Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
cedricbonhomme commited on
Commit
f8562cc
·
verified ·
1 Parent(s): 8b8133e

End of training

Browse files
Files changed (3) hide show
  1. README.md +17 -48
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -9,56 +9,29 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
- datasets:
13
- - CIRCL/vulnerability-scores
14
  ---
15
 
 
 
16
 
 
17
 
18
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification
19
-
20
- # Severity classification
21
-
22
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
23
-
24
- The model was presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607) [[arXiv](https://arxiv.org/abs/2507.03607)].
25
-
26
- **Abstract:** VLAI is a transformer-based model that predicts software vulnerability severity levels directly from text descriptions. Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities and achieves over 82% accuracy in predicting severity categories, enabling faster and more consistent triage ahead of manual CVSS scoring. The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
27
-
28
- You can read [this page](https://www.vulnerability-lookup.org/user-manual/ai/) for more information.
29
-
30
 
31
  ## Model description
32
 
33
- It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
34
-
35
- ## How to get started with the model
36
-
37
- ```python
38
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
39
- import torch
40
 
41
- labels = ["low", "medium", "high", "critical"]
42
 
43
- model_name = "CIRCL/vulnerability-severity-classification-roberta-base"
44
- tokenizer = AutoTokenizer.from_pretrained(model_name)
45
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
46
- model.eval()
47
 
48
- test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
49
- that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
50
- inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
51
 
52
- # Run inference
53
- with torch.no_grad():
54
- outputs = model(**inputs)
55
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
56
-
57
- # Print results
58
- print("Predictions:", predictions)
59
- predicted_class = torch.argmax(predictions, dim=-1).item()
60
- print("Predicted severity:", labels[predicted_class])
61
- ```
62
 
63
  ## Training procedure
64
 
@@ -73,19 +46,15 @@ The following hyperparameters were used during training:
73
  - lr_scheduler_type: linear
74
  - num_epochs: 5
75
 
76
- It achieves the following results on the evaluation set:
77
- - Loss: 0.5072
78
- - Accuracy: 0.8282
79
-
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
83
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
84
- | 0.5519 | 1.0 | 28760 | 0.6553 | 0.7357 |
85
- | 0.5365 | 2.0 | 57520 | 0.5647 | 0.7746 |
86
- | 0.3656 | 3.0 | 86280 | 0.5397 | 0.7997 |
87
- | 0.4367 | 4.0 | 115040 | 0.4903 | 0.8191 |
88
- | 0.3609 | 5.0 | 143800 | 0.5072 | 0.8282 |
89
 
90
 
91
  ### Framework versions
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-roberta-base
18
 
19
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5052
22
+ - Accuracy: 0.8289
 
 
 
 
 
 
 
 
23
 
24
  ## Model description
25
 
26
+ More information needed
 
 
 
 
 
 
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
33
 
34
+ More information needed
 
 
 
 
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
46
  - lr_scheduler_type: linear
47
  - num_epochs: 5
48
 
 
 
 
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:------:|:---------------:|:--------:|
53
+ | 0.7443 | 1.0 | 28795 | 0.6486 | 0.7343 |
54
+ | 0.6199 | 2.0 | 57590 | 0.5670 | 0.7743 |
55
+ | 0.4911 | 3.0 | 86385 | 0.5249 | 0.7958 |
56
+ | 0.3388 | 4.0 | 115180 | 0.4890 | 0.8185 |
57
+ | 0.4451 | 5.0 | 143975 | 0.5052 | 0.8289 |
58
 
59
 
60
  ### Framework versions
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-09-11T12:32:12,codecarbon,81764e46-1456-449e-a3dd-290dd2a3688d,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22484.098965471145,0.40757034411397625,1.812704813032012e-05,42.5,322.7434811553208,94.34468507766725,0.2652669085793128,3.017823348701171,0.5888338196884041,3.8719240769688894,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-09-15T13:56:20,codecarbon,91da8172-a405-4d50-8389-85b2c93bf918,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,22496.31638219813,0.40783754608547185,1.8129081186296057e-05,42.5,279.6408161707655,94.34468507766725,0.2654148633706176,3.0198868070186364,0.589160829116472,3.8744624995057313,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2076f78529936f77a851e407eea6755302b5ddc35a93d175bf52c3f4bcf7d12
3
  size 498618976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:636d0e927f426e03fe11457e4a56df3256c3a41550aedcb07d7267187509e65e
3
  size 498618976