File size: 4,044 Bytes
80c1f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: apache-2.0
tags:
- vision
- image-classification
- medical
- glomerulus
- pathology
- pytorch
- transformers
- vision-transformer
datasets:
- custom
metrics:
- accuracy
- f1
model-index:
- name: vision-transformer-glomerulus-classifier
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: Glomerulus Classification Dataset
type: custom
metrics:
- type: accuracy
value: 0.9491
- type: f1
value: 0.9493
---
# Vision Transformer for Glomerulus Classification
This model is a **Vision Transformer Large** fine-tuned for classification of renal glomerulus images, distinguishing between normal and crescentic conditions across different histological stains.
## Model Performance
- **Accuracy**: 0.9491 (94.91%)
- **F1-Score**: 0.9493 (94.93%)
## Supported Classes
The model classifies glomeruli into **10 classes**:
### Normal:
- `Normal_AZAN` - Normal glomerulus with Azan staining
- `Normal_HE` - Normal glomerulus with H&E staining
- `Normal_PAMS` - Normal glomerulus with PAMS staining
- `Normal_PAS` - Normal glomerulus with PAS staining
- `Normal_PICRO` - Normal glomerulus with Picro staining
### Crescentic:
- `Crescente_AZAN` - Crescentic glomerulus with Azan staining
- `Crescente_HE` - Crescentic glomerulus with H&E staining
- `Crescente_PAMS` - Crescentic glomerulus with PAMS staining
- `Crescente_PAS` - Crescentic glomerulus with PAS staining
- `Crescente_PICRO` - Crescentic glomerulus with Picro staining
## How to Use
```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "CleitonOERocha/vision-transformer-glomerulus-classifier"
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Load and process image
image = Image.open("your_image.jpg")
inputs = processor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class_id = predictions.argmax().item()
predicted_class = model.config.id2label[predicted_class_id]
confidence = predictions.max().item()
print(f"Predicted class: {predicted_class}")
print(f"Confidence: {confidence:.4f}")
```
## Technical Details
- **Architecture**: Vision Transformer Large (ViT-L/16)
- **Base Model**: google/vit-large-patch16-224-in21k
- **Input Size**: 224x224 pixels
- **Patch Size**: 16x16
- **Parameters**: ~300M
- **Framework**: PyTorch + Transformers
## Model Comparison
In our benchmark:
1. **Vision Transformer Large**: 94.91% (this model)
2. **Vision Transformer Base**: 93.53%
3. **ResNet-50**: 50.58%
## Performance by Class
| Class | Precision | Recall | F1-Score | Support |
|-------|-----------|--------|----------|---------|
| Crescente_AZAN | 0.9500 | 0.9344 | 0.9421 | 61 |
| Crescente_HE | 0.9665 | 0.9914 | 0.9788 | 233 |
| Crescente_PAMS | 0.9737 | 0.9487 | 0.9610 | 78 |
| Crescente_PAS | 0.9607 | 0.9661 | 0.9634 | 177 |
| Crescente_PICRO | 0.7179 | 0.6364 | 0.6747 | 44 |
| Normal_AZAN | 0.8714 | 0.9683 | 0.9173 | 63 |
| Normal_HE | 0.9908 | 0.9908 | 0.9908 | 434 |
| Normal_PAMS | 0.9785 | 0.9681 | 0.9733 | 94 |
| Normal_PAS | 0.9835 | 0.8151 | 0.8914 | 146 |
| Normal_PICRO | 0.6667 | 0.9565 | 0.7857 | 46 |
## Dataset
The model was trained on a custom dataset of renal glomerulus images with:
- **Total images**: 2,759 images
- **Training**: 1,383 images
- **Test**: 1,376 images
- **Stains**: 5 types (AZAN, H&E, PAMS, PAS, PICRO)
- **Conditions**: Normal vs Crescentic
## Limitations
- Trained specifically for renal glomeruli
- Requires histological quality images
- Does not replace professional medical diagnosis
- Performance may vary with different equipment/protocols
---
**Note**: This model is for research and educational purposes. It should not be used as the sole source for medical diagnosis.
|