File size: 16,366 Bytes
5424563
 
 
61dcad6
 
 
 
 
 
5424563
61dcad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424563
 
61dcad6
5424563
61dcad6
5424563
 
 
 
61dcad6
 
5424563
61dcad6
5424563
 
 
 
 
 
 
61dcad6
5424563
61dcad6
5424563
 
 
 
 
 
 
 
 
 
 
 
 
61dcad6
5424563
 
61dcad6
 
 
 
 
 
 
 
5424563
61dcad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61dcad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424563
 
 
 
 
 
 
 
 
 
 
 
 
 
61dcad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424563
 
 
 
 
 
61dcad6
5424563
 
 
 
 
 
61dcad6
 
 
 
 
 
 
 
 
 
 
 
 
5424563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:22258
- loss:FitMixinLoss
base_model: cross-encoder/ms-marco-MiniLM-L6-v2
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: cross rerank dev mixed neg
      type: cross-rerank-dev-mixed-neg
    metrics:
    - type: map
      value: 0.4873053613053613
      name: Map
    - type: mrr@10
      value: 0.48394871794871797
      name: Mrr@10
    - type: ndcg@10
      value: 0.5970778430138177
      name: Ndcg@10
---

# CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) <!-- at revision ce0834f22110de6d9222af7a7a03628121708969 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("CharlesPing/finetuned-cross-encoder-l6-v2")
# Get scores for pairs of texts
pairs = [
    ['‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”', 'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".'],
    ['After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren\'t flying, for the week afterwards."', 'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.'],
    ['But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.', 'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.'],
    ['"Many people think the science of climate change is settled.', 'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.'],
    ['“Even if you could calculate some sort of meaningful global temperature statistic, the figure would be unimportant.', 'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    '‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”',
    [
        'Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".',
        'Play media At 9:42\xa0a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.',
        'Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.',
        'During his administration, the bridge from Filadelfia and Liberia was constructed, as was the Old National Theater.',
        'Quantitative information or data is based on quantities obtained using a quantifiable measurement process.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Dataset: `cross-rerank-dev-mixed-neg`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10
  }
  ```

| Metric      | Value      |
|:------------|:-----------|
| map         | 0.4873     |
| mrr@10      | 0.4839     |
| **ndcg@10** | **0.5971** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 22,258 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                                       | sentence_1                                                                                       | label                                                          |
  |:--------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                           | string                                                                                           | float                                                          |
  | details | <ul><li>min: 26 characters</li><li>mean: 121.91 characters</li><li>max: 319 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 140.85 characters</li><li>max: 573 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.16</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                       | sentence_1                                                                                                                                                                                                         | label            |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>‘Getting hung up on the exact nature of the records is interesting, and there’s lots of technical work that can be done there, but the main take-home response there is that the trends we’ve been seeing since the 1970s are continuing and have not paused in any way,’ he said.”</code> | <code>Rosenzweig also criticized the "waffling—encouraged by the NPOV policy—[which] means that it is hard to discern any overall interpretive stance in Wikipedia history".</code>                                | <code>1.0</code> |
  | <code>After the 9/11 terrorist attacks grounded commercial air traffic, "there was a temperature drop while the airplanes weren't flying, for the week afterwards."</code>                                                                                                                       | <code>Play media At 9:42 a.m., the Federal Aviation Administration (FAA) grounded all civilian aircraft within the continental U.S., and civilian aircraft already in flight were told to land immediately.</code> | <code>1.0</code> |
  | <code>But the central message of the IPCC AR4, is confirmed by the peer reviewed literature.</code>                                                                                                                                                                                              | <code>Scientific consensus is normally achieved through communication at conferences, publication in the scientific literature, replication (reproducible results by others), and peer review.</code>              | <code>1.0</code> |
* Loss: [<code>FitMixinLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#fitmixinloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | cross-rerank-dev-mixed-neg_ndcg@10 |
|:------:|:----:|:-------------:|:----------------------------------:|
| 0.3592 | 500  | 0.4259        | 0.5154                             |
| 0.7184 | 1000 | 0.3346        | 0.5497                             |
| 1.0    | 1392 | -             | 0.5640                             |
| 1.0776 | 1500 | 0.3171        | 0.5660                             |
| 1.4368 | 2000 | 0.2826        | 0.5669                             |
| 1.7960 | 2500 | 0.281         | 0.5802                             |
| 2.0    | 2784 | -             | 0.5834                             |
| 2.1552 | 3000 | 0.2553        | 0.5842                             |
| 2.5144 | 3500 | 0.2326        | 0.5961                             |
| 2.8736 | 4000 | 0.2408        | 0.5971                             |


### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->