Mahmoud Amiri commited on
Commit
8039cef
·
1 Parent(s): 6203a0b

update readme file

Browse files
Files changed (1) hide show
  1. README.md +191 -1
README.md CHANGED
@@ -1,3 +1,193 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ pipeline_tag: summarization
6
+ license: apache-2.0
7
+ tags:
8
+ - chemistry
9
+ - scientific-summarization
10
+ - distilbart
11
+ - abstractive
12
+ - tldr
13
+ - knowledge-graphs
14
+ datasets:
15
+ - Bocklitz-Lab/lit2vec-tldr-bart-dataset
16
+ model-index:
17
+ - name: lit2vec-tldr-bart
18
+ results:
19
+ - task:
20
+ name: Summarization
21
+ type: summarization
22
+ dataset:
23
+ name: Lit2Vec TL;DR Chemistry Dataset
24
+ type: Bocklitz-Lab/lit2vec-tldr-bart-dataset
25
+ split: test
26
+ size: 1001
27
+ metrics:
28
+ - type: rouge1
29
+ value: 56.11
30
+ - type: rouge2
31
+ value: 30.78
32
+ - type: rougeLsum
33
+ value: 45.43
34
  ---
35
+
36
+ # lit2vec-tldr-bart (DistilBART fine-tuned for chemistry TL;DRs)
37
+
38
+ **lit2vec-tldr-bart** is a DistilBART model fine-tuned on **19,992** CC-BY licensed chemistry abstracts to produce **concise TL;DR-style summaries** aligned with methods → results → significance. It’s designed for scientific **abstractive summarization**, **semantic indexing**, and **knowledge-graph population** in chemistry and related fields.
39
+
40
+ - **Base model:** `sshleifer/distilbart-cnn-12-6`
41
+ - **Training data:** [`Bocklitz-Lab/lit2vec-tldr-bart-dataset`](https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset)
42
+ - **Max input length:** 1024 tokens
43
+ - **Target length:** ~128 tokens
44
+
45
+ ---
46
+
47
+ ## 🧪 Evaluation (held-out test)
48
+
49
+ | Split | ROUGE-1 | ROUGE-2 | ROUGE-Lsum |
50
+ |------:|--------:|--------:|-----------:|
51
+ | Test | **56.11** | **30.78** | **45.43** |
52
+
53
+ > Validation RLsum: 46.05
54
+ > Metrics computed with `evaluate`'s `rouge` (NLTK sentence segmentation, `use_stemmer=True`).
55
+
56
+ ---
57
+
58
+ ## 🚀 Quickstart
59
+
60
+ ```python
61
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig
62
+
63
+ repo = "Bocklitz-Lab/lit2vec-tldr-bart"
64
+
65
+ tok = AutoTokenizer.from_pretrained(repo)
66
+ model = AutoModelForSeq2SeqLM.from_pretrained(repo)
67
+ gen = GenerationConfig.from_pretrained(repo) # loads default decoding params
68
+
69
+ text = "Proton exchange membrane fuel cells convert chemical energy into electricity..."
70
+ inputs = tok(text, return_tensors="pt", truncation=True, max_length=1024)
71
+
72
+ summary_ids = model.generate(**inputs, **gen.to_dict())
73
+ print(tok.decode(summary_ids[0], skip_special_tokens=True))
74
+ ````
75
+
76
+ ### Batch inference (PyTorch)
77
+
78
+ ```python
79
+ texts = [
80
+ "Abstract 1 ...",
81
+ "Abstract 2 ...",
82
+ ]
83
+ batch = tok(texts, return_tensors="pt", padding=True, truncation=True, max_length=1024)
84
+ out = model.generate(**batch, **gen.to_dict())
85
+ summaries = tok.batch_decode(out, skip_special_tokens=True)
86
+ ```
87
+
88
+ ---
89
+
90
+ ## 🔧 Default decoding (saved in `generation_config.json`)
91
+
92
+ These are the defaults saved with the model (you can override at `generate()` time):
93
+
94
+ ```json
95
+ {
96
+ "max_length": 142,
97
+ "min_length": 56,
98
+ "early_stopping": true,
99
+ "num_beams": 4,
100
+ "length_penalty": 2.0,
101
+ "no_repeat_ngram_size": 3,
102
+ "forced_bos_token_id": 0,
103
+ "forced_eos_token_id": 2
104
+ }
105
+ ```
106
+
107
+ ---
108
+
109
+ ## 📊 Training details
110
+
111
+ * **Base:** `sshleifer/distilbart-cnn-12-6` (Distilled BART)
112
+ * **Data:** 19,992 CC-BY chemistry abstracts with TL;DR summaries
113
+ * **Splits:** train=17,992 / val=999 / test=1,001
114
+ * **Max lengths:** input 1024, target 128
115
+ * **Optimizer:** AdamW, **lr=2e-5**
116
+ * **Batching:** per-device train/eval batch size 4, **gradient\_accumulation\_steps=4**
117
+ * **Epochs:** 5
118
+ * **Precision:** fp16 (when CUDA available)
119
+ * **Hardware:** single NVIDIA RTX 3090
120
+ * **Seed:** 42
121
+ * **Libraries:** 🤗 Transformers + Datasets, `evaluate` for ROUGE, NLTK for sentence splitting
122
+
123
+ ---
124
+
125
+ ## ✅ Intended use
126
+
127
+ * TL;DR abstractive summaries for **chemistry** and adjacent domains (materials science, chemical engineering, environmental science).
128
+ * **Semantic indexing**, **IR reranking**, and **knowledge graph** ingestion where concise method/result statements are helpful.
129
+
130
+ ### Limitations & risks
131
+
132
+ * May **hallucinate** details not present in the abstract (typical for abstractive models).
133
+ * Not a substitute for expert judgment; avoid using summaries as sole evidence for scientific claims.
134
+ * Trained on CC-BY English abstracts; performance may degrade on other domains/languages.
135
+
136
+ ---
137
+
138
+ ## 📦 Files
139
+
140
+ This repo should include:
141
+
142
+ * `config.json`, `pytorch_model.bin` or `model.safetensors`
143
+ * `tokenizer.json`, `tokenizer_config.json`, `special_tokens_map.json`, merges/vocab as applicable
144
+ * `generation_config.json` (decoding defaults)
145
+
146
+ ---
147
+
148
+ ## 🔁 Reproducibility
149
+
150
+ * Dataset: [`Bocklitz-Lab/lit2vec-tldr-bart-dataset`](https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset)
151
+ * Recommended preprocessing: truncate inputs at 1024 tokens; targets at 128.
152
+ * ROUGE evaluation: `evaluate.load("rouge")`, NLTK sentence tokenization, `use_stemmer=True`.
153
+
154
+ ---
155
+
156
+ ## 📚 Citation
157
+
158
+ If you use this model or dataset, please cite:
159
+
160
+ ```bibtex
161
+ @software{lit2vec_tldr_bart_2025,
162
+ title = {lit2vec-tldr-bart: DistilBART fine-tuned for chemistry TL;DR summarization},
163
+ author = {Bocklitz Lab},
164
+ year = {2025},
165
+ url = {https://huggingface.co/Bocklitz-Lab/lit2vec-tldr-bart},
166
+ note = {Model trained on CC-BY chemistry abstracts; dataset at Bocklitz-Lab/lit2vec-tldr-bart-dataset}
167
+ }
168
+ ```
169
+
170
+ Dataset:
171
+
172
+ ```bibtex
173
+ @dataset{lit2vec_tldr_dataset_2025,
174
+ title = {Lit2Vec TL;DR Chemistry Dataset},
175
+ author = {Bocklitz Lab},
176
+ year = {2025},
177
+ url = {https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset}
178
+ }
179
+ ```
180
+
181
+ ---
182
+
183
+ ## 📝 License
184
+
185
+ * **Model weights & code:** Apache-2.0
186
+ * **Dataset:** CC BY 4.0 (attribution in per-record metadata)
187
+
188
+ ---
189
+
190
+ ## 🙌 Acknowledgements
191
+
192
+ * Base model: DistilBART (`sshleifer/distilbart-cnn-12-6`)
193
+ * Licensing and OA links curated from publisher/aggregator sources; dataset restricted to **CC-BY** content.