Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
fbcb0cb
·
verified ·
1 Parent(s): 3a326e2

End of training

Browse files
Files changed (2) hide show
  1. README.md +15 -51
  2. emissions.csv +1 -1
README.md CHANGED
@@ -9,65 +9,29 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
 
19
 
20
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification
21
-
22
- # Severity classification
23
-
24
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
25
-
26
- The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607) [[arXiv](https://arxiv.org/abs/2507.03607)].
27
-
28
- **Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
29
-
30
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
31
-
32
-
33
-
34
 
35
  ## Model description
36
 
37
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
38
-
39
- ## How to get started with the model
40
-
41
- ```python
42
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
43
- import torch
44
-
45
- labels = ["low", "medium", "high", "critical"]
46
 
47
- model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
48
- tokenizer = AutoTokenizer.from_pretrained(model_name)
49
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
50
- model.eval()
51
 
52
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
53
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
54
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
55
 
56
- # Run inference
57
- with torch.no_grad():
58
- outputs = model(**inputs)
59
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
60
-
61
- # Print results
62
- print("Predictions:", predictions)
63
- predicted_class = torch.argmax(predictions, dim=-1).item()
64
- print("Predicted severity:", labels[predicted_class])
65
- ```
66
-
67
- It achieves the following results on the evaluation set:
68
- - Loss: 0.5055
69
- - Accuracy: 0.8292
70
 
 
71
 
72
  ## Training procedure
73
 
@@ -86,11 +50,11 @@ The following hyperparameters were used during training:
86
 
87
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
88
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
89
- | 0.7509 | 1.0 | 28516 | 0.6343 | 0.7430 |
90
- | 0.4746 | 2.0 | 57032 | 0.5834 | 0.7715 |
91
- | 0.507 | 3.0 | 85548 | 0.5317 | 0.7974 |
92
- | 0.3822 | 4.0 | 114064 | 0.5055 | 0.8171 |
93
- | 0.3155 | 5.0 | 142580 | 0.5055 | 0.8292 |
94
 
95
 
96
  ### Framework versions
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5093
22
+ - Accuracy: 0.8249
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
 
 
 
29
 
30
+ More information needed
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.6783 | 1.0 | 28699 | 0.6468 | 0.7397 |
54
+ | 0.6438 | 2.0 | 57398 | 0.5705 | 0.7716 |
55
+ | 0.5289 | 3.0 | 86097 | 0.5305 | 0.7943 |
56
+ | 0.4965 | 4.0 | 114796 | 0.5140 | 0.8150 |
57
+ | 0.4104 | 5.0 | 143495 | 0.5093 | 0.8249 |
58
 
59
 
60
  ### Framework versions
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-08-25T19:38:50,codecarbon,7b19d616-e6d0-42b8-9642-31e36e1630b1,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22265.02864354197,0.40295547151395544,1.809813398245206e-05,42.5,183.5258822134907,94.34468507766725,0.26267707134264057,2.982324163079646,0.5830814870843721,3.8280827215066586,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-09-08T12:24:11,codecarbon,66f91a74-0db9-475f-857e-dd7952a75d4c,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22385.4896657723,0.40553103793852857,1.811579929647868e-05,42.5,181.22844401520283,94.34468507766725,0.26411038263759956,3.00217460423778,0.5862656523666008,3.85255063924198,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0