End of training
Browse files- README.md +17 -48
- emissions.csv +1 -1
- model.safetensors +1 -1
README.md
CHANGED
@@ -9,56 +9,29 @@ metrics:
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
12 |
-
datasets:
|
13 |
-
- CIRCL/vulnerability-scores
|
14 |
---
|
15 |
|
|
|
|
|
16 |
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
|
23 |
-
|
24 |
-
The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607) [[arXiv](https://arxiv.org/abs/2507.03607)].
|
25 |
-
|
26 |
-
**Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
|
27 |
-
|
28 |
-
You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
|
29 |
-
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
## How to get started with the model
|
36 |
-
|
37 |
-
```python
|
38 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
39 |
-
import torch
|
40 |
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
46 |
-
model.eval()
|
47 |
|
48 |
-
|
49 |
-
that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
|
50 |
-
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
|
51 |
|
52 |
-
|
53 |
-
with torch.no_grad():
|
54 |
-
outputs = model(**inputs)
|
55 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
56 |
-
|
57 |
-
# Print results
|
58 |
-
print("Predictions:", predictions)
|
59 |
-
predicted_class = torch.argmax(predictions, dim=-1).item()
|
60 |
-
print("Predicted severity:", labels[predicted_class])
|
61 |
-
```
|
62 |
|
63 |
## Training procedure
|
64 |
|
@@ -73,19 +46,15 @@ The following hyperparameters were used during training:
|
|
73 |
- lr_scheduler_type: linear
|
74 |
- num_epochs: 5
|
75 |
|
76 |
-
It achieves the following results on the evaluation set:
|
77 |
-
- Loss: 0.5072
|
78 |
-
- Accuracy: 0.8282
|
79 |
-
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
83 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
9 |
model-index:
|
10 |
- name: vulnerability-severity-classification-roberta-base
|
11 |
results: []
|
|
|
|
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# vulnerability-severity-classification-roberta-base
|
18 |
|
19 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5052
|
22 |
+
- Accuracy: 0.8289
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
## Intended uses & limitations
|
29 |
|
30 |
+
More information needed
|
|
|
|
|
|
|
31 |
|
32 |
+
## Training and evaluation data
|
|
|
|
|
33 |
|
34 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Training procedure
|
37 |
|
|
|
46 |
- lr_scheduler_type: linear
|
47 |
- num_epochs: 5
|
48 |
|
|
|
|
|
|
|
|
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
53 |
+
| 0.7443 | 1.0 | 28795 | 0.6486 | 0.7343 |
|
54 |
+
| 0.6199 | 2.0 | 57590 | 0.5670 | 0.7743 |
|
55 |
+
| 0.4911 | 3.0 | 86385 | 0.5249 | 0.7958 |
|
56 |
+
| 0.3388 | 4.0 | 115180 | 0.4890 | 0.8185 |
|
57 |
+
| 0.4451 | 5.0 | 143975 | 0.5052 | 0.8289 |
|
58 |
|
59 |
|
60 |
### Framework versions
|
emissions.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
-
2025-09-
|
|
|
1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-09-15T13:56:20,codecarbon,91da8172-a405-4d50-8389-85b2c93bf918,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22496.31638219813,0.40783754608547185,1.8129081186296057e-05,42.5,279.6408161707655,94.34468507766725,0.2654148633706176,3.0198868070186364,0.589160829116472,3.8744624995057313,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498618976
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:636d0e927f426e03fe11457e4a56df3256c3a41550aedcb07d7267187509e65e
|
3 |
size 498618976
|