File size: 1,670 Bytes
792e548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47f1ab6
 
 
792e548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47f1ab6
 
792e548
 
 
 
 
 
47f1ab6
792e548
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: peft
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- base_model:adapter:google-bert/bert-base-uncased
- lora
- transformers
metrics:
- accuracy
model-index:
- name: twitter_bank_scam_classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# twitter_bank_scam_classifier

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7974
- Accuracy: 0.55
- Auc: 0.54

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|
| 0.6974        | 1.0   | 11   | 0.7115          | 0.59     | 0.53 |
| 0.6953        | 2.0   | 22   | 0.7974          | 0.55     | 0.54 |


### Framework versions

- PEFT 0.16.0
- Transformers 4.53.3
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2