Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,85 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
### Downstream Use [optional]
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
##
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
-
##
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# 🎯 ClassiCC-PT Classifiers
|
7 |
|
8 |
+
## 📖 Overview
|
9 |
|
10 |
+
The ClassiCC-PT classifiers are three BERTimbau-based neural classifiers designed for Portuguese web documents, trained on GPT-4o–annotated data.
|
11 |
+
They were created to support content-based filtering in large-scale Portuguese corpora and are part of the ClassiCC-PT dataset pipeline.
|
12 |
|
13 |
+
**This repository contains the STEM classifier.**
|
14 |
|
15 |
+
The classifiers provide document-level scores (0–5) for:
|
16 |
|
17 |
+
Educational Content (ClassiCC-PT-edu)
|
18 |
|
19 |
+
STEM Content (ClassiCC-PT-STEM)
|
20 |
|
21 |
+
Toxic Content (ClassiCC-PT-toxic)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
## 🏗 Training Setup
|
25 |
|
26 |
+
Base model: BERTimbau Base
|
27 |
|
28 |
+
Head: Linear regression layer
|
|
|
|
|
29 |
|
30 |
+
Objective: Predict discrete scores (0–5) assigned by GPT-4o
|
31 |
|
32 |
+
Optimizer: AdamW (lr = 3e-4)
|
33 |
|
34 |
+
Scheduler: Cosine decay with 5% warmup
|
35 |
|
36 |
+
Epochs: 20
|
37 |
|
38 |
+
Train Hardware: A100 gpus
|
39 |
|
|
|
40 |
|
41 |
+
## 📊 Performance
|
42 |
|
43 |
+
All classifiers are evaluated both as regressors and in binary classification mode (score ≥ 3 → positive).
|
44 |
|
45 |
+
| Classifier | Task | Test Size | Train Size | F1 (Binary) |
|
46 |
+
| ----------------- | ----------------------- | --------- | ---------- | ----------- |
|
47 |
+
| ClassiCC-PT-edu | Educational Content | 10k | 110k | **0.77** |
|
48 |
+
| ClassiCC-PT-STEM | STEM Content | 12k | 100k | **0.76** |
|
49 |
+
| ClassiCC-PT-toxic | Toxic/Offensive Content | 20k | 180k | **0.78** |
|
50 |
|
51 |
+
For comparison, the [FineWeb-Edu classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) (trained only in English) achieved only 0.48 F1 on Portuguese data, highlighting the need for language-specific models.
|
52 |
|
|
|
53 |
|
54 |
+
## 💡 Intended Use
|
55 |
|
56 |
+
These classifiers were built for pretraining corpus filtering but can also be used for:
|
57 |
|
58 |
+
Dataset annotation for educational/STEM/toxic content
|
59 |
|
60 |
+
Research in Portuguese NLP content classification
|
61 |
|
62 |
+
Filtering user-generated content in applications targeting Portuguese speakers
|
63 |
|
|
|
64 |
|
65 |
+
## Usage
|
66 |
|
67 |
+
```
|
68 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
69 |
+
import torch
|
70 |
|
71 |
+
model_name = "ClassiCC-Corpus/ClassiCC-PT-edu"
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
74 |
|
75 |
+
text = "A fotossíntese é o processo pelo qual as plantas convertem energia luminosa em energia química."
|
76 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
77 |
+
outputs = model(**inputs)
|
78 |
+
score = outputs.logits.squeeze(-1).float().cpu().numpy()
|
79 |
+
print(f"Score: {score:.2f}")
|
80 |
+
``
|
81 |
|
82 |
+
## 📜 Citation
|
83 |
|
84 |
+
If you use these classifiers, please cite:
|
85 |
+
```
|
86 |
+
coming soon
|
87 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|