
+
value: 66.567
|
| 995 |
+
- type: map_at_5
|
| 996 |
+
value: 67.89699999999999
|
| 997 |
+
- type: mrr_at_1
|
| 998 |
+
value: 58.4
|
| 999 |
+
- type: mrr_at_10
|
| 1000 |
+
value: 68.64
|
| 1001 |
+
- type: mrr_at_100
|
| 1002 |
+
value: 69.062
|
| 1003 |
+
- type: mrr_at_1000
|
| 1004 |
+
value: 69.073
|
| 1005 |
+
- type: mrr_at_3
|
| 1006 |
+
value: 66.567
|
| 1007 |
+
- type: mrr_at_5
|
| 1008 |
+
value: 67.89699999999999
|
| 1009 |
+
- type: ndcg_at_1
|
| 1010 |
+
value: 58.4
|
| 1011 |
+
- type: ndcg_at_10
|
| 1012 |
+
value: 73.30600000000001
|
| 1013 |
+
- type: ndcg_at_100
|
| 1014 |
+
value: 75.276
|
| 1015 |
+
- type: ndcg_at_1000
|
| 1016 |
+
value: 75.553
|
| 1017 |
+
- type: ndcg_at_3
|
| 1018 |
+
value: 69.126
|
| 1019 |
+
- type: ndcg_at_5
|
| 1020 |
+
value: 71.519
|
| 1021 |
+
- type: precision_at_1
|
| 1022 |
+
value: 58.4
|
| 1023 |
+
- type: precision_at_10
|
| 1024 |
+
value: 8.780000000000001
|
| 1025 |
+
- type: precision_at_100
|
| 1026 |
+
value: 0.968
|
| 1027 |
+
- type: precision_at_1000
|
| 1028 |
+
value: 0.099
|
| 1029 |
+
- type: precision_at_3
|
| 1030 |
+
value: 25.5
|
| 1031 |
+
- type: precision_at_5
|
| 1032 |
+
value: 16.46
|
| 1033 |
+
- type: recall_at_1
|
| 1034 |
+
value: 58.4
|
| 1035 |
+
- type: recall_at_10
|
| 1036 |
+
value: 87.8
|
| 1037 |
+
- type: recall_at_100
|
| 1038 |
+
value: 96.8
|
| 1039 |
+
- type: recall_at_1000
|
| 1040 |
+
value: 99
|
| 1041 |
+
- type: recall_at_3
|
| 1042 |
+
value: 76.5
|
| 1043 |
+
- type: recall_at_5
|
| 1044 |
+
value: 82.3
|
| 1045 |
+
- task:
|
| 1046 |
+
type: Classification
|
| 1047 |
+
dataset:
|
| 1048 |
+
type: C-MTEB/waimai-classification
|
| 1049 |
+
name: MTEB Waimai
|
| 1050 |
+
config: default
|
| 1051 |
+
split: test
|
| 1052 |
+
revision: None
|
| 1053 |
+
metrics:
|
| 1054 |
+
- type: accuracy
|
| 1055 |
+
value: 86.21000000000001
|
| 1056 |
+
- type: ap
|
| 1057 |
+
value: 69.17460264576461
|
| 1058 |
+
- type: f1
|
| 1059 |
+
value: 84.68032984659226
|
| 1060 |
+
license: apache-2.0
|
| 1061 |
+
language:
|
| 1062 |
+
- zh
|
| 1063 |
+
- en
|
| 1064 |
+
---
|
| 1065 |
+
|
| 1066 |
+
<div align="center">
|
| 1067 |
+
<img src="logo.png" alt="icon" width="100px"/>
|
| 1068 |
+
</div>
|
| 1069 |
+
|
| 1070 |
+
<h1 align="center">Dmeta-embedding</h1>
|
| 1071 |
+
<h4 align="center">
|
| 1072 |
+
<p>
|
| 1073 |
+
<a href="README.md">English</a> |
|
| 1074 |
+
<a href="README_zh.md">中文</a>
|
| 1075 |
+
</p>
|
| 1076 |
+
<p>
|
| 1077 |
+
<a href=#usage>用法</a> |
|
| 1078 |
+
<a href="#evaluation">评测(可复现)</a> |
|
| 1079 |
+
<a href=#faq>FAQ</a> |
|
| 1080 |
+
<a href="#contact">联系</a> |
|
| 1081 |
+
<a href="#license">版权(免费商用)</a>
|
| 1082 |
+
<p>
|
| 1083 |
+
</h4>
|
| 1084 |
+
|
| 1085 |
+
**重磅更新:**
|
| 1086 |
+
|
| 1087 |
+
- **2024.02.07**, 发布了基于 Dmeta-embedding 模型的 **Embedding API** 产品,现已开启内测,[点击申请](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf)即可免费获得 **4 亿 tokens** 使用额度,可编码大约 GB 级别汉字文本。
|
| 1088 |
+
|
| 1089 |
+
- 我们的初心。既要开源优秀的技术能力,又希望大家能够在实际业务中使用起来,用起来的技术才是好技术、能落地创造价值的技术才是值得长期投入的。帮助大家解决业务落地最后一公里的障碍,让大家把 Embedding 技术低成本的用起来,更多去关注自身的商业和产品服务,把复杂的技术部分交给我们。
|
| 1090 |
+
- 申请和使用。[点击申请](https://dmetasoul.feishu.cn/share/base/form/shrcnu7mN1BDwKFfgGXG9Rb1yDf),填写一个表单即可,48小时之内我们会通过 <[email protected]> 给您答复邮件。Embedding API 为了兼容大模型技术生态,使用方式跟 OpenAI 一致,具体用法我们将在答复邮件中进行说明。
|
| 1091 |
+
- 加入社群。后续我们会不断在大模型/AIGC等方向发力,为社区带来有价值、低门槛的技术,可以[点击图片](https://huggingface.co/DMetaSoul/Dmeta-embedding/resolve/main/weixin.jpeg),扫面二维码来加入我们的微信社群,一起在 AIGC 赛道加油呀!
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
Dmeta-embedding 是一款跨领域、跨任务、开箱即用的中文 Embedding 模型,适用于搜索、问答、智能客服、LLM+RAG 等各种业务场景,支持使用 Transformers/Sentence-Transformers/Langchain 等工具加载推理。
|
| 1095 |
+
|
| 1096 |
+
优势特点如下:
|
| 1097 |
+
|
| 1098 |
+
- 多任务、场景泛化性能优异,目前已取得 **[MTEB](https://huggingface.co/spaces/mteb/leaderboard) 中文榜单第二成绩**(2024.01.25)
|
| 1099 |
+
- 模型参数大小仅 **400MB**,对比参数量超过 GB 级模型,可以极大降低推理成本
|
| 1100 |
+
- 支持上下文窗口长度达到 **1024**,对于长文本检索、RAG 等场景更适配
|
| 1101 |
+
|
| 1102 |
+
## Usage
|
| 1103 |
+
|
| 1104 |
+
目前模型支持通过 [Sentence-Transformers](#sentence-transformers), [Langchain](#langchain), [Huggingface Transformers](#huggingface-transformers) 等主流框架进行推理,具体用法参考各个框架的示例。
|
| 1105 |
+
|
| 1106 |
+
### Sentence-Transformers
|
| 1107 |
+
|
| 1108 |
+
Dmeta-embedding 模型支持通过 [sentence-transformers](https://www.SBERT.net) 来加载推理:
|
| 1109 |
+
|
| 1110 |
+
```
|
| 1111 |
+
pip install -U sentence-transformers
|
| 1112 |
+
```
|
| 1113 |
+
|
| 1114 |
+
```python
|
| 1115 |
+
from sentence_transformers import SentenceTransformer
|
| 1116 |
+
|
| 1117 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
| 1118 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
| 1119 |
+
|
| 1120 |
+
model = SentenceTransformer('DMetaSoul/Dmeta-embedding')
|
| 1121 |
+
embs1 = model.encode(texts1, normalize_embeddings=True)
|
| 1122 |
+
embs2 = model.encode(texts2, normalize_embeddings=True)
|
| 1123 |
+
|
| 1124 |
+
# 计算两两相似度
|
| 1125 |
+
similarity = embs1 @ embs2.T
|
| 1126 |
+
print(similarity)
|
| 1127 |
+
|
| 1128 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
| 1129 |
+
for i in range(len(texts1)):
|
| 1130 |
+
scores = []
|
| 1131 |
+
for j in range(len(texts2)):
|
| 1132 |
+
scores.append([texts2[j], similarity[i][j]])
|
| 1133 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
| 1134 |
+
|
| 1135 |
+
print(f"查询文本:{texts1[i]}")
|
| 1136 |
+
for text2, score in scores:
|
| 1137 |
+
print(f"相似文本:{text2},打分:{score}")
|
| 1138 |
+
print()
|
| 1139 |
+
```
|
| 1140 |
+
|
| 1141 |
+
示例输出如下:
|
| 1142 |
+
|
| 1143 |
+
```
|
| 1144 |
+
查询文本:胡子长得太快怎么办?
|
| 1145 |
+
相似文本:胡子长得快怎么办?,打分:0.9535336494445801
|
| 1146 |
+
相似文本:怎样使胡子不浓密!,打分:0.6776421070098877
|
| 1147 |
+
相似文本:香港买手表哪里好,打分:0.2297907918691635
|
| 1148 |
+
相似文本:在杭州手机到哪里买,打分:0.11386542022228241
|
| 1149 |
+
|
| 1150 |
+
查询文本:在香港哪里买手表好
|
| 1151 |
+
相似文本:香港买手表哪里好,打分:0.9843372106552124
|
| 1152 |
+
相似文本:在杭州手机到哪里买,打分:0.45211508870124817
|
| 1153 |
+
相似文本:胡子长得快怎么办?,打分:0.19985519349575043
|
| 1154 |
+
相似文本:怎样使胡子不浓密!,打分:0.18558596074581146
|
| 1155 |
+
```
|
| 1156 |
+
|
| 1157 |
+
### Langchain
|
| 1158 |
+
|
| 1159 |
+
Dmeta-embedding 模型支持通过 LLM 工具框架 [langchain](https://www.langchain.com/) 来加载推理:
|
| 1160 |
+
|
| 1161 |
+
```
|
| 1162 |
+
pip install -U langchain
|
| 1163 |
+
```
|
| 1164 |
+
|
| 1165 |
+
```python
|
| 1166 |
+
import torch
|
| 1167 |
+
import numpy as np
|
| 1168 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 1169 |
+
|
| 1170 |
+
model_name = "DMetaSoul/Dmeta-embedding"
|
| 1171 |
+
model_kwargs = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
| 1172 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
| 1173 |
+
|
| 1174 |
+
model = HuggingFaceEmbeddings(
|
| 1175 |
+
model_name=model_name,
|
| 1176 |
+
model_kwargs=model_kwargs,
|
| 1177 |
+
encode_kwargs=encode_kwargs,
|
| 1178 |
+
)
|
| 1179 |
+
|
| 1180 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
| 1181 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
| 1182 |
+
|
| 1183 |
+
embs1 = model.embed_documents(texts1)
|
| 1184 |
+
embs2 = model.embed_documents(texts2)
|
| 1185 |
+
embs1, embs2 = np.array(embs1), np.array(embs2)
|
| 1186 |
+
|
| 1187 |
+
# 计算两两相似度
|
| 1188 |
+
similarity = embs1 @ embs2.T
|
| 1189 |
+
print(similarity)
|
| 1190 |
+
|
| 1191 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
| 1192 |
+
for i in range(len(texts1)):
|
| 1193 |
+
scores = []
|
| 1194 |
+
for j in range(len(texts2)):
|
| 1195 |
+
scores.append([texts2[j], similarity[i][j]])
|
| 1196 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
| 1197 |
+
|
| 1198 |
+
print(f"查询文本:{texts1[i]}")
|
| 1199 |
+
for text2, score in scores:
|
| 1200 |
+
print(f"相似文本:{text2},打分:{score}")
|
| 1201 |
+
print()
|
| 1202 |
+
```
|
| 1203 |
+
|
| 1204 |
+
### HuggingFace Transformers
|
| 1205 |
+
|
| 1206 |
+
Dmeta-embedding 模型支持通过 [HuggingFace Transformers](https://huggingface.co/docs/transformers/index) 框架来加载推理:
|
| 1207 |
+
|
| 1208 |
+
```
|
| 1209 |
+
pip install -U transformers
|
| 1210 |
+
```
|
| 1211 |
+
|
| 1212 |
+
```python
|
| 1213 |
+
import torch
|
| 1214 |
+
from transformers import AutoTokenizer, AutoModel
|
| 1215 |
+
|
| 1216 |
+
|
| 1217 |
+
def mean_pooling(model_output, attention_mask):
|
| 1218 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 1219 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 1220 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 1221 |
+
|
| 1222 |
+
def cls_pooling(model_output):
|
| 1223 |
+
return model_output[0][:, 0]
|
| 1224 |
+
|
| 1225 |
+
|
| 1226 |
+
texts1 = ["胡子长得太快怎么办?", "在香港哪里买手表好"]
|
| 1227 |
+
texts2 = ["胡子长得快怎么办?", "怎样使胡子不浓密!", "香港买手表哪里好", "在杭州手机到哪里买"]
|
| 1228 |
+
|
| 1229 |
+
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/Dmeta-embedding')
|
| 1230 |
+
model = AutoModel.from_pretrained('DMetaSoul/Dmeta-embedding')
|
| 1231 |
+
model.eval()
|
| 1232 |
+
|
| 1233 |
+
with torch.no_grad():
|
| 1234 |
+
inputs1 = tokenizer(texts1, padding=True, truncation=True, return_tensors='pt')
|
| 1235 |
+
inputs2 = tokenizer(texts2, padding=True, truncation=True, return_tensors='pt')
|
| 1236 |
+
|
| 1237 |
+
model_output1 = model(**inputs1)
|
| 1238 |
+
model_output2 = model(**inputs2)
|
| 1239 |
+
embs1, embs2 = cls_pooling(model_output1), cls_pooling(model_output2)
|
| 1240 |
+
embs1 = torch.nn.functional.normalize(embs1, p=2, dim=1).numpy()
|
| 1241 |
+
embs2 = torch.nn.functional.normalize(embs2, p=2, dim=1).numpy()
|
| 1242 |
+
|
| 1243 |
+
# 计算两两相似度
|
| 1244 |
+
similarity = embs1 @ embs2.T
|
| 1245 |
+
print(similarity)
|
| 1246 |
+
|
| 1247 |
+
# 获取 texts1[i] 对应的最相似 texts2[j]
|
| 1248 |
+
for i in range(len(texts1)):
|
| 1249 |
+
scores = []
|
| 1250 |
+
for j in range(len(texts2)):
|
| 1251 |
+
scores.append([texts2[j], similarity[i][j]])
|
| 1252 |
+
scores = sorted(scores, key=lambda x:x[1], reverse=True)
|
| 1253 |
+
|
| 1254 |
+
print(f"查询文本:{texts1[i]}")
|
| 1255 |
+
for text2, score in scores:
|
| 1256 |
+
print(f"相似文本:{text2},打分:{score}")
|
| 1257 |
+
print()
|
| 1258 |
+
```
|
| 1259 |
+
|
| 1260 |
+
## Evaluation
|
| 1261 |
+
|
| 1262 |
+
Dmeta-embedding 模型在 [MTEB 中文榜单](https://huggingface.co/spaces/mteb/leaderboard)取得开源第一的成绩(2024.01.25,Baichuan 榜单第一、未开源),具体关于评测数据和代码可参考 MTEB 官方[仓库](https://github.com/embeddings-benchmark/mteb)。
|
| 1263 |
+
|
| 1264 |
+
**MTEB Chinese**:
|
| 1265 |
+
|
| 1266 |
+
该[榜单数据集](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB)由智源研究院团队(BAAI)收集整理,包含 6 个经典任务共计 35 个中文数据集,涵盖了分类、检索、排序、句对、STS 等任务,是目前 Embedding 模型全方位能力评测的全球权威榜单。
|
| 1267 |
+
|
| 1268 |
+
| Model | Vendor | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
| 1269 |
+
|:-------------------------------------------------------------------------------------------------------- | ------ |:-------------------:|:-----:|:---------:|:-----:|:------------------:|:--------------:|:---------:|:----------:|
|
| 1270 |
+
| [Dmeta-embedding](https://huggingface.co/DMetaSoul/Dmeta-embedding) | 数元灵 | 1024 | 67.51 | 70.41 | 64.09 | 88.92 | 70 | 67.17 | 50.96 |
|
| 1271 |
+
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | 阿里达摩院 | 1024 | 66.72 | 72.49 | 57.82 | 84.41 | 71.34 | 67.4 | 53.07 |
|
| 1272 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 智源 | 1024 | 64.53 | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
| 1273 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 智源 | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
| 1274 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | OpenAI | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
| 1275 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 个人 | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
| 1276 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 个人 | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
| 1277 |
+
|
| 1278 |
+
## FAQ
|
| 1279 |
+
|
| 1280 |
+
<details>
|
| 1281 |
+
<summary>1. 为何模型多任务、场景泛化能力优异,可开箱即用适配诸多应用场景?</summary>
|
| 1282 |
+
|
| 1283 |
+
<!-- ### 为何模型多任务、场景泛化能力优异,可开箱即用适配诸多应用场景? -->
|
| 1284 |
+
|
| 1285 |
+
简单来说,模型优异的泛化能力来自于预训练数据的广泛和多样,以及模型优化时面向多任务场景设计了不同优化目标。
|
| 1286 |
+
|
| 1287 |
+
具体来说,技术要点有:
|
| 1288 |
+
|
| 1289 |
+
1)首先是大规模弱标签对比学习。业界经验表明开箱即用的语言模型在 Embedding 相关任务上表现不佳,但由于监督数据标注、获取成本较高,因此大规模、高质量的弱标签学习成为一条可选技术路线。通过在互联网上论坛、新闻、问答社区、百科等半结构化数据中提取弱标签,并利用大模型进行低质过滤,得到 10 亿级别弱监督文本对数据。
|
| 1290 |
+
|
| 1291 |
+
2)其次是高质量监督学习。我们收集整理了大规模开源标注的语句对数据集,包含百科、教育、金融、医疗、法律、新闻、学术等多个领域共计 3000 万句对样本。同时挖掘难负样本对,借助对比学习更好的进行模型优化。
|
| 1292 |
+
|
| 1293 |
+
3)最后是检索任务针对性优化。考虑到搜索、问答以及 RAG 等场景是 Embedding 模型落地的重要应用阵地,为了增强模型跨领域、跨场景的效果性能,我们专门针对检索任务进行了模型优化,核心在于从问答、检索等数据中挖掘难负样本,借助稀疏和稠密检索等多种手段,构造百万级难负样本对数据集,显著提升了模型跨领域的检索性能。
|
| 1294 |
+
|
| 1295 |
+
</details>
|
| 1296 |
+
|
| 1297 |
+
<details>
|
| 1298 |
+
<summary>2. 模型可以商用吗?</summary>
|
| 1299 |
+
|
| 1300 |
+
<!-- ### 模型可以商用吗 -->
|
| 1301 |
+
|
| 1302 |
+
我们的开源模型基于 Apache-2.0 协议,完全支持免费商用。
|
| 1303 |
+
|
| 1304 |
+
</details>
|
| 1305 |
+
|
| 1306 |
+
<details>
|
| 1307 |
+
<summary>3. 如何复现 MTEB 评测结果?</summary>
|
| 1308 |
+
|
| 1309 |
+
<!-- ### 如何复现 MTEB 评测结果? -->
|
| 1310 |
+
|
| 1311 |
+
我们在模型仓库中提供了脚本 mteb_eval.py,您可以直接运行此脚本来复现我们的评测结果。
|
| 1312 |
+
|
| 1313 |
+
</details>
|
| 1314 |
+
|
| 1315 |
+
<details>
|
| 1316 |
+
<summary>4. 后续规划有哪些?</summary>
|
| 1317 |
+
|
| 1318 |
+
<!-- ### 后续规划有哪些? -->
|
| 1319 |
+
|
| 1320 |
+
我们将不断致力于为社区提供效果优异、推理轻量、多场景开箱即用的 Embedding 模型,同时我们也会将 Embedding 逐步整合到目前已经的技术生态中,跟随社区一起成长!
|
| 1321 |
+
|
| 1322 |
+
</details>
|
| 1323 |
+
|
| 1324 |
+
## Contact
|
| 1325 |
+
|
| 1326 |
+
您如果在使用过程中,遇到任何问题,欢迎前往[讨论区](https://huggingface.co/DMetaSoul/Dmeta-embedding/discussions)建言献策。
|
| 1327 |
+
|
| 1328 |
+
您也可以联系我们:赵中昊 <[email protected]>, 肖文斌 <[email protected]>, 孙凯 <[email protected]>
|
| 1329 |
+
|
| 1330 |
+
## License
|
| 1331 |
+
|
| 1332 |
+
Dmeta-embedding 模型采用 Apache-2.0 License,开源模型可以进行免费商用私有部署。
|