File size: 3,006 Bytes
2a7e8e8 cd3b0d1 2a7e8e8 7076d2e 2a7e8e8 38d2e45 5457689 e840157 122bcbf e244c56 82a36b9 2a7e8e8 e840157 7762f07 e840157 7762f07 e840157 2a7e8e8 ac0ee23 e244c56 2a7e8e8 b35fc4c e244c56 cd3b0d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
results: []
datasets:
- CIRCL/vulnerability-scores
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
It achieves the following results on the evaluation set:
- Loss: 0.5058
- Accuracy: 0.8269
## Model description
It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
## How to get started with the model
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
labels = ["low", "medium", "high", "critical"]
model_name = "CIRCL/vulnerability-severity-classification-distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
test_description = "SAP NetWeaver Visual Composer Metadata Uploader is not protected with a proper authorization, allowing unauthenticated agent to upload potentially malicious executable binaries \
that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Print results
print("Predictions:", predictions)
predicted_class = torch.argmax(predictions, dim=-1).item()
print("Predicted severity:", labels[predicted_class])
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6291 | 1.0 | 27084 | 0.6327 | 0.7463 |
| 0.6025 | 2.0 | 54168 | 0.5640 | 0.7770 |
| 0.5139 | 3.0 | 81252 | 0.5181 | 0.8016 |
| 0.3072 | 4.0 | 108336 | 0.4975 | 0.8182 |
| 0.2318 | 5.0 | 135420 | 0.5058 | 0.8269 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1 |