Add files using upload-large-folder tool
Browse files- README.md +147 -0
- config.json +28 -0
- diffusion_pytorch_model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen-Image-Edit
|
4 |
+
base_model_relation: quantized
|
5 |
+
tags:
|
6 |
+
- dfloat11
|
7 |
+
- df11
|
8 |
+
- lossless compression
|
9 |
+
- 70% size, 100% accuracy
|
10 |
+
pipeline_tag: image-to-image
|
11 |
+
---
|
12 |
+
|
13 |
+
# DFloat11 Compressed Model: `Qwen/Qwen-Image-Edit`
|
14 |
+
|
15 |
+
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image-Edit` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.
|
16 |
+
|
17 |
+
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image-Edit can now run on **a single 32GB GPU**, or on **a single 24GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥
|
18 |
+
|
19 |
+
### 📊 Performance Comparison
|
20 |
+
|
21 |
+
| Model | Model Size | Peak GPU Memory | Generation Time (A100 GPU) |
|
22 |
+
|------------------------------------------------|------------|----------------------------------------------|----------------------------|
|
23 |
+
| Qwen-Image-Edit (BFloat16) | ~41 GB | OOM | - |
|
24 |
+
| Qwen-Image-Edit (DFloat11) | 28.43 GB | 30.11 GB | 280 seconds |
|
25 |
+
| Qwen-Image-Edit (DFloat11 + CPU Offloading) | 28.43 GB | 22.71 GB | 570 seconds |
|
26 |
+
|
27 |
+
### 🔧 How to Use
|
28 |
+
|
29 |
+
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
pip install -U dfloat11[cuda12]
|
33 |
+
```
|
34 |
+
|
35 |
+
2. Install or upgrade diffusers:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
pip install git+https://github.com/huggingface/diffusers
|
39 |
+
```
|
40 |
+
|
41 |
+
3. Save the following code to a Python file `qwen_image_edit.py`:
|
42 |
+
|
43 |
+
```python
|
44 |
+
import argparse
|
45 |
+
import torch
|
46 |
+
from diffusers.utils import load_image
|
47 |
+
from diffusers import QwenImageTransformer2DModel, QwenImageEditPipeline
|
48 |
+
from transformers.modeling_utils import no_init_weights
|
49 |
+
from dfloat11 import DFloat11Model
|
50 |
+
|
51 |
+
def parse_args():
|
52 |
+
parser = argparse.ArgumentParser(description='Edit images using Qwen-Image-Edit model')
|
53 |
+
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
|
54 |
+
parser.add_argument('--cpu_offload_blocks', type=int, default=16, help='Number of transformer blocks to offload to CPU')
|
55 |
+
parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning')
|
56 |
+
parser.add_argument('--image', type=str, default="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png",
|
57 |
+
help='Path to input image or URL')
|
58 |
+
parser.add_argument('--prompt', type=str, default='Add a hat to the cat.',
|
59 |
+
help='Text prompt for image editing')
|
60 |
+
parser.add_argument('--negative_prompt', type=str, default=' ',
|
61 |
+
help='Negative prompt for image editing')
|
62 |
+
parser.add_argument('--num_inference_steps', type=int, default=50,
|
63 |
+
help='Number of denoising steps')
|
64 |
+
parser.add_argument('--true_cfg_scale', type=float, default=4.0,
|
65 |
+
help='Classifier free guidance scale')
|
66 |
+
parser.add_argument('--seed', type=int, default=42,
|
67 |
+
help='Random seed for generation')
|
68 |
+
parser.add_argument('--output', type=str, default='qwen_image_edit.png',
|
69 |
+
help='Output image path')
|
70 |
+
return parser.parse_args()
|
71 |
+
|
72 |
+
args = parse_args()
|
73 |
+
model_id = "Qwen/Qwen-Image-Edit"
|
74 |
+
|
75 |
+
with no_init_weights():
|
76 |
+
transformer = QwenImageTransformer2DModel.from_config(
|
77 |
+
QwenImageTransformer2DModel.load_config(
|
78 |
+
model_id, subfolder="transformer",
|
79 |
+
),
|
80 |
+
).to(torch.bfloat16)
|
81 |
+
|
82 |
+
DFloat11Model.from_pretrained(
|
83 |
+
"DFloat11/Qwen-Image-Edit-DF11",
|
84 |
+
device="cpu",
|
85 |
+
cpu_offload=args.cpu_offload,
|
86 |
+
cpu_offload_blocks=args.cpu_offload_blocks,
|
87 |
+
pin_memory=not args.no_pin_memory,
|
88 |
+
bfloat16_model=transformer,
|
89 |
+
)
|
90 |
+
|
91 |
+
pipeline = QwenImageEditPipeline.from_pretrained(
|
92 |
+
model_id, transformer=transformer, torch_dtype=torch.bfloat16,
|
93 |
+
)
|
94 |
+
pipeline.enable_model_cpu_offload()
|
95 |
+
pipeline.set_progress_bar_config(disable=None)
|
96 |
+
|
97 |
+
image = load_image(args.image)
|
98 |
+
inputs = {
|
99 |
+
"image": image,
|
100 |
+
"prompt": args.prompt,
|
101 |
+
"generator": torch.manual_seed(args.seed),
|
102 |
+
"true_cfg_scale": args.true_cfg_scale,
|
103 |
+
"negative_prompt": args.negative_prompt,
|
104 |
+
"num_inference_steps": args.num_inference_steps,
|
105 |
+
}
|
106 |
+
|
107 |
+
with torch.inference_mode():
|
108 |
+
output = pipeline(**inputs)
|
109 |
+
output_image = output.images[0]
|
110 |
+
output_image.save(args.output)
|
111 |
+
|
112 |
+
max_gpu_memory = torch.cuda.max_memory_allocated()
|
113 |
+
print(f"Max GPU memory allocated: {max_gpu_memory / 1000 ** 3:.2f} GB")
|
114 |
+
```
|
115 |
+
|
116 |
+
4. To run without CPU offloading (32GB VRAM required):
|
117 |
+
```bash
|
118 |
+
python qwen_image_edit.py
|
119 |
+
```
|
120 |
+
|
121 |
+
To run with CPU offloading (24GB VRAM required, 50GB CPU RAM required):
|
122 |
+
```bash
|
123 |
+
python qwen_image_edit.py --cpu_offload
|
124 |
+
```
|
125 |
+
|
126 |
+
If you are getting out of (CPU or GPU) memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:
|
127 |
+
```bash
|
128 |
+
# Offload only 12 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster):
|
129 |
+
python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 12
|
130 |
+
|
131 |
+
# Disable memory-pinning (the most memory efficient way, but could be slower):
|
132 |
+
python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 60 --no_pin_memory
|
133 |
+
```
|
134 |
+
|
135 |
+
### 🔍 How It Works
|
136 |
+
|
137 |
+
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
|
138 |
+
|
139 |
+
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.
|
140 |
+
|
141 |
+
Learn more in our [research paper](https://arxiv.org/abs/2504.11651).
|
142 |
+
|
143 |
+
### 📄 Learn More
|
144 |
+
|
145 |
+
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
|
146 |
+
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
|
147 |
+
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dfloat11_config": {
|
3 |
+
"bytes_per_thread": 8,
|
4 |
+
"pattern_dict": {
|
5 |
+
"transformer_blocks\\.\\d+": [
|
6 |
+
"img_mod.1",
|
7 |
+
"attn.to_q",
|
8 |
+
"attn.to_k",
|
9 |
+
"attn.to_v",
|
10 |
+
"attn.add_k_proj",
|
11 |
+
"attn.add_v_proj",
|
12 |
+
"attn.add_q_proj",
|
13 |
+
"attn.to_out.0",
|
14 |
+
"attn.to_add_out",
|
15 |
+
"img_mlp.net.0.proj",
|
16 |
+
"img_mlp.net.2",
|
17 |
+
"txt_mod.1",
|
18 |
+
"txt_mlp.net.0.proj",
|
19 |
+
"txt_mlp.net.2"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
"threads_per_block": [
|
23 |
+
512
|
24 |
+
],
|
25 |
+
"version": "0.3.2"
|
26 |
+
},
|
27 |
+
"model_type": "qwen2_5_vl"
|
28 |
+
}
|
diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d77ed9467b509c793a70a85be2186daece79b3c5ef86ec66016a880835f420a
|
3 |
+
size 28430817772
|