Commit
·
c8c7628
1
Parent(s):
9fbd0be
Upload model
Browse files- README.md +3 -141
- adapter_config.json +23 -0
- adapter_model.bin +3 -0
README.md
CHANGED
@@ -1,147 +1,9 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
- generated_from_trainer
|
4 |
-
model-index:
|
5 |
-
- name: zephyr-7b-alpha
|
6 |
-
results: []
|
7 |
-
license: mit
|
8 |
-
datasets:
|
9 |
-
- stingning/ultrachat
|
10 |
-
- openbmb/UltraFeedback
|
11 |
-
language:
|
12 |
-
- en
|
13 |
-
base_model: mistralai/Mistral-7B-v0.1
|
14 |
---
|
15 |
-
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
-
|
19 |
-
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
20 |
-
|
21 |
-
|
22 |
-
# Model Card for Zephyr 7B Alpha
|
23 |
-
|
24 |
-
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so.
|
25 |
-
|
26 |
-
|
27 |
-
## Model description
|
28 |
-
|
29 |
-
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
|
30 |
-
- **Language(s) (NLP):** Primarily English
|
31 |
-
- **License:** MIT
|
32 |
-
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
33 |
-
|
34 |
-
### Model Sources
|
35 |
-
|
36 |
-
<!-- Provide the basic links for the model. -->
|
37 |
-
|
38 |
-
- **Repository:** https://github.com/huggingface/alignment-handbook
|
39 |
-
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
|
40 |
-
|
41 |
-
## Intended uses & limitations
|
42 |
-
|
43 |
-
The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
|
44 |
-
|
45 |
-
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
46 |
-
|
47 |
-
```python
|
48 |
-
# Install transformers from source - only needed for versions <= v4.34
|
49 |
-
# pip install git+https://github.com/huggingface/transformers.git
|
50 |
-
# pip install accelerate
|
51 |
-
|
52 |
-
import torch
|
53 |
-
from transformers import pipeline
|
54 |
-
|
55 |
-
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
|
56 |
-
|
57 |
-
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
58 |
-
messages = [
|
59 |
-
{
|
60 |
-
"role": "system",
|
61 |
-
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
62 |
-
},
|
63 |
-
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
64 |
-
]
|
65 |
-
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
66 |
-
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
67 |
-
print(outputs[0]["generated_text"])
|
68 |
-
# <|system|>
|
69 |
-
# You are a friendly chatbot who always responds in the style of a pirate.</s>
|
70 |
-
# <|user|>
|
71 |
-
# How many helicopters can a human eat in one sitting?</s>
|
72 |
-
# <|assistant|>
|
73 |
-
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
|
74 |
-
```
|
75 |
-
|
76 |
-
## Bias, Risks, and Limitations
|
77 |
-
|
78 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
79 |
-
|
80 |
-
Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
|
81 |
-
It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
|
82 |
-
|
83 |
-
|
84 |
-
## Training and evaluation data
|
85 |
-
|
86 |
-
Zephyr 7B Alpha achieves the following results on the evaluation set:
|
87 |
-
|
88 |
-
- Loss: 0.4605
|
89 |
-
- Rewards/chosen: -0.5053
|
90 |
-
- Rewards/rejected: -1.8752
|
91 |
-
- Rewards/accuracies: 0.7812
|
92 |
-
- Rewards/margins: 1.3699
|
93 |
-
- Logps/rejected: -327.4286
|
94 |
-
- Logps/chosen: -297.1040
|
95 |
-
- Logits/rejected: -2.7153
|
96 |
-
- Logits/chosen: -2.7447
|
97 |
-
|
98 |
## Training procedure
|
99 |
|
100 |
-
### Training hyperparameters
|
101 |
-
|
102 |
-
The following hyperparameters were used during training:
|
103 |
-
|
104 |
-
- learning_rate: 5e-07
|
105 |
-
- train_batch_size: 2
|
106 |
-
- eval_batch_size: 4
|
107 |
-
- seed: 42
|
108 |
-
- distributed_type: multi-GPU
|
109 |
-
- num_devices: 16
|
110 |
-
- total_train_batch_size: 32
|
111 |
-
- total_eval_batch_size: 64
|
112 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
113 |
-
- lr_scheduler_type: linear
|
114 |
-
- lr_scheduler_warmup_ratio: 0.1
|
115 |
-
- num_epochs: 1
|
116 |
-
|
117 |
-
### Training results
|
118 |
-
|
119 |
-
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
120 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
121 |
-
| 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 |
|
122 |
-
| 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 |
|
123 |
-
| 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 |
|
124 |
-
| 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 |
|
125 |
-
| 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 |
|
126 |
-
| 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 |
|
127 |
-
| 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 |
|
128 |
-
| 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 |
|
129 |
-
| 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 |
|
130 |
-
| 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 |
|
131 |
-
| 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 |
|
132 |
-
| 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 |
|
133 |
-
| 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 |
|
134 |
-
| 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 |
|
135 |
-
| 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 |
|
136 |
-
| 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 |
|
137 |
-
| 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 |
|
138 |
-
| 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 |
|
139 |
-
| 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 |
|
140 |
-
|
141 |
-
|
142 |
### Framework versions
|
143 |
|
144 |
-
|
145 |
-
-
|
146 |
-
- Datasets 2.12.0
|
147 |
-
- Tokenizers 0.14.0
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
### Framework versions
|
7 |
|
8 |
+
|
9 |
+
- PEFT 0.5.0
|
|
|
|
adapter_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "HuggingFaceH4/zephyr-7b-alpha",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 8,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"q_proj",
|
18 |
+
"k_proj",
|
19 |
+
"v_proj",
|
20 |
+
"o_proj"
|
21 |
+
],
|
22 |
+
"task_type": "CAUSAL_LM"
|
23 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2341fd3df91710aa124e49cb2c59304fbb3b2274034f7a0cad1ebd1ff7e895dd
|
3 |
+
size 27355402
|